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Abstract. In this paper, we consider a class of semivectorial bilevel programming problem. An exact
penalty function is proposed for such a problem. Based on this penalty function, an algorithm, which can
obtain a global solution of the original problem, is presented. Finally, some numerical results illustrate its
feasibility.

1. Introduction

As is well-known, bilevel programming (BP, for short) has many application fields, such as transporta-

tion, economics, ecology, and engineering, see [12]. So, it has been developed and researched by many

authors. The recent monographs and surveys can refer to [4, 11, 12], for example. Most researches on

algorithms of BP are limited to a specific situation that the lower level is a single objective optimization

problem.

Whether from a mathematical point of view or many practical problems, however, the lower level may

be a multi-objective optimization problem (MOP, for short). This situation can be interpreted as there is

a follower that has several objectives. We illustrate this with an example. Let us consider a hierarchical

production-distribution planning problem in a supply chain. If the core competitiveness of an enterprise is

the production capacity, then the manufacturing company is the leader who aims to minimize the overall

costs. The distribution company is the follower, and has maybe several competing objectives as to minimize

transportation cost as well as satisfy the preferences of retailers. Clearly, this example can be modeled by
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a BP with a scalar optimization problem on the upper level and a MOP on the lower level, which is

called semivectorial bilevel programming problem (SBP, for short) by Bonnel and Morgan [7]. Actually,

such examples are very popular in practice. Thus, it is useful and significant to study the properties and

algorithms of SBP.

In this paper, we will consider the following SBP in which the lower level is a linear MOP:

min
x, y

f (x, y)

s.t. x ∈ X,

where y is an efficient solution of the following problem, (1)

min
y ≥ 0

Cy

s.t. Ax + By ≤ b,

where x ∈ Rn, y ∈ Rm, C ∈ Rp×m, A ∈ Rq×n, B ∈ Rq×m, b ∈ Rq, X = {x|x ≥ 0}, and f is continuous.

Denote by Ψ(x) the set of the efficient solutions of the lower level problem in (1). Then, problem (1) can

be equivalently reformulated as follows:

min
x, y

f (x, y)

s.t. x ∈ X, (2)

y ∈ Ψ(x).

Note that, there are several related papers for problem (2). For example, Bonnel [6], Dempe et al. [13]

discussed the optimality condition of SBP. Moreover, Bonnel and Morgan [7] considered weakly efficient

solutions, and discussed SBP in a general case that the objective functions of both levels were defined

on Hausdorff topological space, but no numerical results were reported. Ankhili and Mansouri [2] also

considered weakly efficient solutions, and presented an exact penalty method for (2). In order to establish

the existence theorem of solutions and the well-definition of the algorithm, they assumed that the objective

function of the upper level problem was concave. Calvete and Galé [9] also considered problem (2) in the

case that the upper level objective function was quasiconcave. Furthermore, it was interesting that some

geometrical properties of the inducible region of (2) were given. Zheng and Wan [20] put forth the idea

of using a penalty method which includes two different penalty parameters for solving (2). This results

in an ordinary nonlinear programming problem with an unknown objective penalty parameter and the

other penalty parameter. Recently, Bonnel and Morgan [8] discussed a semivectorial bilevel optimal control

problem. And it was interesting to giving sufficient conditions on the data for existence of solutions to both

the optimistic and pessimistic optimal control problems.

In this paper, we develop a global optimization algorithm based on penalty function, which is motivated

from [1, 10, 19], for problem (2). Note that, our method is different from those works above. Firstly, the

existence theorem of solutions can be ensured without requiring that the objective function of the upper

level problem is concave or quasiconcave. Secondly, a global, rather than local, solution can be obtained.
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Finally, the proposed algorithm only solves a sequences of linear/nonlinear programming problems for

solving (2), and numerical results illustrate its feasibility.

The paper is organized as follows. We present a penalty function in Section 2, and establish main results

in Section 3. In Section 4, we propose a global optimization algorithm, and give an example to illustrate its

feasibility. Finally in Section 5, we conclude the paper.

2. Penalty Function

In order to obtain theoretical results, we first introduce the following two assumptions:

(A1) For any x ∈ X, Y(x) = {y ∈ Rm
|By ≤ b − Ax, y ≥ 0} , ∅, and there exists a compact subset Z of Rm such

that Y(x) ⊂ Z for all x ∈ X.

(A2) The set X is polytope.

Next, we give the following definitions of SBP.

Definition 2.1. For each x ∈ X, y∗ ∈ Y(x) is called an efficient solution of the lower level problem in (1) if there does

not exist another y ∈ Y(x) such that Cy ≤ Cy∗ and Cy , Cy∗.

Definition 2.2. A point (x, y) is called a feasible point of problem (2) if (x, y) ∈ IR where IR = {(x, y)|x ∈ X, y ∈ Ψ(x)}

is also referred to as the inducible region of problem (2).

Definition 2.3. A feasible point (x∗, y∗) is called a solution of problem (2) if f (x∗, y∗) ≤ f (x, y), ∀ (x, y) ∈ IR.

Under assumptions (A1) and (A2), we have the following results.

Lemma 2.4. For each x ∈ X, the set Ψ(x) is compact.

Proof. See Theorem 27, Chapter 4 in White [18].

Lemma 2.5. For each x ∈ X, IR is consists of the union of faces of Z1 where Z1 = {(x, y)|x ∈ X, y ∈ Y(x)}.

Proof. The result follows from Theorem 5 of Calvete and Galé [9].

As is well-known, Benson [5] gave a characterization of the efficient solution set of MOP, and defined a

function which is known to indicate whether a point is efficient for MOP or not. Similar to this function,

we define a parametric one as follows. For each x ∈ X, define

1(x, y) = eTCy − h(x, y),

where e = (1, 1, · · · , 1)T
∈ Rp and h(x, y) represents the optimal value of the following linear programming

problem L(x, y):

min
w ∈ G(x, y)

eTCw, (3)

where G(x, y) = {w|Cw ≤ Cy,w ∈ Y(x)}. Then, we can conclude that
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Lemma 2.6. For each x ∈ X and y ∈ Y(x), 1(x, y) ≥ 0, and Ψ(x) = {y|1(x, y) = 0, y ∈ Y(x)}.

Proof. For any y ∈ Y(x), we have y ∈ G(x, y), and then eTCy ≥ h(x, y). Hence, 1(x, y) ≥ 0.

Let x ∈ X and y ∈ Ψ(x). Now, suppose that 1(x, y) > 0. Then, there exists a solution w∗ of problem (3)

such that eTCw∗ < eTCy, which contradicts the definition of y. Therefore, 1(x, y) = 0.

Conversely, for each x ∈ X and y ∈ Y(x), let 1(x, y) = 0. Suppose that y < Ψ(x). Then, there exists another

ŷ ∈ Y(x) such that Cŷ ≤ Cy and Cŷ , Cy. Thus, it follows that eTCy > eTCŷ. Since ŷ ∈ G(x, y), we have

eTCŷ ≥ h(x, y), and then 1(x, y) = eTCy − h(x, y) ≥ eTCy − eTCŷ > 0. This contradicts 1(x, y) = 0.

Lemma 2.7. 1(x, y) is continuous over the set Z1.

Proof. The result follows immediately from Theorem 4.3.3 of Bank et al. [3].

Lemma 2.8. 1(x, y) is a concave function over the set Z1.

Proof. Let (x1, y1), (x2, y2) ∈ Z1, r ∈ [0, 1], x12 = rx1+(1−r)x2 and y12 = ry1+(1−r)y2. Moreover, suppose that wi

is a solution of problem L(xi, yi) (i = 1, 2), respectively. Then, it is easy to check that rw1+(1−r)w2 ∈ G(x12, y12),

and we have

1(x12, y12) = eTCy12 − h(x12, y12)

≥ eTCy12 − eTC[rw1 + (1 − r)w2]

= r1(x1, y1) + (1 − r)1(x2, y2)

which implies that 1(x, y) is a concave function over Z1.

Besides, we have the following theorem which shows that problem (2) admits at least one solution.

Theorem 2.9. Suppose that (A1) and (A2) are satisfied, then problem (2) has at least one solution.

Proof. From (A2) and Lemma 2.1, IR is compact. Then, the result follows immediately from Weierstrass’s

theorem.

For each x ∈ X, the dual of problem (3) is given by

max
υ, µ
−υTCy − (b − Ax)Tµ

s.t. − CTυ − BTµ ≤ CTe, (4)

υ ≥ 0, µ ≥ 0.

Let Z2 = {(υ, µ)| − CTυ − BTµ ≤ CTe, υ ≥ 0, µ ≥ 0} and π(x, y, υ, µ) = eTCy + υTCy + (b −Ax)Tµ. Then, we

have the following results with respect to the values of 1(x, y) and π(x, y, υ, µ).

Lemma 2.10. For any (x, y) ∈ Z1 and (υ, µ) ∈ Z2, we have 1(x, y) ≤ π(x, y, υ, µ).

Proof. It follows immediately from h(x, y) ≥ −υTCy − (b − Ax)Tµ.
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Lemma 2.11. For any (x, y) ∈ Z1 and (υ, µ) ∈ Z2, if π(x, y, υ, µ) = 0, then 1(x, y) = 0. Conversely, if 1(x, y) = 0,

then there exists (υ∗, µ∗) ∈ Z2 such that π(x, y, υ∗, µ∗) = 0.

Proof. The first result follows immediately from Lemmas 2.3 and 2.7. Now, we prove the second result. For

each (x, y) ∈ Z1, there exists (υ∗, µ∗) ∈ Z2 such that h(x, y) = −υ∗TCy − (b − Ax)Tµ∗. Therefore, we have

1(x, y) = 0⇔ eTCy − h(x, y) = 0

⇒ eTCy + υ∗TCy + (b − Ax)Tµ∗ = 0

⇔ π(x, y, υ∗, µ∗) = 0.

This completes the proof.

Now, we consider the following problem:

min
x, y, υ, µ

f (x, y)

s.t. π(x, y, υ, µ) = 0,

−CTυ − BTµ ≤ CTe, (5)

y ∈ Y(x), x ∈ X,

υ ≥ 0, µ ≥ 0.

Using the dual theory, we can easily obtain the following lemma which relates the solutions of problems

(2) and (5).

Lemma 2.12. If (x̃, ỹ) solves problem (2), then there exists (υ̃, µ̃) ∈ Z2 such that (x̃, ỹ, υ̃, µ̃) solves problem (5);

Conversely, if (x̃, ỹ, υ̃, µ̃) solves problem (5), then (x̃, ỹ) solves problem (2). In addition, these two problems have the

same optimal value.

Proof. Since problems (2) and (5) have the same objective function, we only need to prove that the feasible

regions of both problems are equal.

Let (x̂, ŷ) be a feasible point of problem (2). Then, 1(x̂, ŷ) = 0, and it follows from Lemma 2.11 that, there

exists (υ̂, µ̂) ∈ Z2 such that π(x̂, ŷ, υ̂, µ̂) = 0. Hence, (x̂, ŷ, υ̂, µ̂) is a feasible point of problem (5). Similar

arguments demonstrate the converse. This completes the proof.

For k > 0, we consider the following penalized problem of (5):

min
x, y, υ, µ

f (x, y) + kπ(x, y, υ, µ)

s.t. − CTυ − BTµ ≤ CTe, (6)

y ∈ Y(x), x ∈ X,

υ ≥ 0, µ ≥ 0.

With respect to the relation between problems (5) and (6), we can easily obtain the following result.
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Lemma 2.13. Under assumptions (A1) and (A2), suppose that (xk, yk, υk, µk) is a solution of problem (6) for fixed

k > 0. Then, (xk, yk, υk, µk) is also a solution to problem (5) if it is a feasible point to problem (5).

3. Main Results

In the sequel, denote the set of vertices of Z2 by E(Z2).

For fixed k > 0, define a function on Z2 as follows:

θ(υ, µ) = min
(x, y) ∈ Z1

[ f (x, y) + kπ(x, y, υ, µ)]

Then, we have the following result.

Theorem 3.1. Under assumptions (A1) and (A2), for fixed k > 0, there exists a point (υ∗, µ∗) ∈ E(Z2) which solves

the following problem

min
(υ, µ) ∈ Z2

θ(υ, µ). (7)

Proof. It is easy to check that θ(υ, µ) is a concave function. As problem (6) is also defined by (7), we have

inf
(υ, µ) ∈ Z2

θ(υ, µ) = inf
(υ, µ) ∈ Z2,
(x, y) ∈ Z1

[ f (x, y) + kπ(x, y, υ, µ)]

≥ min
(x, y) ∈ Z1

f (x, y),

where the last inequality follows from π(x, y, υ, µ) ≥ 0.

It follows from Weierstrass’s theorem that min
(x, y) ∈ Z1

f (x, y) has at least one solution, and then the function

θ(υ, µ) is bounded from below on Z2 . Hence, the result follows from Corollary 32.3.4 of Rockafellar [17].

This completes the proof.

Then, we can deduce the existence theorem of solution of problem (6).

Theorem 3.2. Let assumptions (A1) and (A2) be satisfied. For fixed k > 0, there exists (x∗, y∗, υ∗, µ∗) ∈ Z1 × E(Z2)

which solves problem (6).

Proof. Let (υ∗, µ∗) ∈ E(Z2) be a solution to problem (7). Then, we consider the following problem

min
(x, y) ∈ Z1

[ f (x, y) + kπ(x, y, υ∗, µ∗)]. (8)

It follows from Weierstrass’s theorem that problem (8) has at least one solution (x∗, y∗) ∈ Z1. Therefore,

(x∗, y∗, υ∗, µ∗) ∈ Z1 × E(Z2) is a solution of problem (6).

Now, we will establish the following theorem which shows that our penalty method is exact.

Theorem 3.3. Under assumptions (A1) and (A2), if {(xk, yk, υk, µk)} is a sequence of solutions of problem (6), then

there exists k∗ > 0 such that for all k > k∗, (xk, yk) is a solution of problem (2).

Proof. We can prove this result by using a similar reasoning as in Theorem 3.3 in Liu et al. [15].
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4. Numerical Results

Based on Theorems 3.2 and 3.3 in section 3, we can obtain that the solution to problem (5) occurs at a

point (x∗, y∗, υ∗, µ∗) ∈ Z1 × E(Z2). Then, we present a simple algorithm for solving problem (5) as follows.

Algorithm£

Step 0. Choose k > 0, τ > 1 and set i = 1.

Step 1. Generate all vertices (υ1, µ1), (υ2, µ2), · · · , (υt, µt) of Z2.

Step 2. If i ≤ t, then go to Step 3. Otherwise, go to Step 5.

Step 3. Solve the following problem P(υi, µi):

min
(x, y) ∈ Z1

[ f (x, y) + kπ(x, y, υi, µi)],

and get a solution (xi, yi).

Step 4. If π(xi, yi, υi, µi) = 0, then i = i + 1, and go to Step 2. Otherwise, k = kτ, and go to Step 3.

Step 5. Set f (x∗, y∗) = min{ f (xi, yi)|1 ≤ i ≤ t}, and then (x∗, y∗, υ∗, µ∗) is a solution of problem (5).

Remark Many authors propose algorithms that obtain all vertices of a polyhedron. The reader can refer

to Matheiss and Rubin [16], Fukuda et al. [14]. Note that, the above algorithm can obtain a global solution

of the original bilevel programming problem by only solving a sequence of linear/nonlinear programming

problems after obtaining all vertices of Z2.

To illustrate the feasibility of the proposed algorithm, we consider the following examples.

Example 1 [2]

min
x, y

x − 4y,

s.t. 0 ≤ x ≤ 3,

where y solves,

min
y ≥ 0

(y, 2y)T

s.t. − x − y ≤ −3, −x + 2y ≤ 0,

2x + y ≤ 12, −3x + 2y ≤ −4.

Example 2 [9]

min
x, y, z

x + 2y + z,

s.t. x ≥ 0,

where (y, z) solves,

min
y, z

(
y − 2z
−y + z

)
s.t. x + y ≥ 1,

x + y ≤ 3,

x + y + 2z ≤ 5,

y, z ≥ 0.
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Table 1: The results by the proposed algorithm for example 1

i (υi, µi) (xi, yi) θ(υi, µi) π(xi, yi, υi, µi)

1 (0, 0, 0, 0, 0, 0) (3, 0) 3 0
2 (0, 0, 3, 0, 0, 0) (2, 1) -2 0

Table 2: The results by the proposed algorithm for example 2

i (υi, µi) (xi, yi, zi) θ(υi, µi) π(xi, yi, zi, υi, µi)

1 (0, 0, 0, 0, 1
2 ) (1, 0, 2) 3 0

2 (0, 1, 0, 1, 0) (3, 0, 0) 3 0
3 (0, 1

3 , 0, 0,
1
3 ) (1, 0, 2) 3 0

4 (0, 0, 1
2 , 0,

1
2 ) (1, 0, 2) 3 0

In our experiment, we first choose k = 10 and τ = 10. Using the proposed algorithm, we find that the

solution for example 1 is (2, 1) with the optimal value -2 from Table 1. Moreover, the results can be obtained

by solving only 2 linear programming problems after obtaining all vertices of Z2. From Table 2, the solution

of example 2 occurs at the points (1, 0, 2) and (3, 0, 0), and the optimal value is 3. Our algorithm obtains

the solution by solving only 4 linear programming problems. In fact, the results are the same as that in the

references [2, 9].

5. Conclusion

In this paper, we present a global optimization algorithm based on penalty function for semivectorial

bilevel programming problem. Two examples show that this algorithm is feasible. For the further research,

we may discuss a general case that the functions and constraints of the lower level problem are convex.
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