
Filomat 28:9 (2014), 1929–1933
DOI 10.2298/FIL1409929A

Published by Faculty of Sciences and Mathematics,
University of Niš, Serbia
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Abstract. The present paper is a note on the relative tensor degree of finite groups. This notion generalizes
the tensor degree, introduced recently in literature, and allows us to adapt the concept of relative commu-
tativity degree through the notion of nonabelian tensor square. We show two inequalities, which correlate
the relative tensor degree with the relative commutativity degree of finite groups.

1. The Relative Tensor Degree

All the groups of the present paper are supposed to be finite. Having in mind the exponential notation
for the conjugation of two elements x and y in a group G, that is, the notation xy = y−1xy, we may follow
[3, 4, 17] in saying that two normal subgroups H and K of G act compatibly upon each other, if
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for all h1, h2 ∈ H and k1, k2 ∈ K, and if H and K act upon themselves by conjugation. Given h ∈ H and
k ∈ K, the nonabelian tensor product H⊗K is the group generated by the symbols h⊗ k satisfying the relations
h1h2 ⊗ k1 = (hh1

2 ⊗ k1
h1 ) (h1 ⊗ k1) and h1 ⊗ k1k2 = (h1 ⊗ k1) (hk1

1 ⊗ kk1
2 ) for all h1, h2 ∈ H and k1, k2 ∈ K. The map

κH,K : h ⊗ k ∈ H ⊗ K 7→ [h, k] = h−1hk
∈ [H,K] = 〈[h, k] | h ∈ H, k ∈ K〉

turns out to be an epimorphism, whose kernel kerκH,K = J(G,H,K) is central in H ⊗K. The reader may find
more details and a topological approach to J(G,H,K) in [4, 5, 13, 17]. The short exact sequence

1 −−−−−→ J(G,H,K) −−−−−→ H ⊗ K
κH,K
−−−−−→ [H,K] −−−−−→ 1

is a central extension. In the special case G = H = K, we have that J(G) = J(G,G,G) = kerκG,G = kerκ and
H ⊗ K = G ⊗ G is called nonabelian tensor square of G. The fundamental properties of G ⊗ G have been
described in the classical paper [3], in which it is noted that κ : x⊗ y ∈ G⊗G 7→ κ(x⊗ y) = [x, y] ∈ G′ = [G,G]
is an epimorphism of groups with kerκ = J(G) and 1→ J(G)→ G ⊗ G κ

→G′ → 1 is a central extension. The
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group J(G) is important from the perspective of the algebraic topology, in fact J(G) � π3(SK(G, 1)) is the
third homotopy group of the suspension of an Eilenberg–MacLane space K(G, 1) (see [4] for more details).

As done in [14], we may consider the tensor centralizer

C⊗K(H) = {k ∈ K | h ⊗ k = 1, ∀h ∈ H} =
⋂
h∈H

C⊗K(h)

and the tensor center C⊗G(G) = Z⊗(G) =
⋂

x∈G
C⊗G(x) and one can check that C⊗G(x) and Z⊗(G) are subgroups of G

such that C⊗G(x) ⊆ CG(x) and Z⊗(G) ⊆ Z(G).
Generalizing what has been done in [14], we may define the relative tensor degree

d⊗(H,K) =
|{(h, k) ∈ H × K | h ⊗ k = 1}|

|H||K|
=

1
|H| |K|

∑
h∈H

|C⊗K(h)|

of H and K. Notice that d⊗(G) = d⊗(G,G) is the tensor degree of G in [14] and d⊗(G) = 1 if and only if
Z⊗(G) = G. Unfortunately, few results are available on the relative tensor degree at the moment and these
are contained mainly in [14]. On the other hand, there is a rich literature (see for instance [1, 2, 6, 9–11, 16])
on the relative commutativity degree

d(H,K) =
|{(h, k) ∈ H × K | [h, k] = 1}|

|H||K|
=

1
|H| |K|

∑
h∈H

|CK(h)| =
kK(H)
|H|

of H and K (not necessarily normal this time) of G. Here kK(H) is the number of K–conjugacy classes that
constitute H. In particular, if G = H = K, we find the well known commutativity degree d(G) = d(G,G) =
kG(G)/|G|. Our first result is the following.

Theorem 1.1. Let H,K be two normal subgroups of a group G. Then

d(H,K)
|J(G,H,K)|

≤ d⊗(H,K) ≤ d(H,K).

In particular, if J(G,H,K) is trivial, then d⊗(H,K) = d(H,K).

On the other hand, we may correlate the relative tensor degree, the relative commutativity degree and
another notion, studied recently in [13]. In order to proceed in this direction, we recall from [3, 5, 12] that
the nonabelian exterior product H ∧ K of H and K is the quotient of the nonabelian tensor product H ⊗ K,
defined by H ∧ K = (H ⊗ K)/∇(H ∩ K) = 〈(x ⊗ y)∇(H ∩ K) | x, y ∈ H ∩ K〉 = 〈x ∧ y | x, y ∈ H ∩ K〉, where
∇(H ∩ K) = 〈x ⊗ x| x ∈ H ∩ K〉. From [3, 4], we may note that

κ′H,K : h ∧ k ∈ H ∧ K 7→ κ′H,K(h ∧ k) = [h, k] ∈ [H,K]

is an epimorphism of groups such that

1 −−−−−→ M(G,H,K) −−−−−→ H ∧ K
κ′H,K
−−−−−→ [H,K] −−−−−→ 1

is a central extension, where M(G,H,K) = kerκ′H,K is the so–called Schur multiplier of the triple (G,H,K). We
inform the reader that several references on the theory of the Schur multipliers of triples can be found in
[4, 13]. In particular, M(G,G,G) = M(G) = H2(G,Z) is the Schur multiplier of G, that is, the second integral
homology group of G.

In our situation, it is possible to consider the set

C∧K(H) = {k ∈ K | h ∧ k = 1, ∀h ∈ H} =
⋂
h∈H

C∧K(h),
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called exterior centralizer of H with respect to K and it is actually a subgroup of K (see [12] for details). In
particular, C∧G(G) = Z∧(G) =

⋂
x∈G C∧G(x) is called exterior center of G. It is easy to check that C∧G(x) ⊆ CG(x)

and Z∧(G) ⊆ Z(G).
Some recent papers as [7, 13] show that it is possible to have a combinatorial approach for measuring

how far a group G is from Z∧(G) and this is interesting, because a result of Ellis [5] characterizes a capable
group by the triviality of its exterior center (i.e.: a group G is capable if G ' E/Z(E) for a given group E). This
aspect has motivated the notion of relative exterior degree

d∧(H,K) =
|{(h, k) ∈ H × K | h ∧ k = 1}|

|H||K|
=

1
|H| |K|

∑
h∈H

|C∧K(h)|

of H and K. When G = H = K, we find the exterior degree d∧(G,G) = d∧(G) of G in [13]. It is easy to prove that
d∧(G) = 1 if and only if G = Z∧(G). Hence the exterior degree represents the probability that two randomly
chosen elements commute with respect to the operator ∧. Roughly speaking, this means that there are
many chances of finding capable groups for small values of exterior degree.

From [14, Theorem 2.8], we may correlate the above notions via the inequality

d⊗(G) ≤ d∧(G) ≤ d(G)

and our second result shows that something of similar holds.

Theorem 1.2. Let H,K be normal subgroups of a group G. Then d⊗(H,K) ≤ d∧(H,K) ≤ d(H,K). Moreover, if
J(G,H,K) is trivial, then d⊗(H,K) = d∧(H,K) = d(H,K).

The reader will note that we do not use explicitly the notions of exterior center and of tensor center, but
we have mentioned these concepts for understanding the interest in the relative tensor degree. Some recent
papers (see for instance [15]) deal with the size of these important subgroups. In the present paper, we get
information on the size of the same subgroups from the perspective of the probability.

2. Proofs of the Results

We begin with a technical lemma, whose proof uses an argument which appears in [13, Lemma 2.1] and
[14, Lemma 2.2] in different ways.

Lemma 2.1. Let H,K be normal subgroups of a group G. Then

d⊗(H,K) =
1
|H|

kK(H)∑
i=1

|C⊗K(hi)|

|CK(hi)|
.

In particular, if G = HK, then CK(hi)/C⊗K(hi) is isomorphic to a subgroup of J(G,H,K) and |CK(hi) : C⊗K(hi)| ≤
|J(G,H,K)| for all i = 1, 2, . . . , kK(H).

Proof. Since H is normal in G, we consider the K–conjugacy classes C1, . . . ,CkK(H) that constitute H. It follows
that

|H| |K| d⊗(H,K) =
∑
h∈H

|C⊗K(h)| =
kK(H)∑

i=1

∑
h∈Ci

|C⊗K(h)| =
kK(H)∑

i=1

|K : CK(hi)| |C⊗K(hi)| = |K|
kK(H)∑

i=1

|C⊗K(hi)|

|CK(hi)|
.

Now assume that G = HK. For all i = 1, . . . , kK(H), the map

ϕ : kC⊗K(hi) ∈ CK(hi)/C⊗K(hi) 7−→ k ⊗ hi ∈ J(G,H,K)

satisfies the condition

ϕ(k1k2C⊗K(hi)) = k1k2 ⊗ hi = (k1 ⊗ hi)k2 (k2 ⊗ hi) = (k1 ⊗ hi) (k2 ⊗ hi) = ϕ(k1C⊗K(hi)) ϕ(k2C⊗K(hi))
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for all k1, k2 ∈ CK(hi). This means thatϕ is a homomorphism of groups (the reader may find a variation on this
theme in [14, Proof of Lemma 2.1] and [12, Proof of Proposition 2.7]). Furthermore, kerϕ = {kC⊗K(hi) | k⊗hi =
1} = C⊗K(hi). Then ϕ is a monomorphism and CK(hi)/C⊗K(hi) is isomorphic to a subgroup of J(G,H,K). We
conclude that |CK(hi) : C⊗K(hi)| ≤ |J(G,H,K)|.

Now we may prove Theorems 1.1 and 1.2. The first one is an interesting bound, which connects the
notion of relative tensor degree with that of relative commutativity degree.

Proof. [Proof of Theorem 1.1] We begin to prove the lower bound. From Lemma 2.1,

|C⊗K(hi)|/|CK(hi)| ≥ 1/|J(G,H,K)|

for all i = 1, 2, . . . , kK(H) and hi ∈ H. Together with the equality

d(H,K) =
kK(H)
|H|

,

we deduce

d⊗(H,K) =
1
|H|

kK(H)∑
i=1

∣∣∣∣∣∣C⊗K(hi)

CK(hi)

∣∣∣∣∣∣ ≥ 1
|H|
·

(
1

|J(G,H,K)|
+ . . . +

1
|J(G,H,K)|

)
︸                                   ︷︷                                   ︸

kK(H)−times

=
kK(H)

|H| |J(G,H,K)|
=

d(H,K)
|J(G,H,K)|

.

Conversely, we apply again Lemma 2.1, but in the following form:

d⊗(H,K) =
1
|H|

kK(H)∑
i=1

∣∣∣∣∣∣C⊗K(hi)

CK(hi)

∣∣∣∣∣∣ ≤ 1
|H|
· (1 + . . . + 1)︸        ︷︷        ︸

kK(H)−times

=
kK(H)
|H|

= d(H,K).

We used the fact that |CK(hi)|/|C⊗K(hi)| is a positive integer; then |C⊗K(hi)|/|CK(hi)| is a number in ]0, 1]. The
remaining part of the statement follows easily.

We may note a strong connection among [14, Theorem 2.3] and Theorem 1.1. Our second main theorem
is a result of comparison. Its proof is the following.

Proof. [Proof of Theorem 1.2] We have

d∧(H,K) =
1
|H|

kK(H)∑
i=1

∣∣∣∣∣∣C∧K(hi)
CK(hi)

∣∣∣∣∣∣ ≤ 1
|H|

kK(H)∑
i=1

∣∣∣∣∣CK(hi)
CK(hi)

∣∣∣∣∣ = d(H,K)

and the upper bound follows.
Now k ∈ C∧K(H) if and only if k ∧ h = 1 for all h ∈ H if and only if (k ⊗ h)∇(H ∩ K) = ∇(H ∩ K) if and only

if k ⊗ h ∈ ∇(H ∩ K). This condition is weaker than the condition k ⊗ h = 1, characterizing the elements of
C⊗K(H). Then C⊗K(H) ⊆ C∧K(H) ⊆ CK(H). This and Lemma 2.1 imply the lower bound

d⊗(H,K) =
1
|H|

kK(H)∑
i=1

∣∣∣∣∣∣C⊗K(hi)

CK(hi)

∣∣∣∣∣∣ ≤ 1
|H|

kK(H)∑
i=1

∣∣∣∣∣∣C∧K(hi)
CK(hi)

∣∣∣∣∣∣ = d∧(H,K).

The rest follows from Theorem 1.1.
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