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Abstract. A new class of special upper approximate units together with the known Vladimirov class of
special approximate units are used to consider various sequential conditions of convolvability of distribu-
tions. The equivalence of these conditions to the known conditions of convolvability given by C. Chevalley
and L. Schwartz is proved together with the equivalence of the corresponding definitions of the convolution
of distributions.

1. Introduction

The convolution of distributions and other generalized functions is investigated and discussed by many

authors in a series of monographs [1, 4, 9, 27, 30, 37–39] and numerous papers, published in an early period

of the theory of distributions [7, 8, 31–36, 42] and later [5, 11, 16, 20, 24–26, 29, 40, 41]. The convolution of

distributions is often considered in particular cases, e.g. expressed in terms of supports of distributions, but

there exist in the literature various general definitions of the convolution of distributions expressed under

respective general convolvability conditions imposed on given distributions.

Such convolvability conditions and definitions of the convolution of distributions were introduced, in

terms of integrability of functions and distributions, by C. Chevalley in [4] and L. Schwartz in [31, 32] (see

also [11, 13, 29]). That the conditions and definitions of Chevalley and Schwartz are equivalent was proved
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by R. Shiraishi in [33] (see Theorem 4.1 in section 4), by means of a parametrix of an iterated Laplacian

(cf. [25, 29]). The convolution and tensor product of distributions were also investigated via linear and

bilinear maps between various topological spaces of distributions (see [9, 25, 37]) or distribution-valued

holomorphic functions (see [2, 10, 12, 27]). Using the first of these approaches N. Ortner formulated in

[25] in a suitable generalized form the conditions of convolvability of distributions given by Chevalley

and Schwartz. Applying continuity of certain linear maps, he gave a new proof of Shiraishi’s result and

extended it to other cases.

Another general approach, elementary in the spirit of the book [1] and useful for applications (see

[38, 39]), can be called sequential and will be discussed in this paper. Its idea was used already by L.

Schwartz (see [31], p. 2) and then by V. S. Vladimirov (see [38], pp. 103–104; see also [39]), though their

approaches slightly differed. Their concepts were based on approximations of given distributions (or some

functions related to test functions) by sequences or nets of distributions (or test functions) with supports

which guarantee the existence of their convolutions (or the related expressions); see the remarks preceding

Definitions 5.1-5.3, concerning types (A) and (B) of approximations.

Schwartz and Vladimirov applied two different classes of so-called approximate units and special approx-

imate units, respectively (see [5]), i.e. suitable sequences of C∞ functions of compact supports approaching

1 in the space E and bounded in the space B. We will consider in this paper only the Vladimirov class,

denoting it here by Π and its members by {Πn} (see Definition 2.1 in section 2). The mentioned classes

of approximate units correspond to the first of the two simplest known cases of supports for which the

convolution of two functions or distributions always exists:

1◦ at least one of the two supports is compact;

2◦ both supports are bounded from one side, say: both from below.

Case 1◦ is standard and used in sequential definitions of the convolution of distributions given by means

of approximate units. One can obtain various types of such definitions multiplying either both of given

distributions (as indicated by L. Schwartz in [31]; see also [16]) or only one of them (see [16]) by approximate

units and passing to the limits inD′. The described definitions for suitable classes of approximate units as

well as the sequential definitions of the convolution of Vladimirov’s type given in [38, 39] and in [5] appear

to be equivalent (see [5], [16], [41] and Theorem 7.1).

However case 2◦, investigated for the first time by B. Fisher (see e.g. [6]), is equally natural as case 1◦.

The counterpart of approximate units in this case are sequences approximating 1 in the space E of functions

with supports bounded from below. Let us remark that Fisher considered only a very specific form of such

sequences and his definition of the convolution of distributions depends in a concealed form on the choice

of particular sequences of this kind.

Our idea of sequential definitions corresponding to case 2◦ relies on selecting an appropriate class of

sequences of functions with supports subject to this case. The class Γ of special upper approximate units {Γn},

introduced in Definition 2.2, consists of sequences of C∞ functions on Rd whose supports are b-bounded,

i.e. contained in particular acute cones of the form [a,∞) for a ∈ Rd (the definition of the class Γ admits
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generalizations). The class Γ corresponds naturally in case 2◦ to the class Π in case 1◦. We use the symbols

Πn and Γn for elements of special approximate units and special upper approximate units, respectively, to

recall shapes of the corresponding functions on R1.

The precise sequential definitions of the convolution of distributions are given in section 5. We recall

Vladimirov’s definition from [38, 39] and three other related definitions from [16] (of type (B) and type

(A), respectively; see Definition 5.1). We give also two new sequential definitions of the convolution of

distributions based on the class Γ which correspond to the Schwartz definitios of type (A) and the Vladimirov

definition of type (B), respectively (see section 5).

That sequential definitions of the convolution of distributions given by means of the classes Π and Γ

are equivalent is not obvious at all. This is a consequence of Theorem 7.1, proved in [16] (see also [5, 41])

and Theorem 7.2. Both theorems are formulated and proved in section 7. It follows from them that each

of the sequential versions of Definitions 5.1 and 5.3 is equivalent to any of the mentioned definitions of C.

Chevalley and L. Schwartz. The proof requires not only known classical results but also new techniques.

The assertions given in Theorems 7.1 and 7.2 are a part of a statement which is formulated (also for

wider classes than Π and Γ considered here) but not entirely proved in [22]. To prove fully both assertions

we have to show, in particular, that the conditions in Definition 5.3 imply the conditions in Definition 5.1.

These implications were left without a proof in [22] and they follow from Lemma 6.2 presented here (in

section 6) with a complete proof. The proof is fully elementary but requires a delicacy in selecting suitable

subsequences and a subtle inductive construction of special upper approximate units, satisfying certain

conditions, on the base of initial sequences of both classes Π and Γ.

The principal role in the proof of Theorem 7.2 is played by the above mentioned theorem of R. Shiraishi

from [33], but we need also Theorem 3.3, formulated in section 3, which is an appropriate extension of

characterization of integrable distributions proved in [5] (for a full proof of Theorem 3.3 we refer to [21, 23],

sketching some ideas of the proof in Remark 3.4) and two other lemmas.

The presented proofs suitably modified can be used to receive similar results concerning the convolution

in other spaces of generalized functions, e.g. the space of tempered distributions or in the spaces of

ultradistributions and tempered ultradistributions (cf. results of S. Pilipović and his collaborators in [3,

17, 18, 28]).

2. Preliminaries

We use mostly standard multi-dimensional notation concerning Rd and Nd
0 and the known spaces of

(complex-valued) functions and distributions onRd: C∞(Rd), E(Rd), B0(Rd), B(Rd),D(Rd),DK(Rd),D′(Rd),

D
′

L1 (Rd) (cf. [1, 30]).

If a = (α1, . . . , αd) ∈ Rd, x = (ξ1, . . . , ξd) ∈ Rd and φ ∈ C∞(Rd), we denote [a,∞) := [α1,∞) × . . . × [αd,∞) ⊂

Rd, |x| := (
∑d
ι=1 ξ

2
ι )1/2, |x|1 :=

∑d
ι=1 |ξι| (in particular, |k|1 :=

∑d
ι=1 κι for k = (κ1, . . . , κd) ∈Nd

0) and

φ(k)(x) :=
∂κ1+...+κd

∂ξκ1
1 . . . ∂ξκd

d

φ(ξ1, . . . , ξd).
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For a given set E ⊆ Rd and a function φ on Rd, we will use the following convenient notation:

E @ Rd :⇔ E is a compact subset of Rd (2.1)

and

E4 := {(x, y) ∈ R2d : x + y ∈ E}; φ4(x, y) := φ(x + y), x, y ∈ Rd.

Clearly, if E is bounded (compact) inRd, then E4 is bounded (compact) inR2d only in case E = ∅. Ifφ ∈ D(Rd),

then φ4 ∈ C∞(R2d) but φ4 ∈ D(R2d) only in case φ = 0.

Recall that the topology in the space DK(Rd) for a fixed K @ Rd is defined by the family {qi,K : i ∈ N0}

of seminorms, the topology in the space E(Rd) by the family {qi,K : i ∈ N0,K @ Rd
} of seminorms, and the

topologies in the spaces B0(Rd) and B(Rd) by the family {qi : i ∈N0} of norms, where

qi,K(φ) := max
0≤|k|1≤i

sup
x∈K
|φ(k)(x)|; qi(φ) := max

0≤|k|1≤i
sup
x∈Rd

|φ(k)(x)|

for functions φ in the respective spaces. We use the symbol 〈S, φ〉d for the value of S ∈ D′(Rd) on φ ∈ D(Rd)

to mark the dimension of Rd. For φ ∈ D(Rd) and S ∈ D′(Rd), we define φ̌ ∈ D(Rd) and Š ∈ D′(Rd) by

φ̌(x) := φ(−x) for x ∈ Rd and 〈Š, ϕ〉d := 〈S, ϕ̌〉d for all ϕ ∈ D(Rd). By φ ⊗ ψ for φ,ψ ∈ D(Rd) we mean the

function inD(R2d), given by (φ ⊗ ψ)(x, y) := φ(x)ψ(y) for x, y ∈ Rd, and by S ⊗ T we traditionally mean the

tensor product of S,T ∈ D′(Rd), an element ofD′(R2d) (see [31]).

Beside the usual support (of a function or distribution) we consider another type of support, the unit

support s1(φ) := φ−1({1}) of a smooth function φ. Clearly, s1(φ) ⊂ supp φ. Beside bounded we will also

consider b-bounded subsets of Rd: we call a set B ⊂ Rd b-bounded if B ⊂ [a,∞) for some a ∈ Rd.

Definition 2.1. [see [5]] By a special approximate unit onRd we mean a sequence {Πn} of smooth functions on

Rd with bounded (i.e. compact) supports such that

(∗) if A ⊂ Rd is bounded, then A ⊂ s1(Πn) for sufficiently large n ∈N

and

Mi := sup
n∈N

qi(Πn) < ∞, i ∈N0. (2.2)

Definition 2.2. By a special upper approximate unit on Rd we mean a sequence {Γn} of smooth functions on

Rd with b-bounded supports such that the following counterpart of condition (∗) is satisfied:

(∗∗) if B ⊂ Rd is b-bounded, then B ⊂ s1(Γn) for sufficiently large n ∈N

and

Ni := sup
n∈N

qi(Γn) < ∞, i ∈N0. (2.3)

We denote the classes of all special approximate units and all special upper approximate units (on Rd)

by Π and Γ (by Πd and Γd), respectively.
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3. Integrable Distributions

Definition 3.1. We call an R ∈ D′(Rd) extendible to a functionψ ∈ C∞(Rd) if the numerical sequence {〈R,Πnψ〉d}

is Cauchy for every {Πn} ∈ Πd.

Clearly, if R ∈ D′(Rd) is extendible to each ψ ∈ B(Rd), then the formula

〈R̃, ψ〉d := lim
n→∞
〈R,Πnψ〉d, ψ ∈ B(Rd) (3.1)

for any {Πn} ∈ Πd, uniquely defines the mapping R̃ : B(Rd) → C which is a linear functional on B(Rd) and

R̃|D(Rd) = R.

Definition 3.2. If R ∈ D′(Rd) is extendible to each function ψ ∈ B(Rd), we call the linear functional R̃ on

B(Rd) given by (3.1) the extension of R to B(Rd) whenever it is continuous on B(Rd).

Theorem 3.3 (see [5, 21, 23]). Let R ∈ D′(Rd). The following are equivalent:

(a) there exist a j ∈N0 and a C > 0 such that

|〈R, ϕ〉d| ≤ Cq j(ϕ) (3.2)

for all ϕ ∈ D(Rd);

(b) there exists a j ∈ N0 such that for every ε > 0 there exists a K @ Rd with the property: ϕ ∈ D(Rd) and

supp ϕ ∩ K = ∅ imply

|〈R, ϕ〉d| ≤ εq j(ϕ); (3.3)

(c) for every {Πn} ∈ Πd the sequence {〈R,Πn〉d} is Cauchy.

(d) R is extendible to all ψ ∈ B(Rd) and R̃ given by (3.1) is the extension of R to B(Rd) for which there exist a

j ∈N0 and C > 0 such that

|〈R̃, ψ〉d| ≤ Cq j(ψ) (3.4)

for all ψ ∈ B(Rd);

(e) R is extendible to all ψ ∈ B(Rd) and R̃ given by (3.1) is the extension of R to B(Rd) for which there exists

j ∈N0 such that for every ε > 0 there exists a K @ Rd with the property: ψ ∈ B(Rd) and supp ψ ∩ K = ∅ imply

|〈R̃, ψ〉d| ≤ εq j(ψ). (3.5)

Remark 3.4. Conditions (a), (b), (c), whose equivalence is proved in [5], are expressed in terms of a given

R ∈ D′(Rd) and test functions ϕ ∈ D(Rd). Condition (a), due to density of D(Rd) in B0(Rd) implies that R

can be uniquely extended to an integrable distribution R◦, element of the topological dual B′0(Rd) =: D′L1 (Rd)
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ofB0(Rd) (see [30], p. 200), satisfying (3.2) for all ϕ ∈ B0(Rd). We completed the list of equivalent conditions

with (d) and (e) to show explicitly that each distribution R satisfying any of conditions (a)–(c) as well as

the corresponding integrable distribution R◦ can be uniquely extended to the linear functional R̃ on B(Rd),

defined by (3.1); moreover, the estimates given for R in (3.2)–(3.3) are preserved for R̃ in the form of (3.4)–

(3.5), so that the continuity of R̃ is assured (for clarity, we use the different symbols to the end of the section,

but later we will identify R and R̃). Consequently, R̃ ∈ B′(Rd) and 〈R̃, ψ〉d is well defined if ψ ∈ B(Rd), in

particular if ψ = 1 or ψ = Γn (n ∈N) for any {Γn} ∈ Γd (see Lemma 3.5).

That (d) and (e) are indeed equivalent to each of conditions (a), (b), (c) can be shortly justified as follows.

Assuming that a distribution R satisfies (b), one can easily deduce that R is extendible to an arbitrary

ψ ∈ B(Rd). If, in addition, supp ψ ∩ K = ∅ for a given ψ ∈ B(Rd) and a set K @ Rd indicated in (b), then

one can replace ϕ by the functions ϕn := Πnψ (n ∈ N) in inequality (3.3) for any {Πn} ∈ Πd and pass to the

limit as n → ∞. Hence, due to (3.1), the Leibniz formula and (2.2), the distribution R satisfies condition

(e). Condition (d) easily results from (e) and (a) is the restriction of (d) to the subspace D(Rd) of B(Rd). For

details of the whole proof of the equivalence of conditions (a)–(e) see [21, 23].

Lemma 3.5. If R ∈ D′L1 (Rd), then

lim
n→∞
〈R,Πn〉d = 〈R̃, 1〉d = lim

n→∞
〈R̃, Γn〉d (3.6)

for any {Πn} ∈ Πd and {Γn} ∈ Γd, where R̃ is defined in (3.1).

Proof. The first equality in (3.6) follows directly from (3.1). To prove the second one fix χ ∈ D(Rd) with

s1(χ) ⊃ [−1, 1]d and define χn ∈ D(Rd) by χn(x) := χ(x/n) for x ∈ Rd and n ∈N. Clearly,

s1(χn) ⊃ [−n,n]d; 1 ≤ qi(χn) ≤ qi(χ), n ∈N, i ∈N0. (3.7)

By the assumption and Theorem 3.3, condition (e) holds for a certain j ∈N0. Fix ε > 0 and find a K @ Rd

such that

|〈R̃, ψ〉d| ≤
ε
a j

q j(ψ), (3.8)

whenever ψ ∈ B and supp ψ ∩ K = ∅, where a j := 2 j+1(1 + q j(χ))(1 + N j). Due to (3.7), we may choose an

n0 ∈N such that s1(χn0 ) ⊃ K. In view of (3.8), the Leibniz formula, (3.7) and (2.3), we have

|〈R̃, 1〉d − 〈R̃, Γm〉d| ≤ |〈R̃, (1 − χn0 )(1 − Γm)〉d| < ε

for sufficiently large m ∈N (such that s1(Γm) ⊃ supp χn0 ).

4. Convolution of Distributions

It is well known that the convolution in D′(Rd) of distributions S,T ∈ D′(Rd) can be defined as the

distribution S ∗ T given by

〈S ∗ T, ϕ〉d := 〈S ⊗ T, ϕ4〉2d, ϕ ∈ D(Rd), (4.1)
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whenever the right hand side is well defined.

In particular, conditions guaranteeing that (4.1) makes sense can be expressed in terms of the supports

A of S and B of T (closed sets in Rd). Express the conditions formulated by J. Horváth in [9], p. 383 (see also

[10], [12], [11], [5], [24]), with the use of the notation introduced in (2.1), in the following way:

(Σ) (A × B) ∩ K4 @ R2d for every K @ Rd,

(Σ′) A ∩ (K − B) @ Rd for every K @ Rd,

which are equivalent for any closed sets A,B ⊆ Rd (see [9], pp. 383–384). It is clear that if given sets A,B ⊆ Rd

are closed one can equivalently reformulate conditions (Σ) and (Σ′) as follows:

(∆) (A × B) ∩ K4 is bounded in R2d for every bounded set K in Rd,

(∆′) A ∩ (K − B) is bounded in Rd for every bounded set K in Rd.

Independently, Jan Mikusiński introduced in [20] (see also [1], pp. 124–127) a condition which can be

formulated in the following sequential form:

(M) if xn ∈ A and yn ∈ B for n ∈N, then |xn| + |yn| → ∞ as n→∞

implies |xn + yn| → ∞ as n→∞.

Sets A,B ⊆ Rd satisfying (M) are called in [20] and [1] compatible. It is worth noting that condition (M) is

equivalent to each of conditions (Σ), (Σ′) for closed sets A,B ⊆ Rd and to each of conditions (∆), (∆′) for

arbitrary sets A,B in Rd, not necessarily closed.

Recall the two particular cases of subsets A,B ofRd satisfying the above mentioned equivalent conditions

of compatibility:

1◦ at least one of the sets A, B is bounded;

2◦ both sets A, B are b-bounded (see section 2).

Case 2◦ is a specification of a more general situation where A, B are contained in suitable cones (see [1],

pp. 129–130, [39], pp. 63–64). It should be noted, however, that there exist compatible sets in R1 which are

unbounded from both sides as well as compatible sets in Rd, unbounded in each direction of Rd (see [14],

[15], [5] and [19]).

Formula (4.1) can be used not only in the above particular cases. A variation of this formula was

applied by L. Schwartz in [31] (see also [11, 33]) in his general definition of the convolution of distributions

S,T ∈ D′(Rd):

〈S
S
∗ T, ϕ〉d := 〈(S ⊗ T)ϕ4, 1〉2d, ϕ ∈ D(Rd), (4.2)

given under the following general integrability condition:

(S) (S ⊗ T)ϕ4 ∈ D′L1 (R2d) for all ϕ ∈ D(Rd),
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which is satisfied if condition (4) holds; here and further on, a distribution R satisfying any of the conditions

in Theorem 3.3 is identified with its extension R̃ ∈ B′(Rd) (see Remark 3.4).

Earlier, C. Chevalley introduced in [4] the two symmetric general definitions of the convolution of

distributions inD′(Rd):

〈S
C1
∗ T, ϕ〉d := 〈S(Ť ∗ ϕ), 1〉d, ϕ ∈ D(Rd), (4.3)

〈S
C2
∗ T, ϕ〉d := 〈(Š ∗ ϕ)T, 1〉d, ϕ ∈ D(Rd), (4.4)

under the following conditions of integrability of distributions:

(C1) S(Ť ∗ ϕ) ∈ D′L1 (Rd) for all ϕ ∈ D(Rd),

(C2) (Š ∗ ϕ)T ∈ D′L1 (Rd) for all ϕ ∈ D(Rd),

respectively (see [4], p. 67). Moreover, Chevalley gave in [4] a third general definition of the convolution of

distributions inD′(Rd) under a corresponding condition of integrability of functions (see [4], p. 112); let us

denote the convolution by
C
∗ and the condition by (C).

The above definitions (as well as other ones, see e.g. [13, 32]) are equivalent. We recall the following

equivalence result of R. Shiraishi (see also [25]):

Theorem 4.1 (see [33]). Let S,T ∈ D′(Rd). Conditions (S), (C1), (C2), and (C) are equivalent. If any of the conditions

holds, then the convolutions defined in (4.2), (4.3), (4.4), and in [4], p. 112, exist and are equal:

S
S
∗ T = S

C1
∗ T = S

C2
∗ T = S

C
∗ T.

5. Sequential Definitions of Convolution

Another way of defining the convolution of distributions in D′(Rd) consists in using suitable approx-

imations with supports guaranteeing that the right hand side of formula (4.1) is well defined and then

passing to the limit. One may approximate in (4.1) either (A) the distributions S,T in D′(Rd) or (B) the

functions ϕ4 in E(R2d) and there is a subtle difference between these two possibilities (see Remark 5.4).

The first possibility was indicated by L. Schwartz in [31], p. 2, and the other one was used by V. S.

Vladimirov in [38], pp. 103–104 (see also [39], pp. 51–52). To get appropriate approximations they applied

two different classes of so-called (see [5]) approximate units, i.e. nets or sequences of functions of the class

D, approaching the constant function 1 in E and bounded in B.

In the definition below we use only the class of all special approximate units, described in Definition 2.1

in section 2 and applied by V. S. Vladimirov in his definition of the convolution of distributions.
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Definition 5.1. Let S,T ∈ D′(Rd). We give the following four definitions of the convolution of distributions S

and T inD′(Rd):

〈S
Π0
∗ T, ϕ〉d := lim

n→∞
〈(Π

1
nS) ⊗ (Π

2
nT), ϕ4〉2d, ϕ ∈ D(Rd), (5.1)

〈S
Π1
∗ T, ϕ〉d := lim

n→∞
〈(Π

1
nS) ⊗ T, ϕ4〉2d, ϕ ∈ D(Rd), (5.2)

〈S
Π2
∗ T , ϕ〉d := lim

n→∞
〈S ⊗ (Π

2
nT), ϕ4〉2d, ϕ ∈ D(Rd), (5.3)

〈S
Π
∗ T , ϕ〉d := lim

n→∞
〈S ⊗ T,Πn ϕ

4
〉2d, ϕ ∈ D(Rd), (5.4)

for any {Π1
n},{Π

2
n} ∈ Πd and {Πn} ∈ Π2d, under the corresponding convolvability conditions imposed on the

distributions S and T:

(Π0) {〈(Π
1
nS) ⊗ (Π

2
nT), ϕ4〉2d} is a Cauchy sequence,

(Π1) {〈(Π
1
nS) ⊗ T, ϕ4〉2d} is a Cauchy sequence,

(Π2) {〈S ⊗ (Π
2
nT), ϕ4〉2d} is a Cauchy sequence,

(Π) {〈S ⊗ T,Πn ϕ4〉2d} is a Cauchy sequence,

for all ϕ ∈ D(Rd), {Π1
n},{Π

2
n} ∈ Πd and {Πn} ∈ Π2d, respectively.

All expressions under the limit sign in (5.1)–(5.4) are well defined, since the supports of the respective

distributions in (5.1)–(5.3) satisfy case 1◦ of compatibility and Πnϕ4 ∈ D(R2d) in case of formula (5.4).

Moreover, the convolvability conditions guarantee that the limits exist and do not depend on the choice of

special approximate units, i.e. definitions (5.1)–(5.4) are consistent.

Remark 5.2. Let us recall that the definition (5.1) was discussed in [31] for a wider class, namely for the class

of all approximate units on Rd (this name is used in [5]), than the above class Πd of all special approximate

units. Definitions (5.2) and (5.3) were considered in [16] for both classes (see also [41]). Definition (5.4) was

given in [38] for the class Π2d and then extended in [5] to the class of all approximate units on R2d. Each of

the above definitions (considered for both classes) is equivalent to each of the definitions of the convolution

mentioned in Theorem 4.1 (see [5, 16, 41]).

In the following definition, alternative to Definition 5.1, we will use special upper approximate units

(see Definition 2.2) instead of special approximate units.

Definition 5.3. Let S,T ∈ D′(Rd). We give the following two definitions of the convolution of distributions S

and T inD′(Rd):

〈S
Γ0
∗ T , ϕ〉d := lim

n→∞
〈(Γ

1
nS) ⊗ (Γ

2
nT), ϕ4〉2d, ϕ ∈ D(Rd), (5.5)

〈S
Γ
∗ T , ϕ〉2d := lim

n→∞
〈S ⊗ T, Γnϕ

4
〉2d, ϕ ∈ D(Rd), (5.6)

for any {Γ1
n},{Γ

2
n} ∈ Γd and {Γn} ∈ Γ2d, under the corresponding convolvability conditions imposed on the

distributions S and T:

(Γ0) {〈(Γ
1
nS) ⊗ (Γ

2
nT), ϕ4〉2d} is a Cauchy sequence,

(Γ) {〈S ⊗ T, Γnϕ4〉2d} is a Cauchy sequence,
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for all ϕ ∈ D(Rd), {Γ1
n},{Γ

2
n} ∈ Γd and {Γn} ∈ Γ2d, respectively.

The expressions under the limit sign in (5.5)–(5.6) are well defined, since the supports of {Γ1
n} and {Γ2

n} in

(5.5) satisfy case 2◦ of compatibility and Γnϕ4 ∈ D(R2d) in case of formula (5.6). Moreover, the convolvability

conditions guarantee that the limits exist and do not depend on the choice of special upper approximate

units, i.e. definitions (5.5)–(5.6) are consistent.

Remark 5.4. Due to Lemma 6.1 below, the definitions (5.1), (5.2), (5.3) can be written in the form of (5.4)

with Πn replaced by the functions of the form Π
1
n ⊗ Π

2
n, Π

1
n ⊗ 1, 1 ⊗ Π

2
n, respectively, where {Π1

n}, {Π
2
n} ∈ Πd and

1 denotes the constant function on Rd. In particular, the definition (5.1), which is of the type discussed in

[31] (though reduced here to the class Πd), can be expressed in the form of the definition (5.4) introduced

in [38], but the first one is considered for the narrower class of all {Πn} ∈ Π2d with Πn of the form Π
1
n ⊗ Π

2
n,

where {Π1
n}, {Π

2
n} ∈ Πd. Similarly, the definition (5.5) can be expressed in the form (5.6), but it is considered

for the narrower class of {Γn} ∈ Γ2d reduced to the sequences of functions Γn of the form Γ
1
n ⊗ Γ

2
n, where

{Γ
1
n}, {Γ

2
n} ∈ Γd, so the equivalence of the definitions is not obvious. Nevertheless, the definitions (5.5) and

(5.6) are equivalent to any of the definitions (5.1)–(5.4) (see Theorem 7.2).

The definition of the convolution in D′(Rd) given by means of formula (5.5) was inspired by one of

B. Fisher’s definitions of the convolution of distributions on R1 (see [6], Definition 6), based on special

upper approximate units of a very particular form. Notice that the specific form of these sequences does

not guarantee the consistency of the definition of the convolution which may depend on the choice of the

sequences.

6. Lemmas

In the proof of Theorem 7.2 we need the following two lemmas.

Lemma 6.1. Let S,T ∈ D′(Rd). Let σ, τ ∈ E(Rd) be functions whose supports A := supp σ, B := supp τ satisfy

case 1◦ or case 2◦ of compatibility, indicated above, and let ω ∈ E(R2d) be a function such that supp ω ⊂ I4 for some

compact set I @ Rd. Then

〈(σS) ⊗ (τT), ω〉2d = 〈S ⊗ T, (σ ⊗ τ)ω〉2d. (6.1)

Proof. That (6.1) holds forω = φ⊗ψwith φ,ψ ∈ D(Rd) and so for allω ∈ D(R2d), follows from the definition

of the tensor product of distributions.

In the general case, fix ω ∈ E(R2d) with supp ω ⊂ I4 and ε > 0, and choose χ1, χ2 ∈ E(R2d) such that

A × B ⊂ s1(χ1) ⊂ supp χ1 ⊂ Aε × Bε; I4 ⊂ s1(χ2) ⊂ supp χ2 ⊂ I4ε ,

where Aε, Bε, Iε are ε−neighborhoods of A, B, I, respectively.

Denote ρ := σ ⊗ τ and R := (σS) ⊗ (τT). The above inclusions imply that χ1ρ = ρ, χ1R = R, χ2ω = ω and

supp (χ1χ2) is a subset of (Aε × Bε) ∩ I4ε . But the latter is a bounded set in R2d in both cases 1◦ and 2◦ (see
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conditions (Σ) and (∆)). Hence χ1χ2 ∈ D(R2d) and we can reduce our general case to the case considered at

the beginning:

〈R, ω〉2d = 〈χ1R, χ2ω〉2d = 〈S ⊗ T, ρχ1χ2ω〉2d = 〈S ⊗ T, (σ ⊗ τ)ω〉2d.

The assertion of the lemma is thus proved.

Lemma 6.2. Let R ∈ D′(R2d). Assume that supp R ⊂ I4 for a certain compact set I @ Rd and there is an α ∈ C

such that

lim
n→∞
〈R, Γ1

n ⊗ Γ
2
n〉2d = α (6.2)

for arbitrary special upper approximate units {Γ1
n}, {Γ

2
n} ∈ Γd. Then

lim
n→∞
〈R,Π1

n ⊗ Π
2
n〉2d = α (6.3)

for arbitrary special approximate units {Π1
n}, {Π

2
n} ∈ Πd.

Proof. We begin with choosing χ ∈ E(R2d) and a set J @ Rd such that

I4 ⊂ s1(χ) ⊂ supp χ ⊂ J4. (6.4)

Obviously, R = χR on R2d.

Fix {Π1
n}, {Π

2
n} ∈ Πd and denote αn := 〈R,Π1

n ⊗ Π
2
n〉2d for n ∈ N. We have to select from every subsequence

{βn} of {αn} a subsequence {γn} such that limn→∞ γn = α. Let us fix {βn}, i.e. fix an increasing sequence of

mn ∈ N (in symbols: mn ↑ ∞) such that βn = αmn , and denote shortly Π
ι
n := Π

ι
mn

for n ∈ N and ι ∈ {1, 2}. We

have to find a sequence of indices rn ∈N, rn ↑ ∞, such that γn → α as n→∞, where γn := βrn = 〈R,Π1
rn
⊗Π

2
rn
〉2d

for n ∈N.

In addition, fix {Γ1
n}, {Γ

2
n} ∈ Γd and denote

∆
ι
p,r := Γ

ι
p − Γ

ι
pΠ
ι
r, p, r ∈N, ι ∈ {1, 2}. (6.5)

Clearly, we have

lim
r→∞

∆
ι
p,r = 0 in E(Rd), p ∈N, ι ∈ {1, 2}. (6.6)

Starting from the fixed pair {Γ1
n}, {Γ

2
n} ∈ Γd of special upper approximate units and the fixed pair {Π1

n}, {Π
2
n} ∈

Πd of subsequences of the given pair {Π1
n}, {Π

2
n} ∈ Πd of special approximate units, we are going to select such

pairs of respective subsequences {Γ1
pn
}, {Γ2

pn
} of {Γ1

n}, {Γ
2
n} and {Π1

rn
}, {Π2

rn
} of {Π1

n}, {Π
2
n} that the sequences {̃Γ1

n}, {̃Γ
2
n}

of the functions defined by means of formula (6.7) below form a new pair of special upper approximate

units satisfying certain additional conditions.

We have to construct in a suitable manner two increasing sequences {pn} and {rn} of positive integers;

the second one is going to be just the required sequence of indices. We will define pn and rn inductively in

such a way that if the functions Γ̃
1
n, Γ̃

2
n of the class E(Rd) are defined by the formula:

Γ̃
ι
n := Γ

ι
pn

+ Π
ι
rn
− Γ

ι
pn

Π
ι
rn

= ∆
ι
pn,rn

+ Π
ι
rn
, n ∈N, ι ∈ {1, 2} (6.7)
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and if the functions θ1
n, θ

2
n, θ

3
n of the class E(R2d) are defined by the formulae:

θ1
n := ∆

1
pn,rn
⊗ Π

2
rn
, θ2

n:= Π
1
rn
⊗ ∆

2
pn,rn

, θ3
n:= ∆

1
pn,rn
⊗ ∆

2
pn,rn

(6.8)

for all n ∈N, then the following two conditions are satisfied:

supp Γ̃
ι
n ⊂ s1(Γ

ι
pn+1

), n ∈N, ι ∈ {1, 2}; (6.9)

and

|〈R, θκn〉2d| < 1/n, n ∈N, κ ∈ {1, 2, 3}. (6.10)

We will need the following two properties of supports of the functions Γ̃
ι
n and of the unit supports of Γ̃

ι
n

and Π
ι
n:

supp Γ̃
ι
n are b-bounded, ι ∈ {1, 2}, n ∈N; (6.11)

and

s1(Γ
ι
pn

) ∪ s1(Π
ι
rn

) ⊆ s1 (̃Γ
ι
n), ι ∈ {1, 2}, n ∈N, (6.12)

both resulting easily from (6.7). Notice that the second property is a consequence of the specific form of the

functions Γ̃
ι
n. Namely, the following implication holds for any x ∈ Rd: if Γ

ι
pn

(x) = 1 or Π
ι
rn

(x) = 1, then Γ̃
ι
n(x) = 1,

by the first equality in (6.7). It is important to notice that properties (6.11) and (6.12) follow directly from

(6.7) considered for arbitrary pn, rn ∈N and thus they are independent of the inductive construction.

Put p1 := 1 and fix n ∈ N. Assume that the indices p1 < . . . < pn and, in case n > 1, the indices

r1 < . . . < rn−1 are already chosen. We may select an index rn, with rn > rn−1 in case n > 1, such that the

functions θκn and χθκn are small enough in E(R2d) and in DKn (R2d) for a certain Kn @ R2d, respectively, to

fulfil the inequalities in (6.10) for κ ∈ {1, 2, 3}. In fact, such a possibility follows from (6.8), (6.6), (2.2) and

continuity of R restricted to DKn (Rd). Namely R = χR, the supports of θκn are, by (6.8) and (6.5), of the

form Aκ
n × Bκn, where Aκ

n and Bκn are b-bounded sets in Rd and supp χ ⊂ J∆, in view of (6.4). Consequently,

(Aκ
n × Bκn) ∩ J∆ @ R2d, due to condition (Σ) fulfilled in case 2◦ of compatibility of the sets Aκ

n and Bκn for

κ ∈ {1, 2, 3}. If the indices p1 < . . . < pn and r1 < . . . < rn are already constructed we may choose an index

pn+1 > pn such that (6.9) holds, by (6.11) and (∗∗). The inductive construction of sequences {pn} and {rn}

satisfying conditions (6.9) and (6.10) is thus completed.

We will show that the sequences {̃Γ1
n} and {̃Γ2

n}, given by (6.7) for {pn} and {rn} just constructed, satisfy

besides (6.11) also the remaining conditions of Definition 2.2. By (6.12) and (6.9), we have the inclusions:

s1(Γ
ι
pn

) ⊆ s1 (̃Γ
ι
n) ⊂ supp Γ̃

ι
n ⊂ s1(Γ

ι
pn+1

), ι ∈ {1, 2}, n ∈N,

which imply that condition (∗∗) is satisfied by {̃Γιn}, because it is fulfilled by {Γιpn
} for ι ∈ {1, 2}. Since the

sequences {Πιrn
} and {Γιpn

} fulfil conditions (2.2) and (2.3), respectively, we deduce from (6.7) and the Leibniz

formula that condition (2.3) is satisfied by the sequence {̃Γιn} for ι ∈ {1, 2}. Consequently, {̃Γ1
n}, {̃Γ

2
n} ∈ Γd.
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To complete the proof notice that, by (6.7), we have the identity:

Γ̃
1
n ⊗ Γ̃

2
n − Π

1
rn
⊗ Π

2
rn

= θ1
n + θ2

n + θ3
n,

which yields

lim
n→∞

γn = lim
n→∞
〈R, Γ̃1

n ⊗ Γ̃
2
n〉2d = α,

by (6.10) and (6.2), the assumption of the lemma. Hence limn→∞ αn = α. Consequently, (6.3) holds and the

assertion of the lemma is proved.

7. Equivalence of Definitions

Theorem 7.1 (see [16]). Let S,T ∈ D′(Rd). Conditions (Π0), (Π1), (Π2), (Π) are equivalent to each of the conditions

listed in Theorem 4.1. If any of these conditions is satisfied, then the convolutions defined above exist and the following

equalities hold:

S
Π
∗ T = S

Π0
∗ T = S

Π1
∗ T = S

Π2
∗ T = S

S
∗T. (7.1)

Theorem 7.2. Let S,T ∈ D′(Rd). Conditions (Γ) and (Γ0) are equivalent to each of the conditions listed in Theorem

4.1 and Theorem 7.1. If any of these conditions is satisfied, then the convolutions defined above exist and are equal:

S
Γ
∗T = S

Γ0
∗ T = S

S
∗T. (7.2)

Proof. We will prove the equivalence of convolvability conditions given in the Theorems 7.1 and 7.2 accord-

ing to the following scheme of implications:

(Π1) −→ (C1) (Π) −→ (Π0)
↗ ↘ ↗

(Π0) (S) ↑

↘ ↗ ↘

(Π2) −→ (C2) (Γ) −→ (Γ0)

Assume condition (Π0) and put R := (S⊗T)ϕ4 for a fixed ϕ ∈ D(Rd). By (4.1) and Lemma 6.1, we deduce

that (6.3) holds for all {Π1
n}, {Π

2
n} ∈ Πd for a certain α ∈ C which does not depend on the sequences {Π1

n} and

{Π
2
n}. Hence the double limit in the following equality exists and the equality holds:

lim
n,m→∞

〈R,Π1
n ⊗ Π

2
m〉2d = α

for all {Π1
n}, {Π

2
n} ∈ Πd. Since the supports of the functions Π

ι
n and 1 satisfy case 1◦ of compatibility for ι ∈ {1, 2},

the functions (Π
1
n ⊗ 1)ϕ4 and (1⊗Π

2
n)ϕ4 belong toD(R2d) for n ∈N, where 1 means the constant function on

Rd. Therefore

lim
m→∞
〈R,Π1

n ⊗ Π
2
m〉2d = 〈(Π

1
nS) ⊗ T, ϕ4〉2d = 〈(Π

1
nS) ∗ T, ϕ〉d,
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for all n ∈N and

lim
n→∞
〈R,Π1

n ⊗ Π
2
m〉2d = 〈S ⊗ (Π

2
mT), ϕ4〉2d = 〈S ∗ (Π

2
mT), ϕ〉d,

for all m ∈N, by the continuity of S ⊗ T, Lemma 6.1 and (4.1). Hence

lim
n→∞
〈(Π

1
nS) ⊗ T, ϕ4〉2d = α = lim

n→∞
〈(Π

1
nS) ∗ T, ϕ〉d; (7.3)

lim
n→∞
〈S ⊗ (Π

2
nT), ϕ4〉2d = α = lim

n→∞
〈S ∗ (Π

2
nT), ϕ〉d. (7.4)

By the first equalities in (7.3) and (7.4), condition (Π0) implies conditions (Π1) and (Π2) as well as the equalities

S
Π0
∗ T = S

Π1
∗ T = S

Π2
∗ T.

Assume condition (Π1) and fix ϕ ∈ D(Rd). By (4.1), the limits in the equalities in (7.3) exist and the

equalities hold for all {Π1
n} ∈ Πd and a certain α ∈ C not depending on {Π1

n}. Consequently, conditions

(C1) and (S) as well as the equalities S
Π1
∗ T = S

C1
∗ T = S

S
∗ T hold true, by (7.3) and the known identity

〈(Π
1
nS) ∗ T, ϕ〉d = 〈S(Ť ∗ ϕ),Π1

n〉d (see e.g. [23]), in view of Theorems 3.3 and 4.1. Analogously, condition (Π2)

implies conditions (C2), (S) and the equalities S
Π2
∗ T = S

C2
∗ T = S

S
∗T.

That (S) implies (Π) and (Γ) and the identities S
S
∗ T = S

Π
∗ T = S

Γ
∗ T follows from Lemma 3.5 applied to

R := (S ⊗ T)ϕ4 ∈ D′L1 (R2d) for any ϕ ∈ D(Rd).

Implications (Π)⇒ (Π0) and (Γ)⇒ (Γ0) as well as the equalities S
Π
∗ T = S

Π0
∗ T and S

Γ
∗T = S

Γ0
∗ T, respectively,

follow from Lemma 6.1, because {Π1
n ⊗ Π

2
n} ∈ Π2d and {Γ1

n ⊗ Γ
2
n} ∈ Γ2d for any {Π1

n}, {Π
2
n} ∈ Πd and {Γ1

n}, {Γ
2
n} ∈ Γd,

respectively.

Since implication (Γ0) ⇒ (Π0) and the equality S
Γ0
∗ T = S

Π0
∗ T follow from Lemma 6.2, the proof of the

equivalence of all considered conditions and of all equalities in (7.1) and (7.2) is completed.
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[14] A. Kamiński, Integration and irregular operations, Ph.D. Thesis, Institute of Mathematics, Polish Academy of Sciences, Warsaw,

1975.



S. Mincheva-Kaminska / Filomat 28:8 (2014), 1543–1557 1557
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22, Secr. math. Fac. Sci., Paris, 1954.
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