Filomat 28:4 (2014), 887–896 DOI 10.2298/FIL1404887L

Published by Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat

Squashing Maximum Packings of *K_n* with 8-Cycles into Maximum Packings of *K_n* with 4-Cycles

Charles Curtis Lindner^a, Giovanni Lo Faro^b, Mariusz Meszka^c, Antoinette Tripodi^b

^aDepartment of Mathematics and Statistics, Auburn University, Auburn, AL 36849-5307 U.S.A. ^bDipartimento di Matematica e Informatica, Università di Messina, 98166 Messina, Italia ^cAGH University of Science and Technology, Kraków, 30059 Poland

Abstract. An 8-cycle is said to be squashed if we identify a pair of opposite vertices and name one of them with the other (and thereby turning the 8-cycle into a pair of 4-cycles with exactly one vertex in common). The resulting pair of 4-cycles is called a bowtie. We say that we have *squashed* the 8-cycle into a bowtie. Evidently an 8-cycle can be squashed into a bowtie in eight different ways. The object of this paper is the construction, for *every* $n \ge 8$, of a maximum packing of K_n with 8-cycles which can be squashed in a maximum packing of K_n with 4-cycles.

1. Introduction

Let *G* be a graph. A *G*-design of order *n* is a pair (*X*, *B*) where *B* is a collection of subgraphs (*blocks*), each isomorphic to *G*, which partitions the edge set of the complete undirected graph K_n with vertex set *X*. After determining the spectrum for *G*-designs for different graphs *G*, many problems have been studied also recently (for example, see [2]-[6]). A triple (*X*, *B*, *L*), where *B* is a collection of edge disjoint copies of *G* with vertices in *X*, *L* is the set (*leave*) of all edges of K_n not belonging to any subgraph of *B* and |*L*| is as small as possible, is a maximum packing of K_n with copies of *G*; a *G*-design of order *n* is a maximum packing of K_n with copies of *G* and $L = \emptyset$.

An *m*-cycle system of order *n* is a *G*-design of order *n* where *G* is an *m*-cycle. The necessary and sufficient conditions for the existence of an *m*-cycle system are [1, 10]:

- (1) $n \ge m$, if n > 1;
- (2) *n* is odd; and
- (3) n(n-1)/2m is an integer.

If $c = (x_1, x_2, ..., x_m)$ is an *m*-cycle, we will denote by c(2) the collection of edges $\{x_i, x_{i+2}\}, i = 1, 2, ..., m$, modulo *m*. The graph c(2) is called the distance 2 graph of *c*. For example the distance 2 graphs of the 6-cycle (1, 2, 3, 4, 5, 6) and the 8-cycle (1, 2, 3, 4, 5, 6, 7, 8) look like:

Keywords. Maximum packing with 4-cycles; Maximum packing with 8-cycles.

²⁰¹⁰ Mathematics Subject Classification. Primary 05B05; Secondary 05B40

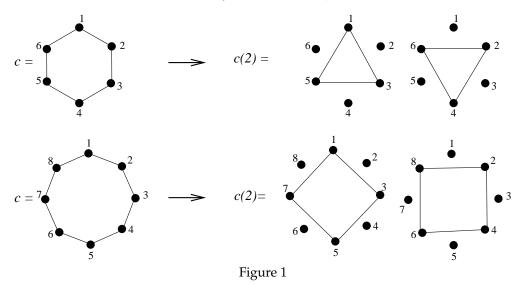
Received: 23 December 2013; Accepted: 05 May 2014

Communicated by Francesco Belardo

Research supported by P.R.I.N., P.R.A. and I.N.D.A.M.(G.N.S.A.G.A.) (Lo Faro and Tripodi) and NCN Grant No. 2011/01/B/ST1/04056 (Meszka)

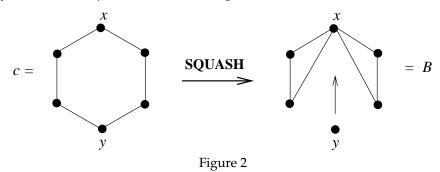
Email addresses: lindncc@auburn.edu (Charles Curtis Lindner), lofaro@unime.it (Giovanni Lo Faro), meszka@agh.edu.pl (Mariusz Meszka), atripodi@unime.it (Antoinette Tripodi)

C.C. Lindner et al. / Filomat 28:4 (2014), 887-896



An *m*-cycle system (*X*, *C*) of order *n* is said to be 2-*perfect* provided the collection of graphs $C(2) = \{c(2) \mid c \in C\}$ covers the edges of K_n . For 6-cycle systems this says that (*X*, *C*(2)) is a Steiner triple system and for 8-cycle systems a 4-cycle system. A lot of work has been done on 2-perfect *m*-cycle systems; and rather than going into a detailed history of the problem of constructing 2-perfect *m*-cycle systems the reader is referred to [7].

Quite recently a *new connection* between 6-cycle systems and Steiner triple systems was introduced: the *squashing* of a 6-cycle system into a Steiner triple system [9]. A definition is in order. Let *c* be a 6-cycle and *x* and *y* opposite vertices in *c*. If we rename *y* with *x* we obtain a bowtie *B*; i.e., two 3-cycles with the common vertex *x*. We say that we have *squashed c* into *B*; see Figure 2.



Clearly a 6-cycle can be squashed into a bowtie in six different ways.

If it is possible to squash each of the 6-cycles of the 6-cycle system (*X*, *C*) into a bowtie so that the resulting collection *S*(*C*) of bowties is a Steiner triple system, we will say that (*X*, *C*) is *squashed* into (*X*, *S*(*C*)). In [9] it is shown that for every $n \equiv 1$ or 9 (mod 12) (the spectrum for 6-cycle systems), there exists a 6-cycle system that can be squashed into a Steiner triple system. This result has been generalized to maximum packings. Rather than go into details, the reader is referred to [8].

This paper gives a *complete solution* of the problem of squashing maximum packings of 8-cycle systems into maximum packings of 4-cycle systems. We begin with some preliminaries.

2. Preliminaries

The following tables give leaves for maximum packings of K_n for both 8-cycles and 4-cycles.

888

<i>n</i> even			
K _n	8-cycle leave	4-cycle leave	
$n \equiv 0, 2, 8, 10 \pmod{16}$	1-factor	1-factor	
$n \equiv 4, 6, 12, 14 \pmod{16}$		1-factor	

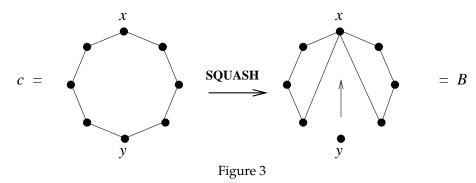
Table 1: *n* even

n odd			
K_n	8-cycle leave	4-cycle leave	
$n \equiv 1 \pmod{16}$	Ø	Ø	
$n \equiv 3 \pmod{16}$	\bigwedge	\bigtriangleup	
$n \equiv 5 \pmod{16}$			
$n \equiv 7 \pmod{16}$		$\mathbf{\mathbf{\hat{\mathbf{A}}}}$	
$n \equiv 9 \pmod{16}$		Ø	
$n \equiv 11 \pmod{16}$	$\bigtriangleup \square$		
$n \equiv 13 \pmod{16}$			
$n \equiv 15 \pmod{16}$			

Table 2: *n* odd

Now let *c* be an 8-cycle and *x* and *y* a pair of opposite vertices in *c*. If we rename *y* with *x* we have two 4-cycles *B* with the common vertex *x*. We remark (and this is *important*) that the two 4-cycles in *B* have only the vertex *x* in common. We will call a pair of 4-cycles with exactly one vertex in common a *bowtie*.

C.C. Lindner et al. / Filomat 28:4 (2014), 887-896



Just as with 6-cycles, we say that we have *squashed c* into *B* (and also that we have squashed *y* onto *x*). Clearly an 8-cycle can be squashed into a bowtie in eight different ways.

Now let (X, C, L) be a maximum packing of K_n with 8-cycles with leave L exactly as in Tables 1 and 2. We remark (and this is *important*) that the leaves for maximum packings are *not necessarily unique*.

Let *S*(*C*) be a squashing of the 8-cycles in *C* which covers *exactly* the same edges as *C*. If *L* contains no 4-cycles, then (*X*, *S*(*C*), *L*) is a maximum packing of K_n with 4-cycles. If *L* contains a 4-cycle ($n \equiv 4, 5, 6, 9, 11, 12, 14$ or 15 (mod 16)) and we remove a 4-cycle (a, b, c, d) from *L*, then ($X, S(C) \cup \{(a, b, c, d)\}, L \setminus \{(a, b, c, d)\}$) is a maximum packing of K_n with 4-cycles. In the cases $n \equiv 5, 9, 11$ and 15 (mod 16), there is only one 4-cycle in *L*. However, in the cases $n \equiv 4, 6, 12, 14$ there are three 4-cycles that can be removed (all from K_4). We remove just one (any one) to obtain a 1-factor.

Example 2.1. (The squashing of a maximum packing of K_{11} with 8-cycles into a maximum packing of K_{11} with 4-cycles.)

$$\begin{split} X &= \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}. \\ C &= \begin{cases} (0, 1, 2, 3, 4, 5, 6, 7) & (3, 0, 1, 2)(3, 4, 5, 6) \\ (0, 2, 4, 1, 3, 5, 7, 8) & (8, 0, 2, 4)(8, 3, 5, 7) \\ (0, 3, 6, 1, 8, 9, 2, 10) & SQUASH & (9, 6, 1, 8)(9, 0, 10, 2) \\ (0, 4, 10, 7, 9, 6, 2, 5) & \longrightarrow & (0, 4, 10, 7)(0, 5, 2, 6) \\ (0, 6, 8, 2, 7, 3, 10, 9) & (7, 2, 8, 6)(7, 3, 10, 9) \\ (1, 5, 9, 3, 8, 4, 6, 10) & (1, 3, 9, 5)(1, 4, 6, 10) \end{cases} \\ L &= \begin{cases} (1, 7, 4, 9) & (1, 7, 4, 9) \\ (5, 8, 10) & (5, 8, 10) \end{cases} = L^* \\ (5, 8, 10) & (5, 8, 10) \end{cases} = L \setminus L^*. \end{split}$$

Then (*X*, *C*, *L*) is a maximum packing of K_{11} with 8-cycles which has been squashed into the maximum packing of K_{11} with 4-cycles (*X*, *S*(*C*) \cup *L*^{*}, *L* \ *L*^{*}). (See Tables 1 and 2.)

In what follows we will write $(x_1, x_2, x_3, x_4, x_5, x_6, x_7, x_8) x_i$ to indicate that the vertex *opposite* x_i (namely, x_{i+4}) modulo 8 has been squashed onto x_i .

3. $n \equiv 0, 2, 8$ and 10 (mod 16)

We begin with an important lemma.

Lemma 3.1. There exists a decomposition of $K_{4m,4n}$ into 8-cycles that can be squashed into a decomposition of $K_{4m,4n}$ into 4-cycles.

Proof. Let $K_{4,4}$ have parts $\{a, b, c, d\}$ and $\{a', b', c', d'\}$. Then the following two 8-cycles can be squashed into 4-cycles.

$$\begin{array}{ll} (a,d',d,b',b,a',c,c') a & \text{SQUASH} & (a,d',d,b')(a,a',c,c') \\ (b,d',c,b',a,a',d,c') b & \longrightarrow & (b,b',c,d')(b,a',d,c'). \end{array}$$

890

Let $K_{4m,4n}$ have parts $\{a, b, c, d\} \times \{1, 2, ..., m\}$ and $\{a', b', c', d'\} \times \{1, 2, 3, ..., n\}$. For each $i \in \{1, 2, ..., m\}$ and $j \in \{1, 2, ..., n\}$, define a copy of $K_{4,4}$ (above) with parts $\{a, b, c, d\} \times \{i\}$ and $\{a', b', c', d'\} \times \{j\}$. \Box

 $\frac{n \equiv 0 \text{ or } 8 \pmod{16}}{\text{We need one example.}}$

Example 3.2. (*n* = 8)

$$X = \{0, 1, 2, 3, 4, 5, 6, 7\}$$

$$C = \begin{cases} (0, 1, 2, 7, 4, 5, 6, 3) 0 \\ (4, 2, 3, 5, 1, 7, 6, 0) 4 \\ (1, 6, 2, 5, 0, 7, 3, 4) 1 \end{cases}$$

$$L = \{(0, 2), (1, 3), (4, 6), (5, 7)\}.$$

Then (X, C, L) is a maximum packing of K_8 with 8-cycles which can be squashed into the maximum packing of K_8 with 4-cycles (X, S(C), L).

Now let *Z* be a set of size 8 and set $X = Z \times \{1, 2, 3, ..., k\}$ and define a collection of 8-cycles *C* as follows:

- (1) For each $i \in \{1, 2, 3, ..., k\}$ define a copy of Example 3.2 on $Z \times \{i\}$ and place these 8-cycles in *C*.
- (2) For each $i \neq j \in \{1, 2, 3, \dots, k\}$ place a copy of $K_{8,8}$ (Lemma 3.1) with parts $Z \times \{i\}$ and $Z \times \{j\}$ in C.

If we denote by *L* the union of the leaves in (1), the result is a maximum packing of K_{8k} (*X*, *C*, *L*) with 8-cycles, which can be squashed into the maximum packing of K_{8k} (*X*, *S*(*C*), *L*) with 4-cycles.

 $\frac{n \equiv 2 \text{ or } 10 \pmod{16}}{\text{We begin with an example.}}$

Example 3.3. (*n* = 10)

$$\begin{split} X &= Z_{10} \\ C &= \begin{cases} (0,2,1,3,4,6,5,7) \, 3 \\ (0,3,5,1,4,8,6,9) \, 8 \\ (0,4,2,7,1,9,5,8) \, 7 \\ (0,5,2,8,7,9,3,6) \, 2 \\ (1,6,2,9,4,7,3,8) \, 3 \end{cases} \\ L &= \{\{0,1\},\{2,3\},\{4,5\},\{6,7\},\{8,9\}\}. \end{split}$$

Then (*X*, *C*, *L*) is a maximum packing of K_{10} with 8-cycles which can be squashed into the maximum packing of K_{10} with 4-cycles (*X*, *S*(*C*), *L*).

Let *Z* be a set of size 8 and set $X = \{\infty_1, \infty_2\} \cup (Z \times \{1, 2, 3, ..., k\})$ and define a collection of 8-cycles *C* as follows:

- For each *i* ∈ {1, 2, 3, ..., *k*} define a copy of Example 3.3 on {∞₁, ∞₂} ∪ (*Z* × {*i*}) and place these 8-cycles in *C*. Be sure that {∞₁, ∞₂} is part of the leave.
- (2) For each $i \neq j \in \{1, 2, 3, \dots, k\}$ place a copy of $K_{8,8}$ (Lemma 3.1) with parts $Z \times \{i\}$ and $Z \times \{j\}$ in *C*.

Denote by *L* the union of the leaves in (1). Then (*X*, *C*, *L*) is a maximum packing of K_{8k+2} with 8-cycles which can be squashed into the maximum packing of K_{8k+2} (*X*, *S*(*C*), *L*) with 4-cycles.

Lemma 3.4. There is a maximum packing of K_n with 8-cycles that can be squashed into a maximum packing of K_n with 4-cycles for all $n \equiv 0, 2, 8$ and 10 (mod 16).

4. $n \equiv 4, 6, 12, 14 \pmod{16}$

We will need three examples.

Example 4.1. (n = 12) $X = Z_{12},$ $C = \begin{cases} (0, 5, 1, 4, 2, 6, 3, 7) 4 \\ (0, 4, 3, 5, 2, 7, 1, 6) 7 \\ (0, 8, 1, 9, 2, 10, 3, 11) 9 \\ (0, 9, 3, 8, 2, 11, 1, 10) 11 \\ (4, 6, 5, 7, 8, 10, 9, 11) 7 \\ (4, 7, 10, 5, 11, 8, 6, 9) 11 \\ (4, 8, 5, 9, 7, 11, 6, 10) 4 \end{cases}$ $L = \begin{cases} K_4 \text{ on } \{0, 1, 2, 3\} \\ \{4, 5\}\{6, 7\}\{8, 9\}\{10, 11\} \end{cases}$

Then (X, C, L) is a maximum packing of K_{12} with 8-cycles which can be squashed into the maximum packing of K_{12} with 4-cycles $(X, S(C) \cup \{(0, 1, 2, 3)\}, L \setminus \{(0, 1, 2, 3)\})$. We remark that $L \setminus \{(0, 1, 2, 3)\}$ is a 1-factor.

Example 4.2. (*n* = 14)

$$\begin{split} X &= Z_{14}, \\ C &= \begin{cases} (0,5,1,4,2,6,3,7)\,4 & (0,4,3,5,2,7,1,6)\,7 \\ (0,8,1,9,2,10,3,11)\,9 & (0,9,3,8,2,11,1,10)\,11 \\ (0,12,4,6,5,7,8,13)\,4 & (1,12,5,8,4,9,6,13)\,5 \\ (2,12,6,10,4,11,5,13)\,6 & (3,12,11,7,10,5,9,13)\,11 \\ (4,7,9,11,8,12,10,13)\,8 & (6,8,10,9,12,7,13,11)\,9 \\ L &= \begin{cases} K_4 \text{ on } \{0,1,2,3\} \\ \{4,5\}\{6,7\}\{8,9\}\{10,11\}\{12,13\} \end{cases} \end{split}$$

Then (X, C, L) is a maximum packing of K_{14} with 8-cycles which can be squashed into the maximum packing of K_{14} with 4-cycles $(X, S(C) \cup \{(0, 1, 2, 3)\}, L \setminus \{(0, 1, 2, 3)\})$. We remark that $L \setminus \{(0, 1, 2, 3)\}$ is a 1-factor.

Example 4.3. (Maximum packing of $K_{14} \setminus K_6$ with 8-cycles with leave a 1-factor consisting of four edges whose vertices are contained in $V(K_{14}) \setminus V(K_6)$ which can be squashed into a maximum packing of $K_{14} \setminus K_6$ with 4-cycles (the same leave)).

Let *Y* and *Z* be sets of size 4 and 8 and set $X = \{\infty_1, \infty_2\} \cup Y \cup Z$. Define a collection *C* of 8-cycles as follows:

- Place a copy of Example 3.3 on {∞₁, ∞₂} ∪ Z and make sure that the leave L contains {∞₁, ∞₂}. (L is a 1-factor.)
- (2) Partition *K*_{4,8} with parts *Y* and *Z* into four 8-cycles (which can be squashed into eight 4-cycles (Lemma 3.1)) and place these 8-cycles in *C*.

Then $(K_{14} \setminus K_6, C, L \setminus \{\infty_1, \infty_2\})$ is a maximum packing of $K_{14} \setminus K_6$ with 8-cycles $(K_6$ is defined on $\{\infty_1, \infty_2\} \cup Y$) that can be squashed into the maximum packing $(K_{14} \setminus K_6, S(C), L \setminus \{\infty_1, \infty_2\})$ of $K_{14} \setminus K_6$ with 4-cycles. (We remark that $V(L \setminus \{\infty_1, \infty_2\})$ is contained in $V(K_{14}) \setminus V(K_6)$.)

With the above three examples in hand we can proceed to the general construction for $n \equiv 4, 6, 12, 14 \pmod{16}$.

 $n \equiv 4 \text{ or } 12 \pmod{16}$

Let *Z* be a set of size 8, $\infty = \{\infty_1, \infty_2, \infty_3, \infty_4\}$, set $X = \infty \cup (Z \times \{1, 2, 3, \dots, k\})$, and define a collection of 8-cycles *C* as follows:

- (1) For each $i \in \{1, 2, 3, ..., k\}$ define a copy of Example 4.1 on $\infty \cup \{Z \times \{i\}\}$. (Make sure that K_4 is defined on ∞ .)
- (2) For each $i \neq j \in \{1, 2, 3, \dots, k\}$ place a copy of $K_{8,8}$ (Lemma 3.1) with parts $Z \times \{i\}$ and $Z \times \{j\}$ in C.

Denote by *L* the union of the leaves in (1) by considering the K_4 on ∞ only once. The result is a maximum packing of K_{8k+4} (*X*, *C*, *L*) with 8-cycles that can be squashed into the maximum packing of K_{8k+4} (*X*, *S*(*C*) \cup {($\infty_1, \infty_2, \infty_3, \infty_4$)}), $L \setminus \{(\infty_1, \infty_2, \infty_3, \infty_4)\}$) with 4-cycles. ($L \setminus \{(\infty_1, \infty_2, \infty_3, \infty_4)\}$) is a 1-factor.)

$n \equiv 6 \text{ or } 14 \pmod{16}$

Let *Z* be a set of size 8, $\infty = \{\infty_1, \infty_2, \infty_3, \infty_4, \infty_5, \infty_6\}$, and set $X = \infty \cup (Z \times \{1, 2, 3, \dots, k\})$. Define a collection of 8-cycles *C* as follows:

- (1) Define a copy of Example 4.2 on $\infty \cup (Z \times \{1\})$.
- (2) For each $i \in \{2, 3, ..., k\}$ define a copy of Example 4.3 on $\infty \cup (Z \times \{i\})$. Make sure that K_6 is defined on ∞ .
- (3) For each $i \neq j \in \{1, 2, 3, ..., k\}$ take a copy of $K_{8,8}$ (Lemma 3.1) with parts $Z \times \{i\}$ and $Z \times \{j\}$ and place these 8-cycles in *C*.

Then (*X*, *C*, *L*) is a maximum packing of K_{8k+6} with 8-cycles where the leave *L* is the union of the leaves in (1) and (2). Removing a 4-cycle from the leave in (1) squashes (*X*, *C*, *L*) into a maximum packing (*X*, *S*(*C*) \cup (4-cycle), $L \setminus (4$ -cycle)) of K_{8k+6} with 4-cycles.

Lemma 4.4. There is a maximum packing of K_n with 8-cycles that can be squashed into a maxmum packing of K_n with 4-cycles for all $n \equiv 4, 6, 12, 14 \pmod{16}$.

5. $n \equiv 1 \text{ or } 9 \pmod{16}$

We begin with an example.

Example 5.1. (The squashing of a maximum packing of *K*₉ with 8-cycles into a maximum packing of *K*₉ with 4-cycles.)

$$X = \{0, 1, 2, 3, 4, 5, 6, 7, 8\}.$$

$$C = \begin{cases} (0, 1, 2, 3, 4, 5, 6, 7) 3\\ (0, 2, 4, 6, 1, 3, 7, 8) 6\\ (0, 3, 8, 6, 2, 7, 1, 5) 7\\ (0, 4, 1, 8, 2, 5, 3, 6) 8 \end{cases}$$

$$L = \{(4, 7, 5, 8)\}.$$

Then (*X*, *C*, *L*) is a maximum packing of K_9 with 8-cycles which is squashed into the 4-cycle system (*X*, *C* \cup {(4,7,5,8)}.

We will need the following interpretation of Example 3.2. It is best done with a diagram.

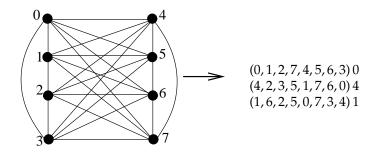
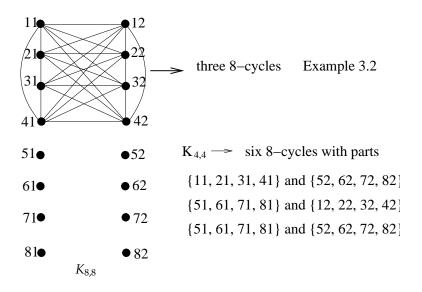


Figure 5

Let *Z* be a set of size 8 and set $X = \{\infty\} \cup (Z \times \{1, 2, 3, ..., k\})$ and define a collection of 8-cycles *C* as follows:

- (1) For each $i \in \{1, 2, 3, ..., k\}$ define a copy of Example 5.1 on $\{\infty\} \cup (Z \times \{i\})$ and make sure the leave does not contain ∞ .
- (2) If *k* is even, pair up the copies of Z × {*i*}: Z × {1}, Z × {2}; Z × {3}, Z × {4}; ...; Z × {*k*-1}, Z × {*k*}, and use Lemma 3.1 and Example 3.2 to partition *K*_{8.8} with parts Z × {*i*} and Z × {*i*+1} union the two 4-cycle leaves into nine 8-cycles.



If *k* is odd, pair up $Z \times \{i\}$ s with one left.

(3) For all other pairs $i \neq j \in \{1, 2, 3, ..., k\}$, place a copy of $K_{8,8}$ (Lemma 3.1) with parts $Z \times \{i\}$ and $Z \times \{j\}$ in *C*.

Then (X, C, \emptyset) is an 8-cycle system that can be squashed into a 4-cycle system for all $n \equiv 1 \pmod{16}$. If *k* is odd we have a 4-cycle leave left over in (2). Then (X, C, L) can be squashed into the 4-cycle system $(X, S(C) \cup L, \emptyset)$ for all $n \equiv 9 \pmod{16}$.

We have the following lemma.

Lemma 5.2. There is a maximum packing of K_n with 8-cycles that can be squashed into a maximum packing of K_n with 4-cycles for all $n \equiv 1$ or 9 (mod 16). (We remark that the result is always a 4-cycle system.)

6. $n \equiv 3 \text{ or } 11 \pmod{16}$

Let *Z* be a set of size 8 and set $X = \{\infty_1, \infty_2, \infty_3\} \cup (Z \times \{1, 2, 3, \dots, k\})$. Define a collection of 8-cycles *C* as follows:

- (1) For each $i \in \{1, 2, 3, 4, ..., k\}$, define a copy of Example 2.1 on $\{\infty_1, \infty_2, \infty_3\} \cup (Z \times \{i\})$ where the leave consists of the two disjoint cycles $(\infty_1, \infty_2, \infty_3)$ and $(a, b, c, d) \times \{i\}$ and place these 8-cycles in *C*.
- (2) and (3) Exactly the same as (2) and (3) in the cases $1 \text{ or } 9 \pmod{16}$.

Let (*X*, *C*, *L*) be the resulting maximum packing of K_{8k+3} with 8-cycles. If *k* is odd, *L* consists of a disjoint 3-cycle and 4-cycle. Squashing *C* into 4-cycles and adding the 4-cycle from *L* to *S*(*C*) gives a maximum packing of K_{8k+3} with 4-cycles with leave a 3-cycle. If *k* is even, *L* consists of a 3-cycle only, and (*X*, *S*(*C*), *L*) is a maximum packing of K_{8k+3} with 4-cycles. We have the following lemma.

Lemma 6.1. There is a maximum packing of K_n with 8-cycles that can be squashed into a maximum packing of K_n with 4-cycles for all $n \equiv 3$ or 11 (mod 16).

7. $n \equiv 5 \text{ or } 13 \pmod{16}$

Here is an example for n = 13.

Example 7.1. (*n* = 13)

Let *Y* and *Z* be sets of size 4 and 8 and set $X = \{\infty\} \cup Y \cup Z$. Define a collection *C* of 8-cycles as follows:

- (1) Place a copy of Example 5.1 on $\{\infty\} \cup Z$ and make sure the leave does not contain ∞ . (The leave is a 4-cycle, say (a, b, c, d).)
- (2) Let (y_1, y_2, y_3, y_4) be a 4-cycle in Y and partition $K_{4,8}$ with parts Y and Z union the 4-cycles (y_1, y_2, y_3, y_4) and (a, b, c, d) into five 8-cycles.
- (3) The leave consists of the *bowtie* $(\infty, y_1, y_3)(\infty, y_2, y_4)$.

Then (*X*, *C*, *L*) is a maximum packing of K_{13} with 8-cycles which can be squashed into the maximum packing (*X*, *S*(*C*), *L*) (same leave) of K_{13} with 4-cycles.

Example 7.2. (Maximum packing of $K_{13} \setminus K_5$ with 8-cycles with leave a 4-cycle which can be squashed into a maximum packing of $K_{13} \setminus K_5$ with 4-cycles (no leave).)

- (1) Exactly the same as (1) in Example 7.1.
- (2) Partition $K_{4,8}$ with parts Y and Z into four 8-cycles.

Then $(K_{13} \setminus K_5, C, (a, b, c, d))$ is a maximum packing of $K_{13} \setminus K_5$ with 8-cycles with leave the 4-cycle (a, b, c, d) which can be squashed into the maximum packing $(K_{13} \setminus K_5, S(C) \cup (a, b, c, d), \emptyset)$ of $K_{13} \setminus K_5$ with 4-cycles.

With these two examples we can now give the general construction.

Let $\infty = \{\infty_1, \infty_2, \infty_3, \infty_4, \infty_5\}$ and let *Z* be a set of size 8. Let $X = \infty \cup (Z \times \{1, 2, 3, \dots, k\})$ and define a collection of 8-cycles *C* as follows:

- (1) Place a maximum packing of K_{13} with 8-cycles on $\infty \cup (Z \times \{1\})$ with leave a bowtie defined on ∞ .
- (2) For each *i* ∈ {2,3,...,*k*} place a copy of Example 7.2 on ∞ ∪ (*Z* × {*i*}) with leave a 4-cycle contained in *Z* × {*i*}.
- (3) If k − 1 is *even*, consecutive K₈s can be partitioned into nine 8-cycles and all other pairings into eight 8-cycles, giving a maximum packing of K_{8k+5} into 8-cycles with leave a bowtie in ∞. These 8-cycles can be squashed into 4-cycles with leave the bowtie in ∞.
- (4) If k 1 is odd, pair up the K_8 s with one left over. This gives a maximum packing of K_{8k+5} into 8-cycles with leave a bowtie in ∞ and a 4-cycle. These 8-cycles can be squashed into 4-cycles with leave the bowtie in ∞ .

Lemma 7.3. There is a maximum packing of K_n with 8-cycles that can be squashed into a maximum packing of K_n with 4-cycles for all $n \equiv 5$ or 13 (mod 16).

8. $n \equiv 7 \text{ or } 15 \pmod{16}$

We will need two examples.

Example 8.1. (*n* = 15)

Define a collection *C* of 8-cycles on Z_{15} as follows:

	(0,2,9,5,7,10,8,11)9	(0, 3, 5, 12, 7, 14, 11, 13) 12
	(0, 5, 1, 6, 2, 7, 3, 8) 6	(0, 6, 4, 5, 2, 8, 1, 7) 8
<u> </u>	(0,9,1,10,3,11,4,12)10 (1,3,6,12,9,13,8,14)8	(0, 10, 4, 9, 3, 13, 2, 14) 13
$C = \begin{cases} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	(1,3,6,12,9,13,8,14)8	(1, 4, 7, 13, 14, 10, 11, 12) 13
	(1, 11, 2, 12, 3, 14, 4, 13) 12	(2, 4, 8, 12, 14, 9, 6, 10) 6
	(5,10,13,6,8,9,7,11)8	(5, 13, 12, 10, 9, 11, 6, 14) 5

 $L = \{(0, 1, 2, 3, 4), (5, 6, 7, 8)\}.$

This can be squashed into a maximum packing of K_{15} with 4-cycles with leave the 5-cycle (0, 1, 2, 3, 4).

Example 8.2. (Maximum packing of $K_{15} \setminus K_7$ with 8-cycles with leave a 4-cycle (contained in $K_{15} \setminus K_7$) which can be squashed into a maximum packing of $K_{15} \setminus K_7$ with 4-cycles (no leave).)

Let $\infty = \{\infty_1, \infty_2, \infty_3\}$ and *Y* and *Z* sets of size 4 and 8. Set $X = \infty \cup Y \cup Z$ and define a collection *C* of 8-cycles as follows:

- (1) Place a copy of Example 2.1 on $\infty \cup Z$ where the leave consists of the two disjoint cycles $(\infty_1, \infty_2, \infty_3)$ and $(a, b, c, d) \subseteq Z$.
- (2) Partition $K_{4,8}$ with parts Y and Z into four 8-cycles.

Then $(K_{15} \setminus K_7, C, (a, b, c, d))$ is a maximum packing of $K_{15} \setminus K_7$ with 8-cycles with leave the 4-cycle (a, b, c, d) which can be squashed into the maximum packing $(K_{15} \setminus K_7, C \cup (a, b, c, d), \emptyset)$ of $K_{15} \setminus K_7$ with 4-cycles.

We can now give the general construction for 7 or 15 (mod 16). Let $\infty = \{\infty_1, \infty_2, \infty_3, \infty_4, \infty_5, \infty_6, \infty_7\}$ and let *Z* be a set of size 8. Set $X = \infty \cup (Z \times \{1, 2, 3, \dots, k\})$ and define a collection of 8-cycles *C* as follows:

- (1) Place a maximum packing of K_{15} with 8-cycles on $\infty \cup (Z \times \{1\})$ with leave a disjoint 5-cycle and 4-cycle, where the 5-cycle is contained in ∞ and the 4-cycle is contained in $Z \times \{1\}$.
- (2) For each *i* ∈ {2,3,4,...,*k*} place a copy of Example 8.2 on ∞ ∪ (*Z* × {*i*}) with leave a 4-cycle contained in *Z* × {*i*}.
- (3) If k 1 is *even* proceed as in 5 or 13 (mod 16) with leave a disjoint 5-cycle and 4-cycle which can be squashed into a maximum packing of K_{8k+7} with leave a 5-cycle.
 If k 1 is *odd* we have a maximum packing of K_{8k+7} with 8-cycles with leave a 5-cycle which can be squashed into 4-cycles with the same leave.

Lemma 8.3. There is a maximum packing of K_n with 8-cycles that can be squashed into a maximum packing of K_n with 4-cycles for all $n \equiv 7$ or 15 (mod 16).

9. Summary

Putting together Lemmas 3.4, 4.4, 5.2, 6.1, 7.3 and 8.3 we have the following theorem (a complete solution agreeing with Tables 1 and 2 in Section 2).

Theorem 9.1. There exists a maximum packing of K_n with 8-cycles that can be squashed into a maximum packing of K_n with 4-cycles for every $n \ge 8$. (See Tables 1 and 2 in Section 2.)

References

- [1] B. Alspach, H. Gavlas, Cycle decompositions of K_n and $K_n I$, J. Combin. Theory Ser. B 81 (2001) 77–99.
- [2] L. Berardi, M. Gionfriddo, R. Rota, Perfect octagon quadrangle systems II, Discrete Math. 312(3) (2012) 614–620.
- [3] Y. Chang, T. Feng, G. Lo Faro, A. Tripodi, The fine triangle intersection for $(K_4 e)$ -designs, Discrete Math. 311(21) (2011) 2442–2462.
- [4] Y. Chang, T. Feng, G. Lo Faro, A. Tripodi, The fine triangle intersection for kite systems, Discrete Math. 312(3) (2012) 545-553.
- [5] Y. Chang, G. Lo Faro, A. Tripodi, Tight blocking sets in some maximum packings of λK_n , Discrete Math. 308 (2008) 427–438.
- [6] Y. Chang, G. Lo Faro, A. Tripodi, Determining the spectrum of $Meta(K_4 + e > K_4, \lambda)$ for any λ , Discrete Math. 308 (2008) 439–456.
- [7] C.C. Lindner, Quasigroups constructed from cycle systems, Quasigroups and Related Systems 10 (2003) 29-64.
- [8] C. C. Lindner, G. Lo Faro, A. Tripodi, Squashing maximum packings of 6-cycles into maximum packings of triples, submitted.
 [9] C. C. Lindner, M. Meszka, A. Rosa, From squashed 6-cycles to Steiner triple systems, J. Combinatorial Designs 22(5) (2014) 189-195.
- [10] M. Šajna, Cycle decompositions III: Complete graphs and fixed length cycles, J. Combinatorial Designs 10 (2002) 27–78.