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Abstract. In the present paper, the stability of difference schemes for the approximate solution of
the initial value problem for delay differential equations with unbounded operators acting on delay
terms in an arbitrary Banach space is studied. Theorems on stability of these difference schemes in
fractional spaces are established. In practice, the stability estimates in Hölder norms for the solutions of
difference schemes for the approximate solutions of the mixed problems for delay parabolic equations
are obtained.

1. Introduction

Delay differential equations have been studied extensively in a series of works (see, for example,
[1]-[6] and the references therein) and developed over the last three decades. In the literature mostly
the sufficient condition

|b(t)| ≤ Re a(t), t ≥ 0 (1.1)

was considered for the stability of the following test delay differential equation

dv(t)
dt

+ a(t)v(t) = b(t)v(t − ω), t > 0 (1.2)

with the initial condition

v(t) = 1(t)(−ω ≤ t ≤ 0). (1.3)

It is known that delay differential equations can be solved by applying standard numerical methods
for ordinary differential equations without the presence of delay. However, it is difficult to generalize
any numerical method to obtain high order of accuracy algorithms, because high order methods may
not lead to efficient results. It is well-known that even if a(t), b(t) and 1(t) are arbitrary differentiable
functions, v(t) may not possess the higher order derivatives for a sufficiently large t. Therefore, we
may have a non-smooth solution of delay differential equations for given smooth data. This is the
main difficulty in the study of convergence of numerical methods for delay differential equations.

Delay partial differential equations arise from various applications, like in control theory, biology,
medicine, climate models, and many others (see, for example, [7] and the references therein).
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The theory of delay partial differential equations has received less attention than of delay ordinary
differential equations. A situation which occurs in delay partial differential equations when the delay
term is an operator of lower order with respect to other operator terms is widely investigated (see,
for example, [7]-[9] and the references therein). In the case where the delay term is an operator of
the same order with respect to other operator terms is studied mainly if H is a Hilbert space (see,
for example, [10] and the references therein). In fact there are very few papers which allow E to be
a general Banach space (see, [11]-[14]) and in these works, authors look only for partial differential
equations under regular data. Moreover, approximate solutions of the delay parabolic equations in
the case where the delay term is a simple operator of the same order with respect to other operator
terms were studied recently in papers [15]- [19].

It is known that various initial-boundary value problems for linear evolutionary delay partial
differential equations can be reduced to an initial value problem of the form

dv(t)
dt + Av(t) = B(t)v(t − ω) + f (t), t ≥ 0,

v(t) = 1(t)(−ω ≤ t ≤ 0)
(1.4)

in an arbitrary Banach space E with the unbounded linear operators A and B(t) in E with dense
domains D(A) ⊆ D(B(t)). Let A be a strongly positive operator, i.e. −A is the generator of the analytic
semigroup exp{−tA}(t ≥ 0) of the linear bounded operators with exponentially decreasing norm when
t→∞. That means the following estimates hold:

‖ exp{−tA}‖E 7→E ≤ Me−δt, ‖tA exp{−tA}‖E7→E ≤ M, t > 0 (1.5)

for some M > 1, δ > 0. Let B(t) be closed operators.
The strongly positive operator A defines the fractional spaces Eα = Eα(A,E) (0 < α < 1) consisting

of all u ∈ E for which the following norms are finite:

‖u‖Eα = sup
λ>0
‖λ1−αA exp{−λA}u‖E.

As noted in [19], it is important to study the stability of solutions of the initial value problem (1.4)
for delay differential equations and of difference schemes for approximate solutions of problem (1.4)
under the assumption that

‖B(t)A−1
‖E 7→E ≤ 1 (1.6)

holds for every t ≥ 0. This assumption for delay differential equation (1.2) follows from assumption
(1.1) in the case when E = R1. Unfortunately, we have not been able to obtain the stability estimate
for the solution of problem (1.4) in the arbitrary Banach space E. Nevertheless, in [20], the analogue
of stability estimate for the solution of problem (1.4) was established, when the space E is replaced by
the fractional spaces Eα(0 < α < 1) which were defined above under the condition

‖B(t)A−1
‖E 7→E ≤

1 − α
M22−α (1.7)

for every t ≥ 0,where M is the constant from (1.5). However, the condition (1.7) is stronger than (1.6)
and E , Eα. Finally, in papers [32]-[35], theorems on well-posedness of the initial value problem for
the delay parabolic equation

ε dv(t)
dt + Av(t) = B(t)v(t − ω) + f (t), t ≥ 0,

v(t) = 1(t)(−ω ≤ t ≤ 0)
(1.8)

in an arbitrary Banach space E with the small positive parameter ε in the high derivative and with the
unbounded linear operators A and B(t) in E with dense domains D(A) ⊆ D(B(t)) were established.

Applying the first and second order of accuracy implicit difference schemes for differential equa-
tions without the presence of delay, the first and second order of accuracy implicit difference schemes

1
τ (uk − uk−1) + Auk = Bkuk−N + ϕk, ϕk = f (tk), Bk = B(tk), tk = kτ, 1 ≤ k,

Nτ = ω,uk = 1(tk), tk = kτ,−N ≤ k ≤ 0,
(1.9)
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1
τ (uk − uk−1) + ASuk = SBk1(tk−N −

τ
2 ), 1 ≤ k ≤ N,

1
τ (uk − uk−1) + ASuk = 1

2 SBk(uk−N + uk−N−1) + ϕk, ϕk = S f (tk −
τ
2 ),

Bk = B(tk −
τ
2 ), tk = kτ,N + 1 ≤ k

(1.10)

are presented for approximate solutions of the initial value problem (1.4). Here, we will put S = I+ 1
2τA.

The main aim of the present paper is to study the stability of difference schemes (1.9) and (1.10).
We establish the stability estimates in fractional spaces Eα(0 < α < 1) under an assumption stronger
than (1.6). In practice, the stability estimates in Hölder norms for the solutions of difference schemes
for the approximate solutions of the mixed problem of delay parabolic equations are obtained.

The paper is organized as follows. In Section 2, main theorems on stability of difference schemes
(1.9) and (1.10) are established. In Section 3, the stability estimates in Hölder norms for the solutions of
difference schemes for the approximate solutions of delay parabolic equations are obtained. Finally,
Section 4 is conclusion.

2. Theorems on Stability of Difference Schemes (1.9) and (1.10)

First, we consider the problem (1.4) when A−1 and B(t) commute, i.e.

A−1B(t)u = B(t)A−1u,u ∈ D(A). (2.1)

Theorem 2.1. Assume that the condition (1.7) holds for every t ≥ 0, where M is the constant from (1.5). Then
for the solution of difference scheme (1.9), the estimate

‖uk‖Eα ≤ max
−N≤i≤0

‖1(ti)‖Eα +

k∑
i=1

∥∥∥ϕi

∥∥∥
Eα
τ (2.2)

holds for any k ≥ 1.

Proof. Let us consider 1 ≤ k ≤ N. In this case

uk = Rk1(0) +

k∑
j=1

Rk− j+1B j1(t j−N)τ +

k∑
j=1

Rk− j+1B jϕ jτ = vk + wk,

where

vk = Rk1(0) +

k∑
j=1

Rk− j+1B j1(t j−N)τ,

wk =

k∑
j=1

Rk− j+1B jϕ jτ,R = (I + τA)−1.

The estimate

‖vk‖Eα ≤ max
−N≤i≤0

‖1(ti)‖Eα (2.3)

was proved in [12]. Therefore, we will estimate wk. Using the formula

(I + τA)−k =
1

(k − 1)!

∞∫
0

tk−1 exp(−t) exp(−τtA)dt, k ≥ 1, (2.4)
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estimate (1.5), we obtain

λ1−α
‖A exp{−λA}wk‖E ≤ λ

1−α
k∑

j=1

τ
1

(k − j)!

∞∫
0

tk− j exp(−t)
dt

(tτ + λ)1−α ‖ϕ j‖Eα

≤

k∑
i=1

∥∥∥ϕi

∥∥∥
Eα
τ

for every k, 1 ≤ k ≤ N and λ, λ > 0. This shows that

‖wk‖Eα ≤

k∑
i=1

∥∥∥ϕi

∥∥∥
Eα
τ (2.5)

for every k, 1 ≤ k ≤ N. Using triangle inequality and estimates (2.3) and (2.5), we get

‖uk‖Eα ≤ max
−N≤i≤0

‖1(ti)‖Eα +

k∑
i=1

∥∥∥ϕi

∥∥∥
Eα
τ. (2.6)

Applying the mathematical induction, one can easily show that it is true for every k. Namely, assume
that the estimate (2.6) is true for the k, (n − 1)N ≤ k ≤ nN, for some n = 1, 2, 3 · · · . Letting k = m + nN,
we have

1
τ

(um+nN − um+nN−1) + Aum+nN = Bm+nNum+nN−N + ϕm+nN, 1 ≤ m ≤ N.

Using the estimate (2.6), we obtain

‖uk‖Eα ≤ max
1≤m≤N

‖um+nN−N‖Eα +

k∑
i=nN+1

∥∥∥ϕi

∥∥∥
Eα
τ

≤ max
−N≤i≤0

‖1(ti)‖Eα +

nN∑
i=1

∥∥∥ϕi

∥∥∥
Eα
τ +

k∑
m=nN+1

∥∥∥ϕm

∥∥∥
Eα
τ ≤ max

−N≤i≤0
‖1(ti)‖Eα +

k∑
i=1

∥∥∥ϕi

∥∥∥
Eα
τ

for every k, nN ≤ k ≤ (n + 1)N, n = 1, 2, 3, · · · , and λ, λ > 0.This shows that

‖uk‖Eα ≤ max
−N≤i≤0

‖1(ti)‖Eα +

k∑
i=1

∥∥∥ϕi

∥∥∥
Eα
τ

for every k,nN ≤ k ≤ (n + 1)N, n = 1, 2, 3, · · · . Theorem 2.1 is proved.

Now, we consider the problem (1.4) when

A−1B(t)x , B(t)A−1x, x ∈ D(A)

for some t ≥ 0. Recall that A is a strongly positive operator in a Banach spaces E iff its spectrum σ(A)
lies in the interior of the sector of angle ϕ, 0 < 2ϕ < π, symmetric with respect to the real axis, and if
on the edges of this sector, S1 = [z = ρ exp(iϕ) : 0 ≤ ρ < ∞] and S2 = [z = ρ exp(−iϕ) : 0 ≤ ρ < ∞] and
outside it the resolvent (z − A)−1 is subject to the bound

‖(z − A)−1
‖E→E ≤

M1

1 + |z|
(2.7)

for some M1 > 0. First of all let us give lemmas from the paper [12].
Lemma 2.1. For any z on the edges of the sector,

S1 = [z = ρ exp(iϕ) : 0 ≤ ρ < ∞]



A. Ashyralyev, D. Agirseven / Filomat 28:5 (2014), 995–1006 999

and

S2 = [z = ρ exp(−iϕ) : 0 ≤ ρ < ∞]

and outside it the estimate

‖A(z − A)−1x‖E ≤
Mα

1 Mα(1 + M1)1−α2(2−α)α

α(1 − α)(1 + |z|)α
‖x‖Eα

holds for any x ∈ Eα. Here and in the future M and M1 are the same constants of the estimates (1.5)
and (2.7).

Lemma 2.2. Let for all s ≥ 0 the operator B(s)A−1
− A−1B(s) with domain, which coincides with

D(A), permit the closure Q = B(s)A−1 − A−1B(s) bounded in E. Then for all τ > 0 the following estimate
holds:∥∥∥A−1[A exp{−τA}B(s) − B(s)A exp{−τA}]x

∥∥∥
E

≤
e(α + 1)MαM1+α

1 (1 + 2M1)(1 + M1)1−α2(2−α)α
‖Q‖E7→E‖x‖Eα

τ1−απα2(1 − α)
.

Here Q = A−1(AB(s) − B(s)A)A−1.
Suppose that

‖A−1(AB(t) − B(t)A)A−1‖E 7→E (2.8)

≤
π(1 − α)2α2ε

eM1+αM1+α
1 (1 + 2M1)(1 + M1)1−α22+α−α2 (1 + α)

holds for every t ≥ 0. Here and in the future ε is a some constant, 0 ≤ ε ≤ 1.

Theorem 2.2. Assume that the condition

‖A−1B(t)‖E 7→E ≤
(1 − α)(1 − ε)

M22−α (2.9)

holds for every t ≥ 0. Then for the solution of difference scheme (1.9), the estimate (2.2) holds.

Proof. Let us consider 1 ≤ k ≤ N. The estimate

‖vk‖Eα ≤ max
−N≤i≤0

‖1(ti)‖Eα (2.10)

was proved in [12]. Therefore, using triangle inequality and estimates (2.10), and (2.5), we get

‖uk‖Eα ≤ max
−N≤i≤0

‖1(ti)‖Eα +

k∑
i=1

∥∥∥ϕi

∥∥∥
Eα
τ.

In a similar manner with Theorem 2.1 applying the mathematical induction, one can easily show that
it is true for every k. Theorem 2.2 is proved.

Now we consider the difference scheme (1.10). We have not been able to obtain the same result
for the solution of the difference scheme (1.10) in spaces Eα under assumption (1.7). Nevertheless, for
the solution of difference scheme (1.10) the stability estimate in the norm of the same fractional spaces
Eα(0 < α < 1) under an additional restriction of the operator A is established.

Theorem 2.3. Suppose that the following estimates hold:

‖(I + τA)(I + τAS)−1
‖E 7→E ≤ 1, (2.11)

‖S(I + τA)(I + τAS)−1
‖E 7→E ≤

1 +
√

2
2

and

‖A−1B(t)‖E 7→E ≤
(1 − α)

M21−α(1 +
√

2)
, t ≥ 0. (2.12)

Then for the solution of difference scheme (1.10), estimate (2.2) holds.



A. Ashyralyev, D. Agirseven / Filomat 28:5 (2014), 995–1006 1000

Proof. Let us consider 1 ≤ k ≤ N. In this case

uk = Rk1(0) +

k∑
j=1

Rk− j+1(I +
τA
2

)B j(1(t j−N + 1(t j−N−1))τ

+

k∑
j=1

Rk− j+1(I +
τA
2

)ϕ jτ = vk + wk, (2.13)

where

vk = Rk1(0) +

k∑
j=1

Rk− j+1(I +
τA
2

)B j(1(t j−N + 1(t j−N−1))τ,

wk =

k∑
j=1

Rk− j+1(I +
τA
2

)ϕ jτ,R = (I + τA +
(τA)2

2
)−1.

The estimate

‖vk‖Eα ≤ max
−N≤i≤0

‖1(ti)‖Eα (2.14)

was proved in [12]. Therefore, we will estimate wk. Using the formula (2.13), condition (2.11) and the
estimate (1.5), we obtain

λ1−α
‖A exp{−λA}wk‖E ≤ λ

1−α
k∑

j=1

τ‖(I + τA)(I + τA +
(τA)2

2
)−1)k− j

‖E7→E

×‖(I +
τA
2

)(I + τA)(I + τA +
(τA)2

2
)−1
‖E7→E

×
1

(k − j)!

∞∫
0

tk− j exp(−t)
dt

(tτ + λ)1−α ‖ϕ j‖Eα

≤ λ1−α
k∑

j=1

τ
1

(k − j)!

∞∫
0

tk− j exp(−t)
dt

(tτ + λ)1−α ‖ϕ j‖Eα ≤

k∑
i=1

∥∥∥ϕi

∥∥∥
Eα
τ

for every k, 1 ≤ k ≤ N and λ, λ > 0. This shows that

‖wk‖Eα ≤

k∑
i=1

∥∥∥ϕi

∥∥∥
Eα
τ (2.15)

for every k, 1 ≤ k ≤ N. Using triangle inequality and estimates (2.14) and (2.15), we get

‖Auk‖Eα ≤ max
−N≤i≤0

‖1(ti)‖Eα +

k∑
i=1

∥∥∥ϕi

∥∥∥
Eα
τ. (2.16)

In a similar manner with Theorem 2.1 applying the mathematical induction, one can easily show that
it is true for every k. Theorem 2.3 is proved.

Now, we consider the difference scheme (1.10) when

A−1B(t)x , B(t)A−1x, x ∈ D(A)
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for some t ≥ 0. Suppose that the operator B(t)A−1
−A−1B(t) with domain, which coincides with D(A),

permits the closure bounded in E and the following estimate

‖A−1(AB(t) − B(t)A)A−1‖E 7→E ≤
π(1 − α)2α2(1 + α)−1(1 +

√
2)−1ε

eM1+αM1+α
1 (1 + 2M1)(1 + M1)1−α22+α−α2

holds for every t ≥ 0 and some εε[0, 1].

Theorem 2.4. Assume that all conditions of Theorems 2.2 and 2.3 are satisfied. Then for the solution of
difference scheme (1.10), estimate (2.2) holds.

Proof. Let us consider 1 ≤ k ≤ N. The estimate

‖vk‖Eα ≤ max
−N≤i≤0

‖1(ti)‖Eα (2.17)

was proved in [12]. Therefore, using triangle inequality and estimates (2.17) and (2.15), we get

‖uk‖Eα ≤ max
−N≤i≤0

‖1(ti)‖Eα +

k∑
i=1

∥∥∥ϕi

∥∥∥
Eα
τ.

In a similar manner with Theorem 2.1 applying the mathematical induction, one can easily show that
it is true for every k. Theorem 2.4 is proved.
Note that these abstract results are applicable to the study of stability of various delay parabolic
equations with local and nonlocal boundary conditions with respect to space variables. However, it
is important to study the structure of Eα for space operators in Banach spaces. The structure of Eα
for some space differential and difference operators in Banach spaces has been investigated in papers
(see, [21]-[29]). In Section 3, applications of Theorem 2.1 to the study of stability of difference schemes
for delay parabolic equations are given.

3. Applications

First, the initial-boundary value problem for one dimensional delay differential equations of
parabolic type is considered:

∂u(t,x)
∂t − a(x) ∂

2u(t,x)
∂x2 + δu(t, x) = b(t)

(
−a(x) ∂

2u(t−ω,x)
∂x2 + δu(t − ω, x)

)
+ f (t, x), 0 < t < ∞, x ∈ (0, l) ,

u(t, x) = 1(t, x),−ω ≤ t ≤ 0, x ∈ [0, l] ,

u(t, 0) = u(t, l) = 0,−ω ≤ t < ∞,

(3.1)

where a(x), b(t), 1(t, x), f (t, x) are given sufficiently smooth functions and δ > 0 is a sufficiently large
number. It will be assumed that a(x) ≥ a > 0. The discretization of problem (3.1) is carried out in two
steps. In the first step, let us define the grid space

[0, l]h = {x : xr = rh, 0 ≤ r ≤ K,Kh = l} .

We introduce the Banach space Cβh = Cβ ([0, l]h ) (0 < β < 1) of the grid functions ϕh(x) = {ϕr}
K−1
1

defined on [0, l]h, equipped with the norm

∥∥∥ϕh
∥∥∥

Cβh
=

∥∥∥ϕh
∥∥∥

Ch
+ sup

1≤k<k+τ≤K−1

|ϕk+r − ϕk|

τβ
,

where Ch = C ([0, l]h ) is the space of the grid functions ϕh(x) = {ϕr}
K−1
1 defined on [0, l]h, equipped

with the norm∥∥∥ϕh
∥∥∥

Ch
= max

1≤k≤K−1

∣∣∣ϕk

∣∣∣ .
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To the differential operator Ax generated by the problem (3.1), we assign the difference operator Ax
h by

the formula

Ax
hϕ

h(x) =
{
−(a(x)ϕ−

x
)x,r + δϕr

}K−1

1
,

acting in the space of grid functions ϕh(x) = {ϕr}
K
0 satisfying the conditions ϕ0 = ϕK = 0.With the help

of Ax
h, we arrive at the initial-boundary value problem

duh(t,x)
dt + Ax

huh(t, x) = b(t)Ax
huh(t − ω, x) + f h(t, x), t ≥ 0, x ∈ [0, 1]h,

uh(t, x) = 1h(t, x) = 1(t, x)(−ω ≤ t ≤ 0), x ∈ [0, 1]h

(3.2)

for the system of ordinary differential equations. In the second step, we replace problem (3.2) by the
first order of accuracy in t difference scheme

1
τ (uh

k(x) − uh
k−1(x)) + Ax

huh
k(x) = b(tk)Ax

huh
k−N(x) + f h

k (x),

f h
k (x) = f h(tk, x), tk = kτ, 1 ≤ k,Nτ = ω, x ∈ [0, l]h,

uh
k(x) = 1h(tk, x), tk = kτ,−N ≤ k ≤ 0, x ∈ [0, l]h.

(3.3)

Theorem 3.1. Assume that

sup
0≤t<∞

|b(t)| ≤
1 − α

M22−α . (3.4)

Then for the solution of difference scheme (3.3) the following stability estimate

sup
1≤k<∞

∥∥∥uh
k

∥∥∥
C2α[0,1]h

≤M3(α)

 max
−N≤k≤0

||1h
k ||C2α [0,1]h

+

∞∑
k=1

∥∥∥ f h
k

∥∥∥
C2α [0,1]h

τ

 , 0 < α < 1
2

(3.5)

holds, where M3(α) does not depend on 1h
k and f h

k .

The proof of Theorem 3.1 is based on the estimate

‖ exp{−tkAx
h}‖Ch→Ch ≤M, k ≥ 0,

and on the abstract Theorem 2.1, the positivity of the operator Ax
h in Cµh and on the following theorem

on the structure of the fractional space Eα(Ch,Ax
h).

Theorem 3.2. For any 0 < α < 1
2 the norms in the spaces Eα

(
Ch,Ax

h

)
and C2α

h are equivalent uniformly in h
[22].

Second, the initial nonlocal boundary value problem for one dimensional delay differential equa-
tions of parabolic type is considered:

∂u(t,x)
∂t − a(x) ∂

2u(t,x)
∂x2 + δu(t, x) = b(t)

(
−a(x) ∂

2u(t−ω,x)
∂x2 + δu(t − ω, x)

)
+ f (t, x), 0 < t < ∞, x ∈ (0, l) ,

u(t, x) = 1(t, x),−ω ≤ t ≤ 0, x ∈ [0, l] ,

u(t, 0) = u(t, l),ux(t, 0) = ux(t, l),−ω ≤ t < ∞,

(3.6)

where a(x), b(t), 1(t, x), f (t, x) are given sufficiently smooth functions and δ > 0 is a sufficiently large
number. It will be assumed that a(x) ≥ a > 0. The discretization of problem (3.6) is carried out in two
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steps. In the first step, let us use the discretization in space variable x. To the differential operator Ax

generated by the problem (3.6), we assign the difference operator Ax
h by the formula

Ax
hϕ

h(x) =
{
−(a(x)ϕ−

x
)x,r + δϕr

}K−1

1
, (3.7)

acting in the space of grid functionsϕh(x) = {ϕr}
K
0 satisfying the conditionsϕ0 = ϕK, ϕ1−ϕ0 = ϕK−ϕK−1.

With the help of Ax
h, we arrive at the initial value problem

duh(t,x)
dt + Ax

huh(t, x) = b(t)Ax
huh(t − ω, x) + f h(t, x), t ≥ 0, x ∈ [0, l]h,

uh(t, x) = 1h(t, x) = 1(t, x)(−ω ≤ t ≤ 0), x ∈ [0, l]h

(3.8)

for the system of ordinary fractional differential equations. In the second step, we replace problem
(3.8) by the first order of accuracy of difference scheme in t

1
τ (uh

k(x) − uh
k−1(x)) + Ax

huh
k(x) = b(tk)Ax

huh
k−N(x) + f h

k (x),

f h
k (x) = f h(tk, x), tk = kτ, 1 ≤ k,Nτ = ω, x ∈ [0, l]h,

uh
k(x) = 1h(tk, x), tk = kτ,−N ≤ k ≤ 0, x ∈ [0, l]h.

(3.9)

Theorem 3.3. Assume that all the conditions of Theorem 3.1 are satisfied. Then for the solution of difference
scheme (3.9) the stability estimate (3.5) holds.

The proof of Theorem 3.3 is based on the estimate

‖ exp{−tkAx
h}‖Ch→Ch ≤M, k ≥ 0,

and on the abstract Theorem 2.1, the positivity of the operator Ax
h in Cµh and on the following theorem

on the structure of the fractional space Eα(Ch,Ax
h).

Theorem 3.4. For any 0 < α < 1
2 the norms in the spaces Eα

(
Ch,Ax

h

)
and C2α

h are equivalent uniformly in h
[25].

Third, the initial value problem on the range
{0 ≤ t ≤ 1, x = (x1, · · ·, xn) ∈ Rn, r = (r1, · · ·, rn)}
for 2m-th order multidimensional delay differential equations of parabolic type is considered:

∂u(t,x)
∂t +

∑
|r|=2m

aτ(x) ∂|r|u(t,x)
∂xr1

1 ...∂xrn
n

+ δu(t, x)

= b(t)
( ∑
|r|=2m

aτ(x) ∂
|r|u(t−ω,x)
∂xr1

1 ...∂xrn
n

+ δu(t − ω, x)
)

+ f (t, x), 0 < t < ∞, x ∈ Rn,

u(t, x) = 1(t, x),−ω ≤ t ≤ 0, x ∈ Rn, | r |= r1 + ... + rn,

(3.10)

where ar(x), b(t), 1(t, x), f (t, x) are given sufficiently smooth functions and δ > 0 is a sufficiently large
number. It will be assumed that the symbol [ξ = (ξ1, · · ·, ξn)εRn]

Ax
1(ξ) =

∑
|r|=2m

ar(x) (iξ1)r1 ... (iξn)rn

of the differential operator of the form

Ax
1 =

∑
|r|=2m

ar(x)
∂|r|

∂xr1
1 ...∂xrn

n
(3.11)
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acting on functions defined on the space Rn, satisfies the inequalities

0 < M1|ξ|
2m
≤ (−1)mAx

1(ξ) ≤M2|ξ|
2m < ∞

for ξ , 0, where | ξ |=
√
|ξ1|

2 + · · · + |ξn|
2. The discretization of problem (3.10) is carried out in two

steps. In the first step the grid space Rn
h (0 < h ≤ h0) is defined as the set of all points of the Euclidean

space Rn whose coordinates are given by

xk = skh, sk = 0,±1,±2, · · ·, k = 1, · · ·,n.

The difference operator Ax
h = Bx

h + σIh is assigned to the differential operator Ax = Bx + σI, defined by
(3.10). The operator

Bx
h = h−2m

∑
2m≤|s|≤S

bx
s ∆

s1
1−∆

s2
1+
...∆s2n−1

n− ∆s2n
n+, (3.12)

acts on functions defined on the entire space Rn
h . Here s ∈ R 2n is a vector with nonnegative integer

coordinates,

∆k± f h (x) = ±
(

f h (x ± ekh) − f h (x)
)
,

where ek is the unit vector of the axis xk.
An infinitely differentiable function ϕ (x) of the continuous argument x ∈ Rn that is continuous and

bounded together with all its derivatives is said to be smooth. We say that the difference operator Ax
h

is a λ-th order (λ > 0) approximation of the differential operator Ax if the inequality

sup
x∈Rn

h

∣∣∣Ax
hϕ (x) − Axϕ (x)

∣∣∣ ≤M
(
ϕ
)

hλ

holds for any smooth function ϕ (x) . The coefficients bx
s are chosen in such a way that the operator Ax

h
approximates in a specified way the operator Ax. It will be assumed that the operator Ax

h approximates
the differential operator Ax with any prescribed order [30]-[31] .

The function Ax (ξh, h) is obtained by replacing the operator ∆k± in the right-hand side of equality
(3.12) with the expression ±

(
exp {±iξkh} − 1

)
, respectively, and is called the symbol of the difference

operator Bx
h.

It will be assumed that for |ξkh| ≤ π and fixed x the symbol Ax(ξh, h) of the operator Bx
h = Ax

h − σIh
satisfies the inequalities

(−1)mAx(ξh, h) ≥M|ξ|2m, | arg Ax(ξh, h)| ≤ φ < φ0 ≤
π
2
. (3.13)

Suppose that the coefficient bx
s of the operator Bx

h = Ax
h − σIh is bounded and satisfies the inequalities

|bx+ekh
s − bx

s | ≤Mhε, x ∈ Rn
h , ε ∈ (0, 1]. (3.14)

With the help of Ax
h we arrive at the initial value problem


(uh(t, x))′ + Ax

huh(t, x) = b(t)Ax
huh(t − ω, x) + f h(t, x), t ≥ 0, x ∈ Rn

h ,

uh(t, x) = 1h(t, x) = 1(t, x)(−ω ≤ t ≤ 0), x ∈ Rn
h ,

(3.15)

for an infinite system of ordinary differential equations. Now, we replace problem (3.15) by the first
order of accuracy of difference scheme in t

1
τ (uh

k(x) − uh
k−1(x)) + Ax

huh
k(x) = b(tk)Ax

huh
k−N(x) + f h

k (x),

f h
k (x) = f h(tk, x), tk = kτ, 1 ≤ k,Nτ = ω, x ∈ Rn

h ,

uh
k(x) = 1h(tk, x), tk = kτ,−N ≤ k ≤ 0, x ∈ Rn

h .

(3.16)
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To formulate the result, one needs to introduce the spaces Ch = C(Rn
h) and Cβh = Cβ(Rn

h) of all
bounded grid functions uh(x) defined on Rn

h , equipped with the norms

||uh
||Ch = sup

xεRn
h

|uh(x)|,

||uh
||Cβh

= sup
xεRn

h

|uh(x)| + sup
x,y∈Rn

h

|uh(x) − uh(x + y)|
|y|β

.

Theorem 3.5. Assume that the condition (3.4) holds. Then for the solution of difference scheme (3.16) the
following stability estimate

sup
1≤k<∞

∥∥∥uh
k

∥∥∥
C2mα(Rn

h )
≤M2(α)

[
max
−N≤k≤0

∥∥∥1h
k

∥∥∥
C2mα (Rn

h )

+

∞∑
k=1

τ
∥∥∥ f h

k

∥∥∥
C2mα (Rn

h )

 , 0 < α < 1
2m

holds, where M2(α) does not depend on 1h
k and f h

k .

The proof of Theorem 3.5 is based on the estimate

‖ exp{−tkAx
h}‖C(Rn

h )→C(Rn
h ) ≤M, k ≥ 0,

and on the abstract Theorem 2.1, the positivity of the operator Ax
h in C(Rn

h), and on the fact that the
Eα = Eα(Ax

h,C(Rn
h))−norms are equivalent to the norms C2mα(Rn

h) uniformly in h for 0 < α < 1
2m . ([21],

[24]).

4. Conclusion

In the present paper, the stability of difference schemes for the approximate solutions of the
initial value problem for delay parabolic equations with unbounded operators acting on delay terms
in an arbitrary Banach space is established. Theorems on stability of these difference schemes in
fractional spaces are established. In practice, the stability estimates in Hölder norms for the solutions of
difference schemes for the approximate solutions of the mixed problems for delay parabolic equations
are obtained. Note that in the present paper B(t) is a time-dependent unbounded space operator acting
on the delay term. The delay w is a positive constant. In general, it is interesting to consider delay
as w(t), a function dependent on t. A well-known parabolic problem with delay used in population
dynamics is the so-called Hutchinson equation where B(t) is a time-dependent bounded nonlinear
space operator acting on the delay term (see, [8],[9]). It would be an interesting case to consider when
B(t) is a nonlinear unbounded space operator acting on the delay term. Actually, it will be possible after
establishing theorems on existence, uniqueness and stability of solutions and smoothness property of
solutions and obtaining a suitable contractivity condition of the numerical solutions.
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