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Abstract. The existence of anti-periodic solutions for a class of first order nonlinear evolution inclusions
defined in the framework of an evolution triple of spaces is considered. We study the problems under both
convexity and nonconvexity conditions on the multivalued right-hand side. The main tools in our study are
the maximal monotone property of the derivative operator with anti-periodic conditions, the surjectivity
result for L-pseudomonotone operators and continuous extreme selection results from multivalued analysis.
An example of a nonlinear parabolic problem is given to illustrate our results.

1. Introduction

In this paper, we study a class of first order nonlinear evolution inclusions defined in the framework of
an evolution triple of spaces. Our aim is to get the existence results of anti-periodic solutions.

Let (V,H,V∗) be an evolution triple of spaces. T = [0, b], here b is a positive real number. We consider
the following problem (P1):

(P1)
{

x′(t) + A(t, x(t)) + Bx(t) ∈ F(t, x(t)), a.e. on T,
x(0) = −x(b),

where A : T × V → V∗ is a nonlinear operator, B ∈ L(V,V∗) and F : T × H → 2H
\{∅} is a multivalued map.

The time derivative of x is understood in the sense of vectorial distributions.
We also consider the following problem (P2):

(P2)
{

x′(t) + A(t, x(t)) + Bx(t) ∈ F(t, x(t))
⋂

extco F(t, x(t)), a.e. on T,
x(0) = −x(b).

Anti-periodic problems arise naturally in the mathematical modeling of various physical processes.
For this reason, existence of anti-periodic solutions to nonlinear evolution equations has been investigated
by many authors in the last decades. For instance, Okochi [1, 2] studied the existence of anti-periodic
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solutions to evolution equations of subdifferential type in Hilbert space. Aizicovici, McKibben and Reich
[3], Aizicovici and Pavel [4] considered anti-periodic problem for evolution equations governed by maximal
monotone operator. Anti-periodic solutions for semilinear evolution equations were considered by Chen [5],
Chen, O’Regan and Agarwal [6] and Liu [7]. Chen, Nieto and O’Regan [8] studied the anti-periodic problem
for a nonlinear evolution equation where the nonlinear part is an odd maximal monotone mapping. Liu
[9, 10] considered anti-periodic problems for nonlinear evolution equation with nonmonotone perturbations
in a real reflexive Banach space. Furthermore, Liu and Migorski [11] recently constructed a new and
important existence result and analyzed the controllability for differential inclusions with anti-periodic
conditions in Banach spaces, which represented a great development in anti-periodic problems.

Evolution (or differential) inclusions enjoy a wide applications in the study of differential equations
with discontinuous right hand sides, as well as in control theory, differential games, economic dynamics,
etc. For the existence results of evolution inclusions, many works had been done on its Cauchy problem
and periodic problem. For example, see Migórski [12–14], Papageorgiou, Papalini and Renzacci [15],
Papageorgiou and Yannakakis [16], Papageorgiou, Papalini and Yannakakis [17], Tolstonogov [18, 19] and
the references therein. Very recently, Park and Ha [20, 21] treated the anti-periodic solutions for evolution
hemivariational inequalities.

Our method for treating the problems is as follows. We combine the anti-periodic condition with the
derivative operator L, then we prove that in this case the derivative operator is maximal monotonicity,
finally, we use the surjectivity result for operators which are pseudomonotone with respect to D(L) [15].
We mention that our work can be considered as the extension of the work of Liu [9] to the multivalued
nonlinear nonmonotone perturbations case. From the properties of the Clarke subdifferential, we know
that the results obtained in [20, 21] are also contained in our framework. To the authors knowledge, these
problems are not considered before.

The rest of the paper is organized as follows. In section 2 we give some necessary notations and
definitions. Two auxiliary results needed in the proof of our main results are presented in section 3. In
section 4, we handle the existence results of problem (P1) with convex valued right-hand side. We study the
nonconvex case of problem (P1) and the existence results of problem (P2) in section 5. In the final section
6, an example of a nonlinear parabolic problem with discontinuous right-hand side is considered.

2. Notations and Definitions

Let T = [0, b] be an interval of the real axis with the Lebesgue measure µ and σ-algebra Σ of µ-measurable
subsets of T and Y be a separable Banach space. We use the following notations:

P(b) f (c)(Y) = {A ⊆ Y : A is nonempty, (bounded) closed (convex)},
P(w)k(c)(Y) = {A ⊆ Y : A is nonempty, (weakly-) compact (convex)}.
For a Banach space X the symbol ω-X stands for X equipped with the weak σ(X,X∗) topology. The same

notation will be used for subsets of X. In all other cases we assume that X and its subsets are equipped
with the strong (normed) topology.

Given a set A ⊆ Y, co A (co A) denotes convex hull (closed convex hull) of A, ext A stands for the set of
extreme points of A.

Let (X, τ) be a Hausdorff topological space and let {An}n≥1 ⊆ 2X
\{∅}. We define

τ- lim
n→∞

An = {x ∈ X : x = τ- lim
n→∞

xn, xn ∈ An, n ≥ 1},

τ- lim
n→∞

An = {x ∈ X : x = τ- lim
k→∞

xnk , xnk ∈ Ank , nk < nk+1, k ≥ 1}.

Suppose V, Z are two Hausdorff topological spaces and F : V → 2Z
\{∅}. We say that F is lower

semicontinuous in the sense of Vietoris (l.s.c. for short) at a point x0 ∈ V, if for any open set W ⊆ Z,
F(x0) ∩W , ∅, there is a neighborhood O(x0) of x0 such that F(x) ∩W , ∅ for all x ∈ O(x0). F is said to be
upper semicontinuous in the sense of Vietoris (u.s.c. for short) at a point x0 ∈ V, if for any open set W ⊆ Z,
F(x0) ⊆W, there is a neighborhood O(x0) of x0 such that F(x) ⊆W for all x ∈ O(x0). For the properties of l.s.c
and u.s.c and further details about multivalued analysis, we can refer to the books [22, 23].
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Let F : T→ 2Y
\∅ be a multifunction, for 1 ≤ p ≤ +∞, we define Sp

F = { f ∈ LP(T,Y) : f (t) ∈ F(t) a.e. on T}.
On Pb f (Y), we have a metric known as the “Hausdorff metric” and defined by

h(A,B) = max
{

sup
a∈A

d(a,B), sup
b∈B

d(b,A)
}
,

where d(x,C) is the distance from a point x to a set C. We say a multivalued map is h-continuous if it is
continuous in the Hausdorff metric h(·, ·).

We say that a multivalued map F : T→ P f (Y) is measurable if F−1(E) = {t ∈ T : F(t)∩E , ∅} ∈ Σ for every
closed set E ⊆ Y. If F : T × Y→ P f (Y), then measurability of F means that F−1(E) ∈ Σ ⊗ BY, where Σ ⊗ BY is
the σ-algebra of subsets in T × Y generated by the sets A × B, A ∈ Σ, B ∈ BY, and BY is the σ-algebra of the
Borel sets in Y.

Let H be a separable Hilbert space and V a dense subspace of H carrying the structure of separable,
reflexive Banach space. We assume that V is embedded continuously in H. Identifying H with its dual
(pivot space), we have that H is embedded continuously and densely in V∗. The triple (V,H,V∗) is known
as “evolution triple” or “Gelfand triple”. By | · |H (respectively, ‖ · ‖V, ‖ · ‖V∗ ), we denote the norm of H
(respectively, V, V∗). Also, by (·, ·) we denote the inner product of H and by 〈·, ·〉 the duality brackets of the
pair (V∗,V). The two compatible in the sense that 〈·, ·〉H×V = (·, ·). Here X∗ stands for the topological dual
space of X.

Given 1 < p < ∞, we introduce the following function spacesV = Lp(T,V),H = Lp(T,H),H ∗ = Lq(T,H)
and V∗ = Lq(T,V∗) with 1/p + 1/q = 1. We set W = {x ∈ V : x′ ∈ V∗}, where the time derivative is
understood in the sense of vectorial distributions. The space W is a separable, reflexive Banach space
furnished with the norm ‖x‖W = ‖x‖V + ‖x′‖V∗ . We have W ⊆ V ⊆ H ⊆ H

∗
⊆ V

∗ with continuous
embeddings. The pairing ofV andV∗ is denoted by 〈〈·, ·〉〉. It is well-known that the spaceW is embedded
continuously in C(T,H). Moreover, if V is embedded compactly in H, then so doesW into H [24]. In the
rest of this paper, we will assume that V is embedded compactly in H. The embedding operator is denoted
by γ.

Next we recall some definitions on pseudomonotone operators. Let P : Y → Y∗ be an operator on
a real reflexive Banach space Y. P is called pseudomonotone if and only if vn → v weakly in Y and
lim sup〈Pvn, vn − v〉 ≤ 0 imply 〈Pv, v − w〉 ≤ lim inf〈Pvn, vn − w〉 for all w ∈ Y. The operator P is said to be
demicontinuous if and only if it is continuous from Y to ω-Y∗. P is said to be hemicontinuous if and only if
for all v, w, z ∈ Y, we have λ→ 〈P(v + λw), z〉 is continuous on [0, 1].

Let G : Y→ 2Y∗ be a multivalued operator. G is said to be pseudomonotone if it satisfies the following:
(a) for every y ∈ Y, Gy ∈ Pwkc(Y∗);
(b) G is u.s.c. from every finite dimensional subspace of Y into ω-Y∗;
(c) if yn → y weakly in Y, y∗n ∈ Gyn, and lim sup〈y∗n, yn − y〉 ≤ 0, then for each z ∈ Y, there exists y∗(z) ∈ Gy
such that 〈y∗(z), y − z〉 ≤ lim inf〈y∗n, yn − z〉.

Let L : D(L) ⊆ Y → Y∗ be a linear, maximal monotone operator. G is said to be pseudomonotone with
respect to D(L) if and only if the above items (a), (b) and the following hold:
(d) if {yn} ⊆ D(L) such that yn → y weakly in Y, Lyn → Ly weakly in Y∗, y∗n ∈ Gyn, y∗n → y∗ weakly in Y∗,
and lim sup〈y∗n, yn − y〉 ≤ 0, then y∗ ∈ Gy and 〈y∗n, yn〉 → 〈y∗, y〉.

G is said to be bounded if it maps bounded subsets of Y into bounded subsets of Y∗. G is said to be
coercive if there exists a function c : R+

→ R with c(r)→∞ as r→∞ such that 〈y∗, y〉 ≥ c(‖y‖)‖y‖ for every
y∗ ∈ Gy.

Definition 2.1. A function x ∈ W ⊆ C(T,H) is called a solution to problem (P1) if and only if there exists f ∈ V∗

such that x(0) = −x(b), f (t) ∈ F(t, x(t)) a.e. on T and

x′(t) + A(t, x(t)) + Bx(t) = f (t), a.e. on T. (1)

The solution of problem (P2) is defined likewise.
To conclude this section, we give two propositions which are used in proving our existence theorems.



X. Y. Liu, Y. L. Liu / Filomat 26:8 (2014), 1167–1180 1170

Proposition 2.2 (see [15]). If Y is a reflexive, strictly convex Banach space, L : D(L) ⊆ Y → Y∗ is a linear
maximal monotone operator and G : Y → 2Y∗ is bounded, coercive and pseudomonotone with respect to D(L), then
R(L + G) = Y∗, i.e. L + G is surjective.

A crucial point in our approach is the fact that the derivative operator with the anti-periodic condition
is a maximal monotone linear operator.

We define

Lu = u′, D(L) = {u ∈ W : u(0) = −u(b)}. (2)

It is well-known that the derivative operator L with the conditions u(0) = 0 or u(0) = u(b) is a maximal
monotone operator (cf., [15, 24]). Now we give a result which says that the operator L defined by (2) is also
a maximal monotone operator (see [9]).

Proposition 2.3. The linear operator L : D(L) ⊆ V →V∗ defined by (2) is maximal monotone.

3. Existence for Convex Case

In this section we prove an existence theorem under the hypothesis that the multivalued nonlinearity F
is convex valued. The precise hypotheses on the data of problem (P1) are the following:

H(A): A : T × V → V∗ is an operator such that:
(1) For every x ∈ V, t→ A(t, x) is measurable;
(2) For a.e. t ∈ T, x→ A(t, x) is demicontinuous, pseudomonotone;
(3) For a.e. t ∈ T and all x ∈ V, we have ‖A(t, x)‖V∗ ≤ a(t) + c‖x‖p−1

V with a ∈ Lq(T), c > 0, 2 ≤ p < ∞;
(4) For a.e. t ∈ T and all x ∈ V, we have 〈A(t, x), x〉 ≥ c1‖x‖

p
V − a1(t) with a1 ∈ L1(T), c1 > 0.

H(B): B ∈ L(V,V∗) and 〈Bx, x〉 ≥ 0 for all x ∈ V.
H(F)1: F : T ×H→ P f c(H) is a multifunction such that:

(1) For every x ∈ H, t→ F(t, x) is measurable;
(2) For a.e. t ∈ T, x→ F(t, x) is sequentially closed in H × ω-H;

(3) For a.e. t ∈ T, all x ∈ H and all u ∈ F(t, x), |u|H ≤ a2(t) + c2|x|
2
q

H, with a2 ∈ Lq(T), c2 > 0.
H0: x(0) = −x(b) ∈ H (sinceW ⊆ C(T,H)). If p=2, 2‖γ‖2c2 < c1.
We denote byA, B: V →V∗ the Nemitsky operators corresponding to A(t, x(t)), Bx(t), respectively, i.e.,

(Av)(t) = A(t, v(t)), (Bv)(t) = Bv(t), a.e. on T, for v ∈ V. (3)

Proposition 3.1 (see [16] Proposition 2). If hypotheses H(A) hold, thenA is demicontinuous and if xn → x weakly
inW and lim sup〈〈Axn, xn − x〉〉 ≤ 0, we haveAxn →Ax weakly inV∗ and 〈〈Axn, xn〉〉 → 〈〈Ax, x〉〉.

We start by deriving a priori bounds for the solutions of problem (P1).

Lemma 3.2. Suppose that hypotheses H(A), H(B), H(F)1 and H0 hold and x is a solution to problem (P1), then there
exists a constant C > 0 such that

‖x‖W ≤ C.

Proof. Let x be a solution to problem (P1). Multiplying (1) by x(t) and integrating over T, we have∫
T

〈
x′(t) + A(t, x(t)) + Bx(t), x(t)

〉
dt =

∫
T

〈
f (t), x(t)

〉
dt (4)

with x(0) = −x(b) and f (t) ∈ F(t, x(t)) a.e. on T. From the integration by parts formula and the anti-periodic
condition, we get∫

T
〈x′(t), x(t)〉dt =

1
2

(
|x(b)|2H − |x(0)|2H

)
= 0. (5)
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Combining H(A)(4), H(B) and (5) with (4), we obtain

c1‖x‖
p
V
≤ ‖a1‖L1(T) +

∫
T
‖ f (t)‖V∗‖x(t)‖Vdt. (6)

Firstly, if p > 2, by H(F)1(3) and Young’s inequality with ε, we can have∫
T
‖ f (t)‖V∗‖x(t)‖Vdt ≤ ‖γ‖

∫
T

(
a2(t) + c2|x(t)|

2
q

H

)
‖x(t)‖Vdt

≤
2q
‖γ‖

qεq

(
‖a2‖

q
Lq(T) + cq

2‖γ‖
2b

p−2
p ‖x‖2

V

)
+
‖γ‖εp

p
‖x‖p
V
. (7)

Inserting (7) into (6), we have(
c1 −

‖γ‖εp

p

)
‖x‖p
V
≤ ‖a1‖L1(T) +

2q
‖γ‖

qεq

(
‖a2‖

q
Lq(T) + cq

2‖γ‖
2b

p−2
p ‖x‖2

V

)
. (8)

We now choose ε > 0 such that
(
c1−

‖γ‖εp

p

)
> 0. For such ε and p > 2, we have that there is a suitable constant

C1 > 0 such that

‖x‖V ≤ C1. (9)

Secondly, if p = 2, we have∫
T
‖ f (t)‖V∗‖x(t)‖Vdt ≤ ‖γ‖

∫
T

(
a2(t) + c2|x(t)|H

)
‖x(t)‖Vdt

≤
‖γ‖

2ε2 ‖a2‖
2
L2(T) +

‖γ‖ε2

2
‖x‖2
V

+ c2‖γ‖
2
‖x‖2
V
. (10)

Hence we have(
c1 −

‖γ‖ε2

2
− c2‖γ‖

2
)
‖x‖2
V
≤ ‖a1‖L1(T) +

‖γ‖

2ε2 ‖a2‖
2
L2(T). (11)

We choose ε > 0 such that
(
c1 −

‖γ‖ε2

2

)
= c1

2 . For such ε and from H0, we obtain the inequality (9) is also valid
in this case for suitable constant C1.

To end the proof, it is enough to show the boundedness of ‖x′‖V∗ . Using equation (1), H(A)(3), H(B) and
H(F)1(3), we can have the followings:

‖x′‖V∗ ≤ ‖ f ‖V∗ + ‖Ax‖V∗ + ‖Bx‖V∗ , (12)

‖Ax‖V∗ ≤
( ∫

T

(
a(t) + c‖x(t)‖p−1

V

)q
dt

)1/q
≤ 2

q−1
q
(
‖a‖Lq + c‖x‖p/q

V

)
, (13)

‖Bx‖V∗ ≤ ‖B‖
( ∫

T
‖x(t)‖qVdt

)1/q
≤ ‖B‖b

p−q
pq ‖x‖V, (14)

‖ f ‖V∗ ≤
( ∫

T

[
‖γ‖

(
a2(t) + c2(‖γ‖‖x(t)‖V)2/q

)]q
dt

)1/q

≤ ‖γ‖2
q−1

q
(
‖a2‖Lq + c2‖γ‖

2
q b

p−2
pq ‖x‖

2
q

V

)
. (15)

From above inequalities (12)-(15) and (9), we can deduce that ‖x′‖V∗ ≤ C2, here C2 being a suitable constant.
This lemma is proved.
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Since W is embedded continuously into C(T,H), from Lemma 3.2, we can assume that there exists a
positive constant M > 0 such that for any solution x to problem (P1), |x(t)|H ≤ M for all t ∈ T (Proposition
23.23 [24]).

Let Q = {h ∈ H : |h|H ≤M}. Considering the projection pr : H→ Q relating to each point h ∈ H a unique
point pr h ∈ Q such that |pr h − h|H = min{|y − h|H : y ∈ Q}, we know that |pr u − pr v|H ≤ |u − v|H, for all u,
v ∈ H. We define F1(t, x) = F(t,pr x). Evidently F1 satisfies H(F)1(1) and (2). Moreover, by the properties of
pr, we have, for a.e. t ∈ T, all x ∈ H and all u ∈ F1(t, x) such that

|u|H ≤ ϕ(t) = a2(t) + c2M
2
q , ϕ ∈ Lq(T) and |u|H ≤ a2(t) + c2|x|

2
q

H. (16)

Hence, Lemma 3.2 is still valid with F(t, x) substituted by F1(t, x). Consequently, henceforth we assume
without any loss of generality that

For a.e. t ∈ T, all x ∈ H, u ∈ F(t, x), |u|H ≤ ϕ(t) with ϕ ∈ Lq(T). (17)

Theorem 3.3. If hypotheses H(A), H(B), H(F)1 and H0 hold, then problem (P1) has at least one solution.

Proof. Let us define an operator G :V → 2H
∗

by

G(v) = Sq
F(·,v(·)), for all v ∈ V. (18)

We claim that for all v ∈ V, G(v) ∈ Pwkc(H ∗). Because H(F)1(1) and H(F)1(2) in general do not imply that
F is jointly measurable (see p.227 [23]), we need to show that G(v) , ∅. To this end, we consider step
functions {rn}n≥1 such that rn(t)→ v(t) a.e. on T as n→ ∞. Since t→ F(t, x) is measurable for all x ∈ H, for
every n ≥ 1, we have that t→ F(t, rn(t)) is measurable. Invoking Yankov-von Neumann-Aumann selection
theorem (Theorem 2.2.14 [23]), we can find 1n : T → H measurable function such that 1n(t) ∈ F(t, rn(t)) a.e.
on T. By (17), passing to a subsequence, if necessary, we may suppose that 1n → 1 weakly in H ∗. Then
from Proposition 7.3.9 [23] (p.694), we have that for a.e. on T,

1(t) ∈ co ω- lim{1n(t)} ⊆ co ω- lim F(t, rn(t)) ⊆ F(t, v(t)). (19)

The last inclusion is a consequence of the fact that F is P f c(H) valued and for a.e. t ∈ T, x → F(t, x)
is sequentially closed in H × ω-H (H(F)1(2)). It is clear that 1 ∈ H ∗ and 1 ∈ G(v). As for verifying
G(v) ∈ Pwkc(H ∗), this can be deduced from F is P f c(H) valued and formula (17).

Let L,A, B and G be defined by, respectively, (2), (3) and (18). We consider the following problem:

Find x ∈ D(L) such that Lx +Px 3 0, (20)

where the operator P :V → 2V
∗

is given by Px = Ax +Bx−Gx for x ∈ V. Note that x ∈ W solves problem
(P1) if and only if x solves (20). Next, we show the existence of a solution to (20) by using Proposition 2.2.

Claim 1: L defined by (2) is a linear maximal monotone operator.
From Proposition 2.3, we have the maximal monotonicity of L. It is easy to see that L is a linear and

densely defined operator (also see Theorem 32.L [24]).
Claim 2: The operator P is: (i) bounded, (ii) coercive, (iii) pseudomonotone with respect to D(L).
Proof of (i): This follows from (13), (14) and (17) and the continuity of the embeddingH ∗ ⊆ V∗.
Proof of (ii): Let v ∈ V and η ∈ Pv. Thus η = Av + Bv − ξ with some ξ ∈ Gv. From H(A)(4), H(B) and

(17), we have

〈〈η, v〉〉 = 〈〈Av, v〉〉 + 〈〈Bv, v〉〉 − 〈〈ξ, v〉〉
≥ c1‖v‖

p
V
− ‖a1‖L1(T) − ‖γ‖‖ϕ‖Lq(T)‖v‖V.

This implies that P is coercive.
Proof of (iii): The fact that for every v ∈ V the set Pv ∈ Pwkc(V∗) due to the property of the operator G

defined by (18).



X. Y. Liu, Y. L. Liu / Filomat 26:8 (2014), 1167–1180 1173

We show that P is u.s.c. inV× ω-V∗ topology. To this end, we prove that if a set D is weakly closed in
V
∗, then the set P−(D) = {v ∈ V : Pv ∩D , ∅} is closed inV. Let {vn}n≥1 ⊆ P

−(D) be such that vn → v inV.
Then there exists ηn ∈ Pvn ∩D, so we have

ηn = Avn +Bvn − ξn (21)

with ξn ∈ Gvn. Since {vn}n≥1 is bounded andP is a bounded operator. Passing to a subsequence, if necessary,
we may assume that ηn → η weakly in V∗, with η ∈ D, since D is closed in ω-V∗. By the boundedness of
{ξn}n≥1 inH ∗, we again may assume that ξn → ξweakly inH ∗. By the same reason as (19), we have ξ ∈ Gv.
Now from Proposition 3.1 (see [16]), we obtainAvn →Av weakly inV∗ (sinceA is demicontinuous). It is
obvious that B is a continuous linear operator, so we have Bvn → Bv inV∗. Passing to the limit in (21), we
have

η = Av +Bv − ξ.

Since ξ ∈ Gv and η ∈ D, this implies that η ∈ Pv ∩D. Therefore, P−(D) is closed inV.
To conclude that P is pseudomonotone with respect to D(L). It is enough to prove item (d) in the

definition of the pseudomonotone operator. Let {vn}n≥1 ⊆ D(L), vn → v weakly in W, ηn ∈ Pvn, ηn → η
weakly inV∗, and assume that

lim sup〈〈ηn, vn − v〉〉 ≤ 0. (22)

We have ηn = Avn + Bvn − ξn with ξn ∈ Gvn. Since G is a bounded operator and {vn}n≥1 is bounded inV,
we may assume that

ξn → ξ weakly in H ∗. (23)

Since the embeddingW ⊆H is compact, we have

vn → v in H . (24)

From (23) and (24), we deduce ξ ∈ Gv (see (19)). It is clear that Bvn → Bv weakly inV∗ and B is monotone,
so we have 〈〈Bvn, vn − v〉〉 ≥ 〈〈Bv, vn − v〉〉. Taking limit of this inequality, we obtain

lim inf〈〈Bvn, vn − v〉〉 ≥ 0 and lim sup−〈〈Bvn, vn − v〉〉 ≤ 0. (25)

From (24) and {ξn}n≥1 is bounded inH ∗, we have

lim〈〈ξn, vn − v〉〉 = 0. (26)

Combining (22), (25) and (26), we obtain

lim sup〈〈Avn, vn − v〉〉 ≤ lim sup〈〈ηn, vn − v〉〉
+ lim sup−〈〈Bvn, vn − v〉〉 + lim〈〈ξn, vn − v〉〉 ≤ 0.

From Proposition 3.1 (see [16]), we obtainAvn →Av weakly inV∗ and

〈〈Avn, vn〉〉 → 〈〈Av, v〉〉. (27)

Next we show

〈〈Bvn, vn〉〉 → 〈〈Bv, v〉〉. (28)

In fact, from (22), (26) and (27), we deduce

lim sup〈〈Bvn, vn − v〉〉 ≤ lim sup〈〈ηn, vn − v〉〉
+ lim sup−〈〈Avn, vn − v〉〉 + lim〈〈ξn, vn − v〉〉 ≤ 0.
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This together with the first inequality of (25) implies that lim〈〈Bvn, vn − v〉〉 = 0 and (28). Passing to the
limit in the equality

〈〈ηn, vn〉〉 = 〈〈Avn, vn〉〉 + 〈〈Bvn, vn〉〉 − 〈〈ξn, vn〉〉,

and from (26), (27) and (28), we obtain lim〈〈ηn, vn〉〉 = 〈〈η, v〉〉. As before, we can show that η ∈ Pv. Thus P
is pseudomonotone with respect to D(L).

SinceV is a strictly convex Banach space (this follows from the fact that in every reflexive Banach space
there exists an equivalent norm such that the space is strictly convex, see p.256 [24]), by Proposition 2.2, we
come to the conclusion that this theorem is proved.

4. Existence for Nonconvex Case

In this section we prove two existence theorems for nonconvex problems. The first assumes l.s.c. of
the multivalued nonlinearity, while the second, that is to say problem (P2), concerns “extremal solutions”
which are important in optimal control theory, in connection with the “bang bang” control.

For the first result our hypotheses on F(t, x) are the following:
H(F)2: F : T ×H→ P f (H) is a multifunction such that:

(1) (t, x)→ F(t, x) is measurable;
(2) For a.e. t ∈ T, x→ F(t, x) is l.s.c.;

(3) For a.e. t ∈ T, all x ∈ H and all u ∈ F(t, x), |u|H ≤ a2(t) + c2|x|
2
q

H with a2 ∈ Lq(T), c2 > 0.

Theorem 4.1. If hypotheses H(A), H(B), H(F)2 and H0 hold, then problem (P1) has at least one solution.

Proof. From H(F)2(1), we know that the map t → F(t, x(t)) is measurable for any measurable function
x : T → H and its valus are closed. Let G : V → 2H

∗

be defined by (18), we can easily get Gv ∈ P f (H ∗) for
all v ∈ V. Gv is also decomposable valued (i.e., if D ∈ Σ and f1, f2 ∈ Gv, then χD f1 + χDc f2 ∈ Gv).

We claim that v→ Gv is a l.s.c. map. Let v ∈ V, h ∈ Gv and vn ∈ V, n ≥ 1, be a sequence converging to
v. Passing to a subsequence, if necessary, we may suppose that vn(t) → v(t) a.e t ∈ T. It follows from the
properties of measurable multivalued maps [25] that there is a sequence hn ∈ Gvn, n ≥ 1, such that

|h(t) − hn(t)|H ≤ dH

(
h(t),F(t, vn(t))

)
+

1
n
, a.e. t ∈ T, (29)

where dH(·, ·) is the distance from a point to a set in H. Since the map x → F(t, x) is l.s.c. for a.e. t ∈ T,
Proposition 1.2.26 in [23] implies that the map y→ dH(h(t),F(t, y)) is u.s.c. for a.e. t ∈ T. Then from (29), we
get

lim
n→∞
|h(t) − hn(t)|H = 0, a.e. t ∈ T.

Combining this equality with (17) (since under the hypotheses H(F)2, we also have lemma 3.2) and using
Lebesgue’s theorem on dominated convergence, we obtain that hn → h in H ∗. Therefore the map v → Gv
is l.s.c.

Theorem 2.8.7 in [23] (see also Proposition 2.2 [26]) enables us to have 1 : V → H ∗ a continuous map
such that 1(v) ∈ Gv for all v ∈ V. Consider the following problem:{

x′(t) + A(t, x(t)) + Bx(t) = 1(x)(t) a.e. on T,
x(0) = −x(b). (30)

Arguing as in the proof of Theorem 3.3, we obtain a solution x to problem (30). Then by the definition of G,
we deduce that x is a solution to problem (P1). The theorem is proved.
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In the following of this section, we will consider the other nonconvex problem, i.e. problem (P2):

(P2)
{

x′(t) + A(t, x(t)) + Bx(t) ∈ F(t, x(t))
⋂

extco F(t, x(t)), a.e. on T,
x(0) = −x(b).

For a multivalud map F, we remark that even if x → F(t, x) has nice continuity properties, x →
ext F(t, x) need not be even closed valued. Moreover, in the general case, we have extco F(t, x) * F(t, x).
Hence, Tolstonogov in [19] recommended that when inclusions with nonconvex right-hand side F(t, x) are
considered, it is more natural to study inclusions with the right-hand side F(t, x)

⋂
extco F(t, x), since the set

extco F(t, x) is determined by the set co F(t, x) and the set F(t, x) is essentially unclaimed.
In this case our hypotheses on the data are the following:
H(A)1: A : T × V → V∗ is an operator such that H(A)(1), (3) and (4) hold and the following:

(2′) For a.e. t ∈ T, x→ A(t, x) is hemicontinuous and strictly monotone.
H(F)3: F : T ×H→ P f (H) is a multifunction such that:

(1) (t, x)→ F(t, x) is measurable;
(2) For a.e. t ∈ T, x→ co F(t, x) is h-continuous;

(3) For a.e. t ∈ T, all x ∈ H and all u ∈ F(t, x), |u|H ≤ a2(t) + c2|x|
2
q

H with a2 ∈ Lq(T), c2 > 0.
From H(F)3(3) it follows that for every x ∈ H, a.e. t ∈ T, co F(t, x) is a convex compact subset of ω-

H. So, by the Krein-Milman theorem we have that extco F(t, x) has nonempty values for a.e. t ∈ T. It
should be mentioned that extco F(t, x) * F(t, x) since F(t, x) is only a closed subset of H, not a closed subset
of ω-H. However, F(t, x)

⋂
extco F(t, x) , ∅. For example, strongly exposed points of co F(t, x) belong to

F(t, x)
⋂

extco F(t, x) [26]. It means that problem (P2) is well defined.
We first consider the following equation:{

x′(t) + A(t, x(t)) + Bx(t) = f (t) a.e. on T,
x(0) = −x(b). (31)

Recall that if A : X → X∗, here X is a real reflexive Banach space, is monotone and hemicontinuous
then A is pseudomonotone (Proposition 27.6 [24]). If A is pseudomonotone and locally bounded, then A is
demicontinuous (Proposition 27.7 [24]). Hence Theorem 3.3 implies that for every f ∈ V∗ problem (31) has
a solution.

Lemma 4.2. Under the hypotheses H(A)1 and H(B), for every f ∈ V∗, problem (31) has a unique solution.

Proof. Let x1 , x2 be two solutions of problem (31), i.e. for i = 1, 2, we have{
x′i (t) + A(t, xi(t)) + Bxi(t) = f (t) a.e. on T,
xi(0) = −xi(b).

Subtracting these two equations, multiplying the result by x1(t) − x2(t) and integrating over T, we obtain

1
2
|x1(b) − x2(b)|2H <

1
2
|x1(0) − x2(0)|2H, (32)

since x→ A(t, x) is strictly monotone and B is monotone. Due to the anti-periodic conditions x1(0) = −x1(b)
and x2(0) = −x2(b), from (32), we have

|x1(0) − x2(0)|H < |x1(0) − x2(0)|H.

This is a contradiction. The proof is complete.

It is obviously that the a priori estimate Lemma 3.2 is still valid in this case. Hence we can assume H(F)3
satisfies (17). We put

Sϕ = { f ∈ H ∗ : | f (t)|H ≤ ϕ(t) a.e. on T}, ϕ ∈ Lq(T).

The following result concerns the solution map for (31) and plays an important role in the proof of the
existence result for problem (P2).
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Lemma 4.3. Under assumptions H(A)1, H(B) and H0, the map P which to every right-hand side f ∈ Sϕ assigns the
unique solution x = P( f ) of problem (31) is continuous from ω-Sϕ into C(T,H).

Proof. Since Sϕ is a metrizable convex compact subset of the space ω-H ∗, we need only to prove the
sequential continuity of the map f → P( f ).

Let { fn}n≥1 ⊆ Sϕ be such that

fn → f in ω-H ∗ (33)

and xn = P( fn), n ≥ 1. From the compactness of the embedding W ↪→ H and the continuity of the
embedding W ↪→ C(T,H) it follows that there exist a subsequence xnk , k ≥ 1 of the sequence xn, n ≥ 1,
which we will denote in the sequel by xk, k ≥ 1, and x ∈ W with the following properties:

a) fk → f in ω-H ∗ and ω-V∗;
b) xk → x in ω-V;
c) x′k → x′ in ω-V∗;
d) xk → x inH ;
e) xk → x in ω-C(T,H);
f) xk(t)→ x(t) in H a.e. on T.
From e) it follows that x(0) = −x(b) and thus

x ∈ D(L). (34)

Taking account of (34) we rewrite an evident equality

〈〈x′k, xk − x〉〉 + 〈〈Axk, xk − x〉〉 + 〈〈Bxk, xk − x〉〉 = 〈〈 fk, xk − x〉〉

in the form

〈〈Lxk − Lx, xk − x〉〉 + 〈〈x′, xk − x〉〉 + 〈〈Axk, xk − x〉〉
+ 〈〈Bxk − Bx, xk − x〉〉 + 〈〈Bx, xk − x〉〉 = 〈〈 fk, xk − x〉〉.

From this equality, the monotonicity of L and the fact that 〈·, ·〉H×V = (·, ·) we infer that

〈〈Axk, xk − x〉〉 ≤ 〈〈x′, x − xk〉〉 + 〈〈Bx, x − xk〉〉 + ‖ fk‖H ∗‖xk − x‖H . (35)

From (35) and a), b), d) we obtain

lim sup
k→∞

〈〈Axk, xk − x〉〉 ≤ 0.

Therefore, according to Proposition 3.1 (see [16]) we have

Axk →Ax in ω-V∗. (36)

From a), b), c), (36) and (34) it follows that

x′ +Ax +Bx = f ,
x(0) = −x(b), (37)

i.e. x = P( f ).
From f) it follows that there exists s ∈ T such that

xk(s)→ x(s) in H. (38)

From the equality 〈·, ·〉H×V = (·, ·), the monotonicity of A and B and the known integration by parts formula
we infer that

sup
s≤t≤b

1
2
|xk(t) − x(t)|2H ≤

1
2
|xk(s) − x(s)|2H + ‖ fk − f ‖H ∗‖xk − x‖H , (39)
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sup
0≤t≤s

1
2
|xk(t) − x(t)|2H ≤

1
2
|xk(0) − x(0)|2H + ‖ fk − f ‖H ∗‖xk − x‖H . (40)

Using a), d), (38) and passing to the limit in (39), (40) we see that

xk → x in C(T,H).

We have thus proved that if fn → f in ω-H ∗, then there exits a subsequence fnk , k ≥ 1 of the sequence fn,
n ≥ 1 such that

xk = P( fnk )→ x = P( f ) in C(T,H).

Using the well-known arguments to prove by contradiction and the uniqueness of a solution of equation
(37) we infer that

xn = P( fn)→ x = P( f ) in C(T,H).

Lemma 4.3 is proved.

Now it is time to give the existence result for problem (P2).

Theorem 4.4. Under assumptions H(A)1, H(B), H(F)3 and H0, then problem (P2) has a solution.

Proof. Let Γ = {P( f ) : f ∈ Sϕ} be the solution set of equation (31) with f ∈ Sϕ. Since Sϕ is a convex compact
subset of ω-H ∗, then, according to Lemma 4.3, Γ is compact in ω-W and in C(T,H).

From H(F)3(1), it follows that for every x(·) ∈ C(T,H) the multifunction F(t, x(t)) is measurable and
t→ F(t, x) is measurable for all x ∈ H. Then by Theorem 9.1 in [25], we have t→ co F(t, x) is measurable for
all x ∈ H. Hence according to H(F)3(2), the multifunction co F(t, x) is of Carathéodory type. Now taking into
consideration Proposition 8.2 of [26], we have that there exists a continuous function 1 : Γ ⊆ C(T,H)→H ∗

such that, for every x(·) ∈ Γ and a.e. on T,

1(x)(t) ∈ F(t, x(t)) and 1(x)(t) ∈ extco F(t, x(t)), (41)

i.e. 1(x) ∈ Sq
F(·,x(·))

⋂
Sq

extco F(·,x(·)) for every x ∈ Γ.
Let an operatorS : Sϕ →H ∗ defined byS( f ) = 1 ·P( f ) which is continuous fromω-Sϕ intoH ∗ and hence

from ω-Sϕ into ω-H ∗ (by lemma 4.3 and the continuity of 1). As mentioned above, the a priori estimate
Lemma 3.2 is still valid in this situation. Hence by the definition of ϕ (see (16)), we have S( f ) ∈ Sϕ for
every f ∈ Sϕ. Since Sϕ is a metrizable convex compact subset of the space ω-H ∗, and S is a continuous map
from ω-Sϕ into ω-Sϕ, then by Schauder’s fixed point theorem, we deduce that there exists f∗ ∈ Sϕ such that
f∗ = S( f∗) = 1 · P( f∗). We put x∗ = P( f∗), then f∗ = 1(x∗). From (41), we have

f∗(t) = 1(x∗)(t) ∈ F(t, x∗(t))
⋂

extco F(t, x∗(t)) a.e. on T.

This together with x∗ = P( f∗) implies that problem (P2) has a solution x∗. The theorem is proved.

5. An Example

In this final section, we give an example to illustrate our abstract results.
Let T = [0, b] and Ω be a bounded domain inRN with Lipschitz boundary ∂Ω. We consider the following

nonlinear parabolic problem with a discontinuous right-hand side:

∂u
∂t
−

N∑
k=1

Dkak(x, t,u,Du) + a0(x, t,u,Du) −
N∑

i, j=1

Di(ai j(x)D ju)

= f (x, t,u), a.e. on Ω × T,
u(x, t)|∂Ω×T = 0, and u(x, 0) = −u(x, b) a.e. on Ω.

(42)
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Here Dk = ∂
∂xk

, D =gradient. Since f (x, t, ·) is not continuous, problem (42) need not have solutions. To
obtain an existnece theorem for problem (42) we pass to a multivalued problem by filling in the gaps at the
discontinuity points of f (x, t, ·). We introduce the functions f1(x, t,u) and f2(x, t,u) defined by

f1(x, t,u) = limz→u f (x, t, z) = sup
ε>0

inf
|z−u|<ε

f (x, t, z),

f2(x, t,u) = limz→u f (x, t, z) = inf
ε>0

sup
|z−u|<ε

f (x, t, z).

Put f̂ (x, t,u) = [ f1(x, t,u), f2(x, t,u)] = {v ∈ R : f1(x, t,u) ≤ v ≤ f2(x, t,u)}. Then, instead of (42), we study the
following multivalued problem:

∂u
∂t
−

N∑
k=1

Dkak(x, t,u,Du) + a0(x, t,u,Du) −
N∑

i, j=1

Di(ai j(x)D ju)

∈ f̂ (x, t,u), a.e. on Ω × T,
u(x, t)|∂Ω×T = 0, and u(x, 0) = −u(x, b) a.e. on Ω.

(43)

The hypotheses on the data of this problem are the following.
H(a): ak : Ω × T ×R ×RN

→ R, k = 1, 2, · · · ,N, are functions such that:
(1) Carathéodory and growth condition: Each ak(x, t,u, ξ) satisfies, for every (u, ξ) ∈ R × RN, (x, t) →
ak(x, t,u, ξ) is measurable, for a.e. (x, t) ∈ Ω × T, (u, ξ)→ ak(x, t,u, ξ) is continuous. A constant c1 > 0 and a
function β1 ∈ Lq(Ω × T) exist such that

|ak(x, t,u, ξ)| ≤ β1(x, t) + c1(|u|p−1 + ‖ξ‖p−1) (44)

for a.e. (x, t) ∈ Ω × T and all (u, ξ) ∈ R ×RN, with ‖ξ‖ denoting the Euclidian norm of the vector ξ.
(2) Monotonicity type condition: for a.e. (x, t) ∈ Ω × T, all u ∈ R and all ξ, ξ′ ∈ RN with ξ , ξ′, we have

N∑
k=1

(
ak(x, t,u, ξ) − ak(x, t,u, ξ′)

)
(ξk − ξ

′

k) > 0.

(3) Coercivity type condition: for a.e. (x, t) ∈ Ω × T and all (u, ξ) ∈ R × RN with some constant c2 > 0 and
some function β2 ∈ L1(Ω × T), we have

N∑
k=1

ak(x, t,u, ξ)ξk ≥ c2‖ξ‖
p
− β2(x, t).

H(a0): a0 : Ω×T×R×RN
→ R is a function which satisfies H(a)(1). Here, of couuse, the corresponding

formula similar to (44) may have different constants β1 and c1.
H(a1): Let i, j = 1, 2, · · · ,N, ai j ∈ L∞(Ω) such that, for a.e. x ∈ Ω, all ξ ∈ RN,

∑N
i, j=1 ai j(x)ξiξ j ≥ 0.

H(f): f1, f2 are N-measurable, i.e., for all u : Ω × T→ Rmeasurable, (x, t)→ fi(x, t,u(x, t)) is measurable
for i = 1, 2 and

| f (x, t,u)| ≤ β3(x, t) + c3|u|,

for a.e. (x, t) ∈ Ω × T and for all u ∈ R with β3 ∈ Lq(T,L2(Ω)) and c3 > 0.

Theorem 5.1. Asume that the hypotheses H(a), H(a0), H(a1) and H(f) hold true, then problem (43) has a solution
u ∈ Lp(T,W1,p

0 (Ω))
⋂

C(T,L2(Ω)) such that ∂u
∂t ∈ Lq(T,W−1,q(Ω)).
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Proof. In the problem under consideration, the evolution triple is V = W1,p
0 (Ω), H = L2(Ω) and V∗ = W−1,q(Ω)

(with 2 ≤ p < +∞ and 1
p + 1

q = 1). From Sobolev embedding theorems, all embeddings are compact. Let
A : T × V → V∗ be the operator defined by

〈A(t, v),w〉 =

∫
Ω

N∑
k=1

ak(x, t, v,Dv)Dkwdx +

∫
Ω

a0(x, t, v,Dv)wdx

for all w ∈ V. Using hypotheses H(a) and H(a0), one can easily check that A(t, v) satisfies hypothesis H(A).
The pseudomonotonicity of A(t, ·) follows the results of Gossez and Mustoven [27].

Let B ∈ L(V,V∗) be defined by, for all w ∈ V,

〈Bv,w〉 =

∫
Ω

N∑
i. j=1

ai j(x)D jvDiwdx.

Because of hypothesis H(a1), we know that H(B) holds.
Let F : T ×H→ P f c(H) be defined by

F(t, v) = {h ∈ L2(Ω) = H : f1(x, t, v(x)) ≤ h(x) ≤ f2(x, t, v(x)) a.e. Ω × T}.

We note that f1(x, t, ·) is l.s.c. and f2(x, t, ·) is u.s.c. (see Proposition 1 [28]). So Example 1.2.8 in [23] implies
that f̂ (x, t, ·) is u.s.c. Hypothesis H( f ) implies that H(F)1 is satisfied. Then, we rewrite equivalently (43)
as problem (P1) with A, B and F defined as above. Finally, we apply Theorem 3.3. This completes the
proof.
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