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Abstract. In this paper, several equivalent conditions on the Drazin invertibility of product and difference
of idempotents are obtained in a ring. Some results in Banach algebras are extended to the ring case.

1. Introduction

Throughout this paper, R denotes an associative ring with unity 1. Recall that an element a ∈ R is said
to be Drazin invertible if there exists b ∈ R such that

ab = ba, bab = b, ak = ak+1b

for some positive integer k. The element b above is unique if it exists and denoted by aD. The least such k is
called the Drazin index of a, denoted by ind(a). If ind(a) = 1, then b is called the group inverse of a and is
denoted by a#. By RD we mean the set of all Drazin invertible elements of R.

Drazin inverses are closely related to some regularity of rings. It is well known that a is Drazin invertible
if and only if a is strongly π-regular (i.e., an

∈ an+1R ∩ Ran+1 for some nonnegative integer n) if and only if
am is group invertible for some positive integer m. Hence a is Drazin invertible if and only if am is Drazin
invertible for some (any) integer m, and in particular if and only if a2 is Drazin invertible. In [11, 12], Koliha
and Rakočević studied the invertibility of the difference and the sum of idempotents in a ring and proved
that p−q is invertible if and only if 1−pq and p + q are invertible for any idempotents p and q. Many authors
extended the ordinary invertibility to the Drazin invertibility. For example, Cvetković-Ilić and Deng [4]
showed that p − q is Drazin invertible if and only if 1 − pq and p + q − pq are Drazin invertible where p, q
are idempotent operators of a Hilbert space. Further Deng and Wei [8] proved that if p, q are idempotents
in A = B(X), the ring of all bounded linear operators in a complex Banach space X, then: (1) p − q ∈ A D if
and only if p + q ∈ A D if and only if 1 − pq ∈ A D; (2) pq − qp ∈ A D if and only if pq + qp ∈ A D if and only
if pq ∈ A D and p − q ∈ A D. These results are generalized to Banach algebras in [10]. More results on the
Drazin invertibility of sum, difference and product of idempotents can be found in [3-8,10,13].

Motivated by the excellent papers [3,4,11,12], we consider the Drazin invertibility of p − q, pq, pq − qp
(commutator) and pq + qp (anti-commutator), where p and q are idempotents in a ring. Some results,
obtained in [3,4] in the context of Banach algebras, are extended to the ring case.
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2. Key Lemmas

In this section, we begin with some elementary and known results which play an important role in
section 3.

Lemma 2.1. ([9]) (1) Let a ∈ RD. If ab = ba, then aDb = baD,
(2) Let a, b ∈ RD and ab = ba = 0. Then (a + b)D = aD + bD.

Lemma 2.2. ([14]) Let a, b ∈ RD and ab = ba. Then ab ∈ RD and (ab)D = bDaD = aDbD.

Lemma 2.3. ([2]) Let a, b ∈ R and ab ∈ RD. Then ba ∈ RD and (ba)D = b((ab)D)2a.

Lemma 2.4. ([1]) Let a, b ∈ R. Then 1 − ab ∈ RD if and only if 1 − ba ∈ RD.

Lemma 2.5. Let a, b ∈ RD and p2 = p ∈ R. If ap = pa and bp = pb, then ap + b(1 − p) ∈ RD and

(ap + b(1 − p))D = aDp + bD(1 − p).

Proof. Since p2 = p, we have pD = p. Thus, a, b, p ∈ RD. Note that ap = pa and bp = pb. We obtain (ap)D = aDp
and (b(1 − p))D = bD(1 − p) by Lemma 2.2. As apb(1 − p) = b(1 − p)ap = 0, according to Lemma 2.1(2), it
follows that (ap + b(1 − p))D = aDp + bD(1 − p).

Lemma 2.6. Let a ∈ R, p2 = p ∈ R, b = pa(1 − p) and c = (1 − p)ap. The following statements are equivalent:
(1) b + c ∈ RD,
(2) bc ∈ RD,
(3) b − c ∈ RD.

Proof. (1) ⇒ (2) Since (b + c)2 = (bc + cb) and b + c ∈ RD, we have bc + cb ∈ RD. Let x = (bc + cb)D. As
p(bc + cb) = (bc + cb)p, we obtain that px = xp by Lemma 2.1(1). Next, we prove that (bc)D = pxp.

Since x = (bc + cb)x2, we get

pxp = p(bc + cb)x2p = bcx2p = bc(px2p) = bc(pxp)2.

By (bc + cb)x = x(bc + cb), we obtain p(bc + cb)xp = px(bc + cb)p. It follows that bc(pxp) = (pxp)bc.
Because (bc + cb)n+1x = (bc + cb)n for some n, we have

((bc)n+1 + (cb)n+1)x = (bc)n + (cb)n.

Multiplying the equation above by p on two sides yields

p(bc)n+1xp = p(bc)np,

i.e., (bc)n+1pxp = (bc)n. So, bc is Drazin invertible and (bc)D = pxp.
(2) ⇒ (1) According to Lemma 2.3, bc ∈ RD is equivalent to cb ∈ RD. Note that bc · cb = cb · bc = 0. We

have (b + c)2 = (bc + cb) ∈ RD by Lemma 2.1(2). It follows that b + c ∈ RD.
(2)⇔ (3) Its proof is similar to (1)⇔ (2).

Lemma 2.7. Let a ∈ R with a − a2
∈ RD or a + a2

∈ RD. Then a ∈ RD.

Proof. We only need to prove the situation when a − a2
∈ RD with x = (a − a2)D.

By Lemma 2.1(1), it is clear ax = xa since a(a − a2) = (a − a2)a.
Since a − a2

∈ RD, we get (a − a2)n = (a − a2)n+1x for some integer n ≥ 1, that is,

an(1 − a)n = an+1(1 − a)n+1x.
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Note that

an(1 − a)n = an(1 +

n∑
i=1

Ci
n(−a)i).

It follows that

an = an+1[(1 − a)n+1x +

n∑
i=1

Ci
n(−a)i−1] = [(1 − a)n+1x +

n∑
i=1

Ci
n(−a)i−1]an+1.

This shows an
∈ an+1R ∩ Ran+1. Hence, a ∈ RD.

3. Main Results

In what follows, p and q always mean two arbitrary idempotents in a ring R. We give some equivalent
conditions for the Drazin invertibility of p − q, pq, pq − qp and pq + qp.

Proposition 3.1. The following statements are equivalent:
(1) 1 − pq ∈ RD, (2) p − pq ∈ RD, (3) p − qp ∈ RD, (4) 1 − pqp ∈ RD, (5) p − pqp ∈ RD,
(6) 1 − qp ∈ RD, (7) q − qp ∈ RD, (8) q − pq ∈ RD, (9) 1 − qpq ∈ RD, (10) q − qpq ∈ RD.

Proof. (1)⇔ (6) is obvious by Lemma 2.4. We only need to prove that (1) − (5) are equivalent.
(1)⇔ (4) 1 − pq = 1 − p(pq) is Drazin invertible if and only if 1 − pqp is Drazin invertible by Lemma 2.4.
(4) ⇒ (5) Since p ∈ RD and p(1 − pqp) = (1 − pqp)p = p − pqp, we obtain that p − pqp is Drazin invertible

according to Lemma 2.2.
(5)⇒ (4) Pose a = p − pqp, b = 1. Then a and b are Drazin invertible. Since 1 − pqp = (p − pqp) + 1 − p, it

follows that 1 − pqp = ap + b(1 − p) is Drazin invertible in view of Lemma 2.5.
(2)⇔ (5) Since p − pq = pp(1 − q) and p − pqp = p(1 − q)p, the result follows by Lemma 2.3.
(2)⇔ (3) By Lemma 2.3, p(1 − q) ∈ RD

⇔ (1 − q)p ∈ RD.
Finally, the other equivalences follow by interchanging p and q.

By replacing p and q with 1 − p and 1 − q in Proposition 3.1, respectively, we get the following result
immediately.

Corollary 3.2. The following statements are equivalent:
(11) p + q − pq ∈ RD, (12) q − pq ∈ RD, (13) q − qp ∈ RD,
(14) p + (1 − p)(q − qp) ∈ RD, (15) (1 − p)q(1 − p) ∈ RD, (16) p + q − qp ∈ RD,
(17) p − qp ∈ RD, (18) p − pq ∈ RD, (19) q + (1 − q)(p − pq) ∈ RD,
(20) (1 − q)p(1 − q) ∈ RD.

Finally, as p − pq appears in Proposition 3.1 (eq. 2) and Corollary 3.2 (eq. 18), we get

Corollary 3.3. Statements (1) − (10) of Proposition 3.1 are equivalent with statements (11) − (20) of Corollary 3.2.

In 2012, Koliha, Cvetković-Ilić and Deng [10] proved that p − q ∈ A D if and only if 1 − pq ∈ A D if and only
if p + q − pq ∈ A D where p, q are idempotents in a Banach algebra A . It is natural to consider whether the
same property can be inherited to the Drazin inverse of ring versions. The following result proves that the
statement holds in the ring case.

Theorem 3.4. The following statements are equivalent:
(1) p − q ∈ RD,
(2) 1 − pq ∈ RD,
(3) p + q − pq ∈ RD.
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Proof. (1)⇒ (2) As p(p − q)2 = (p − q)2p = p − pqp, then 1 − pqp = (p − q)2p + 1 − p.
Let a = (p − q)2 and b = 1. Then ap = pa, bp = pb. Since p − q ∈ RD, we obtain that a = (p − q)2

∈ RD. By
Lemma 2.5, 1 − pqp = ap + b(1 − p) ∈ RD. Therefore, 1 − pq is Drazin invertible by Lemma 2.4.

(2)⇔ (3) This is Corollary 3.3 ((2)⇔ (11)).
(3)⇒ (1) Let a = 1 − pqp, b = 1 − (1 − p)(1 − q)(1 − p). Then ap = pa, bp = pb and a ∈ RD by Corollary 3.3.

As 1 − (1− p)(1− p)(1− q) = p + q− pq ∈ RD, then b ∈ RD by Lemma 2.4. Finally, ap + b(1− p) = (p− q)2
∈ RD

by Lemma 2.5, hence p − q ∈ RD.

Cvetković-Ilić, Deng [3] considered the Drazin invertibility of product and difference of idempotents in a
Banach algebra A . Moreover, they proved that if one of pq, 1 − p − q and (1 − p)(1 − q) belongs to A D then
they all do. We extend the result in [3] to the ring cases.

Theorem 3.5. The following statements are equivalent:
(1) pq ∈ RD,
(2) 1 − p − q ∈ RD,
(3) (1 − p)(1 − q) ∈ RD.

Proof. (1)⇔ (2) Let p = 1− p. Then p− q ∈ RD if and only if q− pq ∈ RD by Proposition 3.1 and Theorem 3.4.
Since p − q = 1 − p − q and q − pq = pq, (1)⇔ (2) holds.

(1) ⇔ (3) Set p = 1 − p. Then p − pq ∈ RD if and only if q − pq ∈ RD by Proposition 3.1. Since
p − pq = (1 − p)(1 − q) and q − pq = pq, the result follows.

Theorem 3.6. The following statements are equivalent:
(1) pq − qp ∈ RD,
(2) pq ∈ RD and p − q ∈ RD.

Proof. Pose b = pq(1 − p) and c = (1 − p)qp. Then b − c = pq − qp.
(1)⇒ (2) As by hypothesis b− c ∈ RD, then pqp− (pqp)2 = pq(1− p)qp = bc ∈ RD by Lemma 2.6. It follows

that pqp ∈ RD by Lemma 2.7, hence pq = p(pq) ∈ RD by Lemma 2.3.
Similarly, (1 − p)q − q(1 − p) = −(pq − qp) ∈ RD implies q − pq = (1 − p)q ∈ RD. Therefore, p − q ∈ RD by

Proposition 3.1 and Theorem 3.4.
(2) ⇒ (1) By Lemma 2.3, both pqp and (p − q)2 are Drazin invertible. Note that bc = pq(1 − p)qp =

pqp(p − q)2 = (p − q)2pqp. It follows that bc is Drazin invertible by Lemma 2.2. Hence, according to Lemma
2.6, we have pq − qp = b − c ∈ RD.

We can give an interesting result similar to Theorem 3.6.

Theorem 3.7. The following statements are equivalent:
(1) pq + qp ∈ RD,
(2) pq ∈ RD and p + q ∈ RD.

Proof. (1)⇒ (2) Since pq + qp = −(p + q) + (p + q)2 = (p + q− 1) + (p + q− 1)2
∈ RD, p + q ∈ RD and p + q− 1 ∈ RD

according to Lemma 2.7. Therefore, pq ∈ RD by Theorem 3.5.
(2)⇒ (1) Since pq + qp = (p + q)(p + q− 1) = (p + q− 1)(p + q), pq + qp ∈ RD by Lemma 2.2 and Theorem 3.5.

Remark 3.8. Let p, q be two idempotents in a Banach algebra. Then, p + q is Drazin invertible if and only if
p− q is Drazin invertible [10]. Hence, pq + qp is Drazin invertible is equivalent to pq− qp is Drazin invertible
in a Banach algebra. However, in general, this need not be true in a ring. For example, let R = Z, p = q = 1.
Then p − q = 0 ∈ RD, but p + q = 2 < RD.
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[4] D.S. Cvetković-Ilić, C.Y. Deng, The Drazin invertibility of the difference and the sum of two idempotent operators, J. Comput.

Appl. Math. 233 (2010) 1717-1722.
[5] C.Y. Deng, Characterizations and representations of group inverse involving idempotents, Linear Algebra Appl. 434 (2011)

1067-1079.
[6] C.Y. Deng, The Drazin inverses of products and differences of orthogonal projections, J. Math. Anal. Appl. 335 (2007) 64-71.
[7] C.Y. Deng, The Drazin inverses of sum and difference of idempotents, Linear Algebra Appl. 430 (2009) 1282-1291.
[8] C.Y. Deng, Y.M. Wei, Characterizations and representations of the Drazin inverse involving idempotents, Linear Algebra Appl.

431 (2009) 1526-1538.
[9] M.P. Drazin, Pseudo-inverses in associative rings and semigroups, Amer. Math. Monthly 65 (1958) 506-514.
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