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Abstract. Learning how to figure out sharp Lp -estimates of nonlinear differential expressions, to prove
and use them, is a fundamental part of the development of PDEs and Geometric Function Theory (GFT).
Our survey presents, among what is known to date, some notable recent efforts and novelties made in this
direction. We focus attention here on the historic Morrey’s Conjecture and Burkholder martingale inequal-
ities for stochastic integrals. Some of these topics have already been discussed by the present authors [5]
and by Rodrigo Bañuelos [10]. Nevertheless, there is always something new to add.

1. Introduction

The Lp -theory of PDEs has advanced considerably in the last two or three decades due to improved
techniques in modern harmonic analysis [2, 21, 28, 38, 39, 51], stochastic processes [10, 11, 22, 23, 25, 29, 51],
quasiconvex calculus of variations [35, 37, 45] , complex interpolation [5] , etc.

It begins with the fundamental work by B. Bojarski [18–20] who inaugurated the Lp-theory of the first
order elliptic PDEs in the plane. He applied the Calderón-Zygmund type singular integral

(Sω)(z) = −
1
π

"
C

ω(ξ) dξ
(z − ξ)2 , ω ∈ Lp(C) (1)

which we refer to as the Beurling Transform, after its earliest appearance in A. Beurling’s old lecture notes
[16, 17]. Its significance to PDEs and Geometric Function Theory lies in the identity S ◦ ∂

∂z̄ = ∂
∂z . Higher

dimensional (n > 3) analogues of the Beurling Transform have been found in various contexts [14, 35, 38, 40,
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41] and the need to evaluate their Lp-norms became evere more quintessential in the analytical foundation
of multidimensional Geometric Function Theory.

Our primary aim is to further the interest in the Lp - norm of the Beurling Transform

Sp
def
== ‖S : Lp(C)→ Lp(C) ‖ , 1 < p < ∞ (2)

The as yet unsolved conjecture [32] asserts that

Conjecture 1.1. For all 1 < p < ∞ it holds

Sp = p∗ − 1 def
==

{
p − 1 , if 2 6 p < ∞

1/(p − 1) , if 1 < p 6 2 (3)

This amounts to saying that∥∥∥∥∂ f
∂z

∥∥∥∥
Lp(C)

6 (p∗ − 1)
∥∥∥∥∂ f
∂z̄

∥∥∥∥
Lp(C)

, for f ∈ C∞◦ (C) (4)

or, equivalently"
C

{
| fz(z)|p − (p∗ − 1)p

| fz̄(z)|p
}

dz 6 0 , for f ∈ C∞◦ (C) (5)

Here the complex derivatives

∂
∂z̄

=
1
2

(
∂
∂x

+ i
∂
∂y

)
and

∂
∂z

=
1
2

(
∂
∂x
− i

∂
∂y

)
, z = x + i y

represent exactly two homotopy classes of the first order elliptic operators. These two classes are character-
ized by the following topological property of the solutions to the corresponding homogeneous equations.
In the class represented by ∂/∂z̄ the solutions are orientation preserving (with nonnegative Jacobian),
whereas in the class of ∂/∂z the solutions are orientation reversing. One of the strategic tasks for the theory
of complex elliptic systems (linear and nonlinear) is to establish precise Lp -transition from ∂ f

∂z̄ to ∂ f
∂z̄ , which

is the Beurling Transform, .
Thoughtful evidence to support Conjecture 1.1 can be found in many articles. The interested reader is

referred to [2–4, 7, 8, 10, 12–15, 21, 24–26, 29–36, 41, 46, 47, 51, 52] for numerous attempts, partial results and
related topics. This elegant mathematical problem has profound connections with the fundamental work
of D.L. Burkholder on martingale inequalities and stochastic integrals [10, 12–15, 22, 23, 25, 29, 42], see the
extended survey article by R. Bañuelos [10]. In fact the probabilistic study of the Beurling Transform was
initiated in [15, 42], by applying the Burkholder integrals. Also some analogues of the Burkholder integrals
have been found and developed for this purpose in dimensions n > 2 , see [35, 37, 41]. Today the studies of
the Burkholder functions appear the most promising approach to Conjecture 1.1. The purpose of this note
is to give a survey of the Burkholder functions from this point of view.

2. A. Beurling, D. Burkholder and C.B. Morrey

A continuous function E : Rm×n
→ R , defined on the space of m × n -matrices, is said to be quasiconvex

at A ∈ Rm×n if∫
Rn

[
E(A + Dη) − E(A)

]
> 0 , for every η ∈ C∞0 (R n,Rm) . (6)
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Here η : Rn
→ Rm is a smooth mapping with compact support. We call E quasiconvex if (6) holds for all

matrices A ∈ Rm×n . Quasiconvexity yields convexity in the directions of rank-one matrices X ∈ Rm×n.
Precisely, if E is quasiconvex, then for every A ∈ Rm×n the function of real variable t:

t 7→ E(A + t X) is convex whenever rank X = 1 . (7)

We refer to this later property of E as rank-one convexity, see the seminal paper by C. B. Morrey [43].
In general (in higher dimensions), the rank-one convexity does not imply quasiconvexity, see the famous

example by V. Šverák [49]. C.B. Morrey himself was not quite definite in which direction he though things
should be true [43]. Nowadays, the case m = n = 2 remains an enigma for complex analysts [7, 27, 44, 45, 49].
Our own thoughts in the spirit of Morrey’s fundamental vision is the following.

Conjecture 2.1. The rank-one convex functions E : R2×2
→ R are quasiconvex.

The dual concepts of quasiconcave and rank-one concave functions are formulated analogously: simply, we
replace the word convex by concave. Equivalently, this amounts to considering −E instead of E . The most
famous (and, arguably, the most important) example in two dimensions is the rank-one concave energy
integral:

B
p
Ω

[ f ] def
==

∫
Ω

[
| fz| − (p∗ − 1)| fz̄|

]
·

[
| fz| + | fz̄|

]p−1
dz , 1 < p < ∞ (8)

Such terms for the energy functionals pertain to all sorts of variational integrals whose integrands are
rank-one concave functions (rank-one convex, quasiconvex, etc., respectively). Here and in the sequel we
identify the gradient matrix D f with the complex differential d f = fz dz + fz̄ dz̄ or a pair of complex
derivatives, whenever convenient. Accordingly, D f (z) '

(
fz, fz̄

)
∈ C × C ' R2×2 .

The special interest in the function (8) within the studies of the Beurling operator arises from the
inequality

Cp ·
(
| fz|p − (p∗ − 1)p

| fz̄|p
)
6

(
| fz| − (p∗ − 1) | fz̄|

)
·

(
| fz| + | fz̄|

)p−1
(9)

which can be shown by elementary means, see e.g. [48, Lemma 6.3.20]. The positive constant Cp =

p
(
1 − 1

p∗

)p−1
for p > 1. Thus in particular, Conjecture 1.1 follows if one can prove that the Burkholder

functions (8) are quasiconcave at A = 0.
We shall work with the operator norm

|D f (z)| = max{|D f (z) v| ; |v| = 1 } = | fz| + | fz̄|,

and the Jacobian determinant
J f (z) def

== det D f (z) = | fz|2 − | fz̄|2 .

In these terms the foregoing energy integral (8) can be expressed as:

B
p
Ω

[ f ] =
p∗

2

∫
Ω

[
det D f −

∣∣∣1 − 2/p
∣∣∣ |D f |2

]
· |D f |p−2 . (10)

That a pair of complex numbers A = (ξ, ζ) ∈ C × C represents a rank-one matrix simply means that
|ξ| = |ζ| , 0 . The nonlinear algebraic expression

Bp (ξ, ζ) def
==

[
| ξ| − (p∗ − 1) | ζ|

]
·

[
| ξ| + | ζ|

]p−1
, (11)

(for vectors ξ and ζ in any real or complex Hilbert space) has emerged in Burkholder’s theory of stochastic
integrals and martingale inequalities [22, 23]. He shows that the function t 7→ Bp (ξ + tα , ζ + t β) of
a real variable t is concave whenever |α| 6 |β| ; in particular, if |α| = |β| . Burkholder’s computation,
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although planned for different purposes, when combined with (8) and (10) reveals that Bp
Ω

[ f ] is rank-one-
concave. It is this connection between Morrey’s problem and Burkholder’s work that inspired a search for
the n -dimensional analogues of the rank-one-convex functionals suited to the Lp -theory of quasiregular
mappings [35]. Let us state it as:

Theorem 2.2. The matrix function E : Rn×n
→ R , defined by

E(A) def
== [ ± det A − λ |A|n ] · |A|p−n , (12)

is rank-one-concave for all parameters λ > |1− n
p | and p > n

2 . Moreover, |1− n
p | is the smallest value of λ for which

the rank-one-concavity holds.

Definition 2.3. We refer to (11) and its n -dimensional analogue (12) as Burkholder functions.

Note that changing ± into ∓ in (12) results in the interchange of | fz| and | fz̄| in (11). In particular, the
rank-one concavity is unaffected. We confine ourselves to discussing the case of plus sign.

Conjecture 2.4. Burkholder functions are quasiconcave.

Further analysis of this and related conjectures see [7, 14, 15].
Recently [5] , substantial progress has been made toward Conjecture 2.4 in dimension n = 2 .

Theorem 2.5. For 1
K = 1 − 2

p , the Burkholder energy Bp [ f ] , p > 2 , is quasiconcave within K -quasiconformal
extensions f : Ω→ Ω of the identity boundary map. This just amounts to the following inequality∫

Ω

Bp(D f ) dz 6
∫

Ω

Bp(I) dz = |Ω| ,

whenever f (z) ≡ z on ∂Ω and Bp(D f (z)) > 0 , almost everywhere in Ω .

Far reaching novelties follow from this result. Among the strong corollaries, we obtained weighted
integral bounds for K -quasiregular mappings f : Ω→ C at the borderline integrability exponent p = 2K

K−1 ,

[ K − K(x) ] |D f (x)|
2K

K−1 ∈ L
1
loc(Ω) , K(x) def

==
|D f (x) ||2

det D f (x) 6 K .

These sharpen and generalise the optimal higher integrability bounds for quasiconformal mappings proven
in [1, 2]

Among further consequences of Theorem 2.5 we find that quite general classes of radial maps are local
maxima for Bp

Ω
[ f ]. These facts will be elaborated in more detail in Section 9.

K -quasiconformal extensions f : Ω→ Ω of the identity boundary map Id : ∂Ω→ ∂Ω , with maximal
Burkholder energy, have been presented in [5]. It became reasonable to speculate that Theorem 2.5 presents
Conjecture 2.4 in its worst-scenario. The novelty of our approach lies in using an analytic family of the
Beltrami equations, which manifests the intricate nature of Conjecture 2.4.

3. Enquiry on quasiconvexity at 0 ∈ Rn×n

In spite of the example by V. Šverák [49], which answers the general question of quasiconcavity of rank-
one concave functions in the negative, it is still reasonable to inquire about quasiconcavity at A = 0 ∈ Rn×n .
Let us take a quick look at the integrands E : Rn×n

→ R which are p -homogeneous at infinity; that is,

E(tA) = tp E(A) + o(tp) , uniformly as |A| 6 constant and t→∞ .
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Suppose E is quasiconcave at some A ∈ Rn×n . It is not difficult to see that E is automatically quasiconcave
at 0 ∈ Rn×n . The converse is far from being true. This can easily be seen in case of the Beurling energy,

F
p,M
Ω

[ f ] def
==

"
Ω

[
| fz|p −Mp

| fz̄|p
]
, f ∈ W1,p

◦ (Ω) , p > 1 (13)

where M > Sp -the Lp -norm of the Beurling transform. By the very definition of Sp it follows that
F

p,M
Ω

[ f ] 6 0 , for f ∈ W1,p
◦ (Ω) . In other words, the Beurling function

FM
p (ξ, ζ) def

== | ξ|p −Mp
| ζ|p , M > Sp , (ξ, ζ) ∈ C × C (14)

is quasiconcave at the origin. On the other hand, when p , 2 , FM
p is not quasiconcave (even for M > 0 ). In

fact FM
p fails to be rank-one-concave. For this, examine the function t 7→ | ξ + t|p −Mp

| ζ + t|p for concavity
at t ≈ 0 . When p > 2 concavity fails if (ξ, ζ) ≈ (1, 0) . When 1 < p < 2 concavity fails if (ξ, ζ) ≈ (0, 1) .
It is therefore more realistic to insist that

Conjecture 3.1. Burkholder functions are quasiconcave at the zero matrix.

which is still sufficient for Conjecture 1.1. Further, an affirmative answer would give us optimal Lp -
estimates of the gradient of n -dimensional quasiconformal mappings and the associated nonlinear PDEs.
Up to now, quasiconcavity at zero for the functional (12) has been established for λ = λp(n) < 1 sufficiently
close to 1, with p > n − ε for some small ε > 0 [34, 35].

At this point it is constructive to introduce an additional parameter to Burkholder integrand.

BM
p (ξ, ζ) def

==
[
|ξ| −M |ζ|

]
·

[
|ξ| + |ζ|

]p−1
(15)

The rank-one-concavity still holds if M > p∗ − 1 . The Lp -boundedness of the Beurling transform S implies
that if M is sufficiently large, then Bp,M

Ω
[ f ] is quasiconcave at zero. It should, therefore, come as surprise

that

Remark 3.2. Quasiconcavity of Bp,M
Ω

remains unknown for any M > p∗ − 1 .

Also note that we have the following point-wise inequality

| fz|p − Mp
| fz̄|p 6 p

( M
1 + M

)p−1 [
| fz| −M | fz̄|

]
·

[
| fz| + | fz̄|

]p−1
(16)

whenever M > p ∗ − 1 , see Lemma 8.1 in [35].

Example 3.3. By way of digression, consider the following rank-one concave function,

A(ξ, ζ) =
[
|ξ|2 − M2

|ζ|2
]
·

[
|ξ|2 + |ζ|2

]
, M > 2 +

√

3 (17)

For the original source of this function we refer the reader to [6]. The lower bound M > 2 +
√

3 is the best possible
for the rank-one concavity of A(ξ, ζ) . It is not difficult to see that for every M > 1 , there is a unique constant c > 0
such that

| fz|4 − M4
| fz̄|4 6 c

[
| fz|2 − M2

| fz̄|2
]
·

[
| fz|2 + | fz̄|2

]
(18)

Actually, given the factor M2 in the right hand side, the inequality (18) forces c to be equal to 2 M2

1+M2 . Never mind,
even in the best scenario (conjectural quasiconcavity for M = 2 +

√
3 > 3 ), the approach by using A(ξ , ζ) would

not result in the exact value of the L 4 -norm of the Beurling transform. Thus there is no prospect of gaining any good
L

4 -estimates through the rank-one concavity of A(ξ, ζ) and the inequality (18). For more examples of rank-one
functions we refer the reader to [6, 50].
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4. Rank-one concave envelopes

Definition 4.1. Given a continuous function E : Rm×n
→ R , we use a visual notation to define:

• Rank-one concave envelope of E (the smallest majorant) as,

EaR = inf{Ξ ; Ξ : R m×n
→ R is rank-one concave, and Ξ > E}

• Quasiconcave envelope of E as,

EaQ = inf{Ξ ; Ξ : R m×n
→ R is quasiconcave, and Ξ > E}

Obviously EaQ > EaR pointwise; the former function being quasiconcave and the latter rank-one concave.

Theorem 4.2. Recall the Beurling function Fp : C × C→ R

Fp (ξ, ζ) def
== | ξ|p −

(
p ∗ − 1

)p
| ζ|p , 1 < p < ∞ .

and the Burkholder’s function

Bp (ξ, ζ) def
==

[
| ξ| − (p∗ − 1) | ζ|

]
·

[
| ξ| + | ζ|

]p−1

The rank-one concave envelope of Fp is given by the following formula. For p > 2,

Fap (ξ, ζ) =

{
| ξ|p − (p ∗ − 1)p

|ζ|p = Fp (ξ, ζ) if
(
p ∗ − 1

)
|ζ| > |ξ|

p
(
1 − 1/p ∗

)p−1 Bp if
(
p ∗ − 1

)
|ζ| 6 |ξ|

While, for 1 < p < 2,

Fap (ξ, ζ) =

{
p
(
1 − 1/p ∗

)p−1 Bp if
(
p ∗ − 1

)
|ζ| > |ξ|

Fp (ξ, ζ) if
(
p ∗ − 1

)
|ζ| 6 |ξ|

Burkholder [23] shows this in a slightly different sense. Namely, that the envelope function above is the
smallest majorant of Fp which is concave in orientation-reversing directions (as discussed on page 5). See
also, p. 64 in [10]. The result as stated here basically follows from the work [53].

Proof. Let us denote by E(ξ, ζ) the formula given above. Our task is to show that Fap = E. For any pair
θ1, θ2 ∈ [0, π), consider the function Fap,θ1,θ2

: R ×R→ R,

(x, y) 7→ Fap (eiθ1 x, eiθ2 y).

Using rank-one concavity of Fap we see that Fap,θ1,θ2
is zig-zag concave, that is, concave in the directions of

±π/4 in R2. By the results (Theorem 6 and 7) of [53] on the zig-zag concave envelope of |x|p − (p∗ − 1)p
|y|p,

we have that Fap,θ1,θ2
(x, y) > E(|x|, |y|). Since, this is true for any θ1, θ2 ∈ [0, π) we have the inequality

Fap (ξ, ζ) > E(|ξ|, |ζ|) = E(ξ, ζ). On the other hand, as we have remarked E is rank-one concave so Fap = E as
claimed.
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5. Radially linear transformations

It is advantageous to dispose with a fairly large class of mappings that can be effectively applied to all
rank one-concave functionals when computing the energy. One of such classes is the following:
Suppose we are given a Lipschitz function Λ : [0,R] → Rn×n . Define a mapping f : BR → Rn , Br =
{x ; |x| 6 r } , by the rule

f (x) = Λ(|x|) x (19)

Thus f restricted to any sphere Sr = {x; |x| = r } , 0 < r 6 R , is a linear transformation. Proceeding further
in this direction one could obtain more mappings of interest, but for us the class of mappings defined by
(19) will work perfectly well. For radial maps where Λ : [0,R] → R, the following proposition is shown
e.g. in [9, Proposition 3.4].

Proposition 5.1. Let E : Rn×n
→ R be continuous and rank-one concave. Then for f (x) = Λ(|x|) x as in (19), we

have
E[ f ] def

==

∫
BR

E(D f ) 6
∫
BR

E(Λ(R)) = E[ f R] , where f R(x) def
== Λ(R) x

Proof. A standard mollification procedure, through convolution of E with an approximation of the Dirac
mass,

Eε(X) def
== (E ∗Φε)(X) =

∫
Rn×n

Φε(Y) E(X − Y) dY ,

results in C∞ -smooth functions which are still rank-one concave. As ε approaches 0 the mollified functions
Eε converge to E uniformly on compact subsets of n×n - matrices. Therefore, there is no loss of generality
in assuming that E ∈ C∞(Rn×n ,R) . With this assumption consider the linear mappings ft = Λ(t) x , for
0 6 t 6 R . We aim to show that the difference of energies:

E(t) def
==

∫
|x|6 t

E(D f (x)) dx −
∫
|x|6 t

E(D ft(x)) dx

=

∫
|x|6 t

E(D f (x)) dx −
ωn−1

n
tnE (Λ(t))

is nondecreasing in t . Thus we compute its derivative for t > 0 . The computation is legitimate at almost
every t ∈ [0,R] ,

E
′(t) =

∫
|x|= t

E(D f (x)) dx − ωn−1 tn−1E (Λ(t)) −
ωn−1

n
tn
〈
E′ (Λ(t)) |Λ′(t)

〉
Next we find that D f (x) = Λ(|x|) + Λ′(|x|) x⊗x

|x| , where the tensor product of vectors represents a rank-one
matrix. By virtue of rank-one concavity of E it follows that

E(D f (x)) 6 E (Λ(|x|)) +
〈
E′

(
Λ(|x|)

) ∣∣∣∣ Λ′(|x|)
x ⊗ x
|x|

〉
.

We then integrate over the sphere |x| = t , to obtain

∫
|x|= t

E(D f (x)) dx 6 ωn−1 tn−1E (Λ(t)) +
〈
E′

(
Λ(t)

) ∣∣∣∣ Λ′(t)
t

∫
|x|=t

x ⊗ x
〉
,

where
∫
|x|=t

x ⊗ x =
1
n

∫
|x|=t
|x|2 I =

ωn−1

n
tn+1 I

In conclusion, E ′(t) 6 0 almost everywhere. Hence
∫
BR

E(D f ) 6
∫
BR

E(Λ(R)) , as desired.
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6. Burkholder’s energy of radial stretchings

Of particular interest are mappings, subject to the given boundary data, at which the Burkholder energy
assumes the maximum value. For this we look at the radial stretchings as in [5, 7]. Our notations, however,
are little different. Let

f
+
(z) = ρ(|z|)

z
|z|

and f
−
(z) def

== ρ(|z|)
z̄
|z|
. (20)

Here the continuous function ρ : [0,R] → [0,∞) is assumed to be locally Lipschitz in (0,R] and satisfy
ρ(0) = 0 . However, we do not require that ρ is increasing, in particular f± needs not to be a homeomorphism.
In our situation f

+
and f

−
have well defined complex derivatives for almost every z ∈ DR = {z; |z| 6 R } ,

∂ f
+

∂z
(z) =

1
2

[
ρ(|z|)
|z|

+ ρ ′(|z|)
]
,
∂ f

+

∂z̄
(z) =

1
2

[
ρ ′(|z|) −

ρ(|z|)
|z|

]
z
z̄

∂ f
−

∂z̄
(z) =

1
2

[
ρ(|z|)
|z|

+ ρ ′(|z|)
]
,
∂ f
−

∂z
(z) =

1
2

[
ρ ′(|z|) −

ρ(|z|)
|z|

]
z̄
z

In addition to ρ being Lipschitz, we wish that |D f | = | fz| + | fz̄| be free from the derivative of ρ . This is
equivalent to requiring that

−ρ(r) 6 rρ ′(r) 6 ρ(r) , for almost every r def
== |z| 6 R (21)

Finally, in case p > 2 we also assume that

lim
r→0+

r−1+2/pρ(r) = 0. (22)

Thus ∣∣∣∣∣∂ f
±

∂z
(z)

∣∣∣∣∣ =
1
2

(
ρ(|z|)
|z|
± ρ ′(|z|)

)
and

∣∣∣∣∣∂ f
±

∂z̄
(z)

∣∣∣∣∣ =
1
2

(
ρ(|z|)
|z|
∓ ρ ′(|z|)

)
In either case |D f (z)| = ρ(|z|)/|z| . The Bp -energy of f can then be computed; we take for f the radial
stretching f

+
if 2 6 p < ∞, and f

−
if 1 < p 6 2 .

Bp [ f
±
] def

==

∫
|z|6R

Bp( fz, fz̄) =

=

∫
|z|6R

[
| fz| − (p∗ − 1)| fz̄|

]
·

[
| fz| + | fz̄|

]p−1
dz

=
1
2

∫
|z|6R

[ (
2 − p∗

)ρ(|z|)
|z|
± p∗ ρ ′(|z|)

]
·

[
ρ(|z|)
|z|

]p−1

dz

= π

∫ R

0

[
(2 − p∗) r1−pρp

± p∗ r2−pρp−1ρ ′
]
dr

= ±
πp∗

p

∫ R

0

d
dr

(
r2−pρp

)
dr = ±

πp∗

p
R2−p

[
ρ(R)

]p
= Bp [ f R

±
].

This is none other than the Bp -energy of the linear extension of the boundary map f
±

: SR → C ; that is,
f R
+ (z) =

ρ(R)
R z (2 6 p < ∞) and f R

−
(z) =

ρ(R)
R z̄ (1 < p 6 2) .
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7. Burkholder function is an extreme point

Let V be a real vector space and F ⊂ V a convex subset. An extreme point of F is an element F ∈ F
which does not lie in any open segment joining two elements of F .
We shall consider the vector space V = Vp of continuous functions E : C × C → R which are isotropic
and homogeneous of degree 1 < p < ∞ . Precisely,

• we assume that E(ξ, ζ) = Φ(|ξ| , |ζ|) for some locally Lipschitz function Φ : [0,∞) × [0,∞)→ R , and

• E(tξ, tζ) = tp E(ξ, ζ) , for t > 0 and ξ, ζ ∈ C .

Recall that E ∈ V is rank-one convex (concave) if for every ξ, ζ ∈ C and ξ◦, ζ◦ ∈ S1 the real variable
function t 7→ E(ξ + tξ◦, ζ + tζ◦) is convex (concave, respectively).

Definition 7.1. We let V`p ⊂ Vp and Vap ⊂ Vp denote the families of rank-one convex and rank-one concave
functions, respectively.

Both families V`p and Vap are convex subsets of Vp .
Before proceeding to the extreme points we need to look at a slightly more general context. Suppose we

are given a decomposition of the Burkholder function Bp = Bap ∈ Vp
a (and similarly −Bp ∈ V

`
p ).

Bp(ξ, ζ) =
∑

16i6n

λ i E i(ξ, ζ) , λ i > 0 , where E i ∈ V
a
p . (23)

One possibility is that there exist positive numbers θi > 0 such that

Ei ≡ θi Bp , for all i = 1, 2, ...,n , and
∑

16i6n

λi θi = 1. (24)

Proposition 7.2. For p , 2 , a decomposition of Burkholder function Bp as in (23) forces its components Ei to
satisfy (24). For p = 2 , however, the Burkholder function is a null-Lagrangian (i.e. it is both quasiconcave and
quasiconvex), B2(ξ, ζ) = |ζ|2 − |ξ|2 . In this case each component Ei(ξ, ζ) is a real (positive or negative) multiple of
B2(ξ, ζ) .

The key observation to the proof is that Burkholder energy Bp[ f ] admits many stationary solutions. Among
those are a number of radial power stretchings.

Proof. Let us test (23) with the radial stretchings as in (20), f = f+ if 2 6 p < ∞ and f = f− if 1 < p 6 2 ,
requiring that (21) holds and additionally that ρ(t) = t for 0 6 t 6 1. Computing their energies in the disc
B(0,R) we have

Bp[ f ] =
∑

16i6n

λi Ei[ f ] 6
∑

16i6n

λi Ei[ f R]
∥∥∥∥ because Ei[ f ] 6 Ei[ f R]

for every i = 1, 2, ...,n

=
∑

16i6n

λi πR2−p [ρ(R) ]p Ei(I±)
∥∥∥∥ where

I+ = id , 2 6 p < ∞

I− = id , 1 < p 6 2

=
∑

16i6n

λi πR2−p [ρ(R) ]p Bp(I±) θi

∥∥∥∥ where θi =
Ei(I±)
Bp(I±)

=
∑

16i6n

λiBp[ f ] θi

As obviously
∑

1≤i≤n λ1θ1 = 1, we see that this chain is possible only if

Ei[ f ] = θiBp[ f ] = θiBp[ f R] , for all i = 1, 2, ...,n , and all R > 1 .
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We write it as: ∫
|z|6R

Ei[D f ] dz = θi

∫
|z|6R

Bp[D f ] dz.

Note that D f (z) ≡ I± for |z| 6 1 and, by the definition of θi , E i [I±] = θ iBp [I±] . Hence
∫
|z|61 Ei[D f ] dz =

θi
∫
|z|61 Bp[D f ] dz. The energy equation reduces to:

∫
16|z|6R

Ei[D f ] dz = θi

∫
16|z|6R

Bp[D f ] dz. (25)

We test this by further specifying the radial stretchings also in the annulus 1 ≤ |z| ≤ R by setting

f (z) = f+(z) = |z|α−1 z , f (z) = f−(z) = |z|−α−1 z̄, −1 6 α 6 1. (26)

Then f is quasiconformal in the annulus if α , 0, but one might observe that f is a homeomorphism of
{|z| < R} only if α > 0. In any case

2 | fz(z)| = (α + 1) |z|α−1 , 2 | fz̄(z)| = (−α + 1) |z|α−1 (27)

Substitute these formulas into (25) to obtain∫
16|z|6R

|z|αp−p E i(α + 1 ,−α + 1) = θ i

∫
16|z|6R

|z|αp−p Bp(α + 1 ,−α + 1) .

Hence

E i

(
α + 1 ,−α + 1

)
= θi Bp

(
α + 1 , −α + 1

)
.

By homogeneity and isotropy,

E i(ξ , ζ) = θi Bp(ξ , ζ) , for all ξ, ζ ∈ C

Now, for p , 2 , since both E i and Bp are of the same rank-one convexity type, we conclude that θi > 0 .
However, in case p = 2 (null-Lagrangians) the coefficients θi > 0 are allowed to be negative as well. This
completes the proof of Proposition 7.2.

The proof of Proposition 7.2 has an interesting consequence.

Corollary 7.3. Let E ∈ Vp . Regardless of whether E is rank-one concave or not, the identity

E[ f ] def
==

∫
|z|61

E(| fz| , | fz̄| ) dz = E[Id] = π , (28)

for all f (z) = ρ(|z|) z
|z| as in (21) , yields E(ξ, ζ) = Bp(ξ, ζ) . In particular, E must be rank-one concave.

We now introduce a norm in the vector space Vp

‖E ‖ = ‖E ‖Vp

def
== sup
|ξ|+|ζ|=1

|E(ξ, ζ)| (29)

so (Vp , ‖ · ‖) becomes a Banach space. The norm of Burkholder function equals

‖Bp‖ = p∗ − 1

Consider the subsets C`p ⊂ V`p and Cap ⊂ Vap of functions whose norm does not exceed p∗ − 1 . These are
convex sets.
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Theorem 7.4. The Burkholder function Bp , p , 2 , is an extreme point of Cap . Similarly, −Bp is an extreme point
of C`p .

Proof. Consider a convex combination of Bp = Bap

Bp =
∑

16i6n

λ i E i , λ i > 0 , λ1 + ... + λn = 1 , where E i ∈ C
a
p . (30)

By Proposition (7.2) there exist positive numbers θi > 0 such that

Ei ≡ θi Bp , for all i = 1, 2, ...,n , and
∑

16i6n

λi θi = 1. (31)

Computing the norms yields:
p∗ − 1 > ‖Ei ‖ = ‖Bp ‖θi = (p∗ − 1)θi

Therefore θi 6 1 , for every i = 1, 2, ...,n . On the other hand, in view of
∑

16i6n λi θi = 1 and λ1 + ...+λn = 1 ,
we have θi = 1 , for every i = 1, 2, ...,n . This means that each Ei equals Bp , as desired.

8. Burkholder’s function is a maximal element

Theorem 8.1. Among all rank-one concave functions E : C×C→ R that are isotropic and homogeneous of degree

p > 1 , the function Bp(ξ, ζ) =
[
| ξ| − (p∗ − 1) | ζ|

]
·

[
|ξ| + |ζ|

]p−1
is a maximal one; that is, the inequality

Bp(ξ, ζ) 6 E(ξ, ζ) , for all (ξ, ζ) ∈ C × C , (32)

forces E to be equal to Bp .

Proof. The proof goes through as for Proposition 7.2 , with a slight change. Under the same notation,
we begin with an energy estimate in the ball B(0,R) (with R > 1) for the special radial stretchings (7.4)
depending on parameter α. Thus

Bp[ f ] 6 E[ f ] 6 E[ f R]
(

by Proposition 5.1
)

= πR2−pρp(R) E(I±)
(

where
I+ = id , 2 6 p < ∞

I− = id , 1 < p 6 2

)
= πR2−pρp(R) Bp(I±) θ = Bp[ f R]θ = Bp[ f ] θ

(
θ =

E(I±)
Bp(I±)

)
Hence ∫

|z|6R
E[D f ] dz 6 θ

∫
|z|6R

Bp[D f ] dz.

Note that D f (z) ≡ I± for |z| 6 1 and E[I±] = θBp[I±] . Therefore
∫
|z|61 E[D f ] dz = θ

∫
|z|61 Bp[D f ] dz. The

energy inequality reduces to:∫
16|z|6R

E[D f ] dz 6 θ

∫
16|z|6R

Bp[D f ] dz. (33)

As before, since we are testing (33) with the mpas (26) using all values of −1 < α < 1 , this results in a
point-wise inequality

Bp(ξ, ζ) 6 E(ξ, ζ) 6 θ Bp(ξ, ζ) , with a constant θ ∈ R and all ξ , ζ ∈ C .

We must have θ equal to 1, because the function Bp attains both strictly positive and strictly negative
values. This implies that the first inequality must actually be an equality.



K.Astala et al. / Filomat 29:2 (2015), 245–261 256

9. Local maxima

Theorem 2.5 yields a number of interesting properties for the Burkholder function. For instance, under
an additional assumption on ρ the Bp -energy, p > 2 , assumes its local maximum at the radial stretchings
f (z) = ρ(|z|) z

|z| , in an explicitly specified neighbourhood of f . To see this, assume that ρ : [0, 1] → [0, 1] is
Lipschitz continuous, ρ(0) = 0 , ρ(1) = 1 , and that for almost every r ∈ [0, 1] it holds:

ρ(r) > rρ ′(r) >
(
1 − 2/s

)
ρ(r) , for some s > p . (34)

Proposition 9.1. Consider an ε -perturbation of f

f ε(z) = ρ(|z|)
z
|z|

+ ε(z) , (35)

with ε ∈ C1
◦(D) , small enough to satisfy

(p − 1) | εz̄| + | εz| 6 1 −
p
s

(36)

Then

Bp[ f ε] 6 Bp[ f ] = Bp[Id] = π (37)

Proof. The inequality (37) would hold if (according to Conjecture 3.1) Bp was quasiconcave, by the very
definition of quasiconcavity; consequently, condition at (36) would be redundant. But we do not know the
answer to this conjecture. Fortunately, there is a very satisfactory partial answer; namely, inequality (37)
holds whenever the energy integrand Bp(| f εz | , | f εz̄ |) is nonnegative and f ε(z) ≡ z for |z| = 1 , see Theorem
2.5. Thus, we are reduced to proving the distortion inequality

| f εz̄ |
| f εz |
6

1
p − 1

The essence of the condition (34) is the following slightly stronger distortion inequality for the mapping f :

| fz̄|
| fz|

=
ρ(r) − rρ ′(r)
ρ(r) + rρ ′(r)

6
1

s − 1
<

1
p − 1

( by 34) .

This leaves us a margin for small perturbations of f . Here is how one can exploit this margin. First the
condition ρ(r) > rρ ′(r) tells us that the function ρ(r)

r is nonincreasing. Since ρ(1)
1 = 1 , we see that ρ(r)

r > 1
and, again by (34), we obtain

| fz| =
1
2

(
ρ(r)

r
+ ρ ′(r)

)
>

1
2

(1 + 1 − 2/s) =
s − 1

s
, thus 1 6

s
s − 1

| fz | .

Next we estimate the derivatives of f ε ,

| f εz̄ | 6 | fz̄ | + | εz̄ | , | f εz | > | fz | − | εz |

Hence

(p − 1) | f εz̄ | − | f
ε
z | 6 (p − 1) | fz̄ | − | fz | + (p − 1) | εz̄| + | εz|

6
p − 1
s − 1

| fz| − | fz | +
(
1 −

p
s

)
·

s
s − 1

| fz | = 0 .

as desired.
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10. Radial Mappings as Stationary Solutions

In order to speak of the Lagrange-Euler equation we have to increase regularity requirements on the
integrand and on the mappings in question. Consider a general isotropic energy functional;

E[ f ] =

∫
Ω

E
(
| fz| , | fz̄|

)
dz . (38)

Here the function E = E(u , v) is defined and continuous on [0,∞)×[0,∞) . We assume that E is C2 -smooth
in the open region R+ ×R+ = (0,∞) × (0,∞) . A map f ∈ C1(Ω) such that(

| fz(z)| , | fz̄(z)
)
∈ R+ ×R+ for every z ∈ Ω ⊂ C

is a critical point, or stationary solution, for (38) if for each test function η ∈ C∞◦ (Ω) it holds

∂
∂ τ̄
E[ f + τ η]

∣∣∣
τ=0

= 0 (here τ is a complex variable)

It should be noted that we are using the Cauchy-Riemann derivative ∂/∂ τ̄ in the derivation of the variation
of the energy functional. This leads to an integral form of the Euler-Lagrange equation∫

Ω

[ ∂E
∂u

fz
| fz|

ηz +
∂E
∂v

fz̄
| fz̄|

ηz̄

]
dz = 0

Integration by parts yields a second order divergence type PDE[ ∂E
∂u

fz
| fz|

]
z̄

+
[ ∂E
∂v

fz̄
| fz̄|

]
z

= 0 (39)

in the sense of distributions. From now on we assume that f ∈ C2(Ω) and abbreviate the notation for
partial derivatives of E to Eu and Ev , respectively. Let us also introduce the auxiliary functions:

α = α(z) =
fz
| fz|
∈ S1 and β = β(z) =

fz̄
| fz̄|
∈ S1

u = u(z) = | fz| v = v(z) = | fz̄|

Upon lengthy though elementary computation the Euler-Lagrange system (39) takes the form(
ᾱ 2 fzz + fzz̄

)
Euu+ (40)(

2 ᾱβ̄ fzz̄ + ᾱβ f z̄z̄ + αβ̄ fzz

)
Euv +(

β̄ 2 fz̄z̄ + fzz̄

)
Evv +(

fzz̄ − ᾱ 2 fzz

)
u−1 Eu +(

fzz̄ − β̄ 2 fz̄z̄

)
v−1 Ev = 0

The question arises when a radial stretching

f (z) = ρ( |z − a| )
z − a
|z − a|

+ b

satisfies this system (40). We need only examine the case a = 0 and b = 0 . Recall formulas for the
derivatives:

fz(z) =
1
2

(
ρ̇(|z|) +

ρ(|z|)
|z|

)
, fz̄(z) =

1
2

(
ρ̇(|z|) −

ρ(|z|)
|z|

)z
z̄

(41)
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As mentioned before, the Euler-Lagrange equation requires C2-regularity of f . Because of this, we assume
that ρ̈ is continuous. Now, further differentiation of (41) gives second order derivatives

4 fzz =
(
ρ̈ +

ρ̇

|z|
−

ρ

|z|2
) z̄
|z|

(42)

4 fzz̄ =
(
ρ̈ +

ρ̇

|z|
−

ρ

|z|2
) z
|z|

4 fz̄z̄ =
(
ρ̈ −

3 ρ̇
|z|

+
3ρ
|z|2

) z3

|z|3

For the results in this section we further assume that

ρ(|z|) > |z| ρ̇(|z|)

and hence α ≡ 1 and β = − z/z̄ . The Euler-Lagrange equation takes the form(
ρ̈ +

ρ̇

|z|
−

ρ

|z|2
)
Euu − 2 ρ̈Euv +

(
ρ̈ −

ρ̇

|z|
+

ρ

|z|2
)
Evv =

4
|z|

Ev (43)

Note the absence of the term Eu . Indeed, the variables z and z̄ play uneven role in our considerations. For
a radial mapping we have 2 v = 2 | fz̄(z)| =

(
ρ
|z| − ρ̇

)
, so the equation (43) takes the form:(

Euu − 2 Euv + Evv

)
|z| ρ̈ = 2

(
Euu − Evv + 2 v−1Ev

)
v (44)

We shall now take a quick look at the Euler-Lagrange equation for the Burkholder energy Bp[ f ] =∫
Ω

[
| fz| − (p − 1)| fz̄|

]
·

[
| fz| + | fz̄|

]p−1
dz . Direct computation shows that the integrand

E = E(u, v) = [u − (p − 1) v] · [u + v]p−1

satisfies the following system of partial differential equations
Euu − 2 Euv + Evv = 0

Euu − Evv = − 2 v−1 Ev

(45)

Corollary 10.1. The radial stretching f (as specified above) is a critical point of the Burkholder energy functional
Bp[ f ] .

It is purely theoretical but still interesting to know which variational integrals admit such radial map-
pings among their stationary solutions. We shall see that only Burkholder integrals fulfil this requirement.
To this effect we observe that the equation (44), being satisfied for varied radial mappings, yields the system
of PDEs in (45). Indeed, let us view the terms in (44) as functions in three variables |z|, ρ and ρ̇ , plus
linear dependence on ρ̈ . When the radial maps run over the admissible class, the term ρ̈ varies point-wise
independently of the remaining three variables |z|, ρ and ρ̇ . This is possible only when both equations in
(45) are satisfied.
Now we are left with the task of solving the system (45). Here the second equation is reminiscent of the
planar wave equation, suggesting to change variables in the following fashion:

ξ = u + v , ζ = u − v , so ; 2 u = ξ + ζ and 2 v = ξ − ζ

Now we express the integrand E in the form E(u, v) = Φ(ξ, ζ) . The system (45) translates into the following
equations for Φ
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Φζ ζ = 0

(ξ − ζ)Φξ ζ = Φζ − Φξ

(46)

Thus Φ is affine in the ζ-variable; precisely, Φ(ξ, ζ) = A(ξ) ζ + B(ξ) . Then the second equation yields the
following ODE for the coefficients A(ξ) and B(ξ) :

Ḃ(ξ) = A(ξ) − ξ Ȧ(ξ) (47)

Finally, suppose (like in the Burkholder’s functional) that Φ is homogeneous of degree p . Thus, up
to a constant factor, A(ξ) = p ξp−1 . Then Equation (47) yields B(ξ) = (2 − p) ξp . Hence Φ(ξ, ζ) =
[ p ζ + (2 − p) ξ ] ξp−1 . Having in mind that ξ = u + v and ζ = u − v , we return to u, v -variables. It results
in the Burkholder function E(u, v) = [u − (p − 1) v] · [u + v]p−1 .

Corollary 10.2. The only isotropic p -homogeneous variational integrals which hold all radial mappings (of type
specified above) among their stationary solutions are the scalar multiples of Bp [ f ] .

11. Quasiconcavity at zero versus quasiconcavity at A ∈ R2×2

Let us begin with an example:

Example 11.1. The following function belongs to the Sobolev space W1,p(C) for every 1 < p < ∞ and its Bp -energy
equals zero.

f (z) =

{
z if |z| 6 R
R2

z̄ if |z| > R

Indeed, we have

Bp [ f ] =

∫
C

Bp( fz, fz̄) dz =

∫
|z|6R

dz − (p − 1)R2p
∫
|z|>R

dz
|z|2p

= πR2
− (p − 1)R2p πR2−2p

p − 1
= 0 .

In view of Conjecture 3.1 one may expect f to have maximum energy (equal to zero) within the class
W

1,p(C) . This example gains additional interest if we can answer in the affirmative the following

Question 11.2. Given a linear map z 7→ az + bz̄ , does there exist a function f ∈ W1,p(C) such that
f (z) = az + bz̄ , in some nonempty domain Ω ⊂ C

Bp [ f ] =
∫
C

Bp( fz, fz̄) dz = 0

In other words:∫
C\Ω

Bp( fz, fz̄) dz = −Bp(a, b) |Ω| (48)

Now quasiconcavity of Bp at zero would tell us that −Bp(a, b) |Ω| is the maximum energy among Sobolev
mappings in W1,p(C \ Ω) which agree with az + bz̄ on ∂Ω . Question 11.2 has yet another interesting
effect.

Proposition 11.3. Accept that Burkholder function is quasiconcave at zero and that a linear map Az = az + bz̄ in
a domain Ω has been found to admit an extension satisfying (48). Then Bp is quasiconcave at A .



K.Astala et al. / Filomat 29:2 (2015), 245–261 260

Proof. Let ϕ ∈ C∞◦ (Ω) be any test mapping. We need to show that the following integral is nonpositive,∫
C

[
Bp(A + Dϕ) − Bp(A)

]
=

∫
Ω

[
Bp(A + Dϕ) − Bp(A)

]
=

∫
Ω

Bp(A + Dϕ) +

∫
C\Ω

Bp(D f ) =

∫
C

Bp(DF) 6 0 .

where

F(z) =


az + bz̄ + ϕ(z) in the domain Ω ⊂ C

f (z) in C \Ω

The latter inequality follows since F ∈ W1,p(C) and Bp was assumed to be quasiconcave at zero.

Now it follows from Example 11.1 that

Corollary 11.4. Quasiconcavity of Bp at zero would imply quasiconcavity at the identity matrix.

We believe that the presented advances (including some of the conditional statements for the Burkholder
functions) will convince the interested readers of the intricate nature of computing the p -norms of the
Beurling Transform.
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[47] S. Petermichl, J. Wittwer, Heating of the Beurling operator: sufficient conditions for the two-weight case. Studia Math. 186 (2008),

no. 3, 203–217.
[48] D.W. Stroock, Probability theory, an analytic view. Cambridge University Press, Cambridge, 1993.
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