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Abstract. Among the other results, in this paper we prove the following result: Given a L−biLipschitz
mapping of the unit circle onto a convex Jordan curve, there exists a 3

2 L3-biLipschitz extension of the plane
onto itself.

1. Introduction

Let n be a positive integer and Rn be the Euclidean space with the Euclidean norm | · |. Given a set C ⊆ Rn

and a function u : C → Rn, and L > 0, we say that u is L Lipschitz (L biLipschitz) if, for any x , y ∈ C, one
has

|u(y) − u(x)| ≤ L|y − x| ; (1)

and

|x − y|/L ≤ |u(y) − u(x)| ≤ L|y − x| . (2)

The least such a constant L is denoted by Lip( f ) and biLip( f ) respectively.
Motivated by the Kirszbrauns theorem the following problem naturally arises.

Problem 1.1. a) Given a bi-Lipschitz embedding f : R → C of the real line R into the complex plane C with the
bi-Lipschitz constant L find the bi-Lipschitz extension with the minimal Lipschitz constant L′.

b) Given a bi-Lipschitz embedding f : T→ C of the unit circle T into the complex plane C with the bi-Lipschitz
constant L find the bi-Lipschitz extension with the minimal Lipschitz constant L′.

Problem 1.1 a) has in one direction the optimal solution. Namely Kovalev in [5], by using Beurling-Ahlfors
extension achieved L′ = CL, with a a universal constant C. In the same paper he showed that L′ is in general
bigger than L.
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It seems that Problem 1.1 b) is much more delicate. Some pioneering work on this topic has been done
by Tukia and Väisälä ([7–9]). Among the other results Tukia in [7] proved the following theorem. Let
f : T → C be an L bi-Lipschitz map. Then there exists an extension F : C → C which is also bi-Lipschitz,
with constant L̃ depending only on L. In a recent paper Daneri and Pratelli [1] achieved L′ = CL4 with a
universal constant C.

We will consider this problem for two special cases:

• γ is a convex curve. We will show for this special case that L′ ≤ 3
√

2
L3 (Theorem 2.3).

• γ is a starlike w.r.t. origin, and the parametrization is polar. We will show that if f (t) = r(t)eit is
L−bi-Lipschitz, then L′ ≤ 3

2 L3 (Theorem 3.1). In particular if γ is convex, then L′ ≤ 3
2 L.

Since the polar parametrization is a special parametrization and it not yields the optimal distortion of
mappings of the unit circle onto a curve γ, then the following problem naturally arises.

Problem 1.2. a) For a given rectifiable Jordan curve γ find a homeomorphism f : γ→ T with the smallest Lipschitz
constant L.

b) For a given rectifiable Jordan curve γ find a homeomorphism f : T→ γ with the smallest Lipschitz constant L.

We will solve Problem 1.2 a) and Problem 1.2 b) for certain classes of curves (see the fourth section). In
the same section, we will prove that there exists a 1−Lipschitz mapping between two convex curves and
surfaces, provided the second is inside the first one (Theorem 4.13).

2. bi-Lipschitz extension of convex embedding

First we prove a lemma in more general setting.

Lemma 2.1. Let γ be a Jordan curve that lies between parallel lines p and q in the complex plane C such that there is
a line s which is orthogonal to p containing two common points with γ. If f is a Lipschitz homeomorphism between
γ and the unit circle T, then Lip( f ) ≥ 2/dist(p, q).

Proof. By applying an isometry of the Euclidean plane C, we can assume that p = {z : Im z = dist(p, q)/2}
and q = {z : Im z = −dist(p, q)/2} and that s is the imaginary axis. Let s ∩ γ = {P,Q}. Let A = f (P) and
B = f (Q). If A and B are opposite points, then Lip( f ) ≥ 2/dist(P,Q) ≥ 2/dist(p, q). In the opposite case the
points A and B lie in a common semicircle.

Next, we consider A′ and B′, the points on the unit circle which are opposite A and B, respectively.
Specifically, parameterize the portion of the circle from A to B′ as C(t) and from A′ to B as C′(t) such that
C(t) and C′(t) are opposite points on the circle for every t ∈ [0, 1]. Note that by the homeomorphism, f−1(A′)
and f−1(B′) lie on the same side of the y-axis. Then by the intermediate value theorem, there is a t such that
f−1(C(t)) and f−1(C′(t)) have the same x-coordinate. But that implies | f−1(C(t))− f−1(C′(t))| ≤ dist(p, q). Then
we have

2 = | f ( f−1(C(t))) − f ( f−1(C′(t)))|

≤ Lip( f )| f−1(C(t)) − f−1(C′(t))|
≤ Lip( f )dist(p, q).

This implies the desired result.

Now we recall some facts [2]. Let γ be a smooth starlike Jordan curve w.r.t. the origin in C such that every
tangent line of γ is disjoint from the origin. We will recall some properties of γ. Let s 7→ r(s)eis be the polar
parametrization of γ. The tangent ts of γ at ζ = r(s)eis is defined by

y = r(s)eis + (r′(s) + ir(s))eisx, x ∈ R.
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Following the notations in , the acute angle αs between ζ and the positive oriented tangent at ζ is given by

cotαs =
r′(s)
r(s)

. (3)

Let G : T → γ be a continuous locally injective function from the unit circle T onto the star-like Jordan
curve γ smooth almost everywhere. Then

1(t) = ρ(t)eiψ(t) = G(eit), t ∈ [0, 2π)

is a parametrization ofγ. If G is an orientation preserving mapping thenψobviously is monotone increasing.
Suppose that 1 is differentiable. Since r(ψ(t)) = ρ(t), we deduce that ρ′(t) = r′(ψ(t)) · ψ′(t). Hence

r′(ψ(t)) =
ρ′(t)
ψ′(t)

. (4)

By (4) and (3) we obtain

ρ′(t) = ρ(t)ψ′ cotαψ(t). (5)

If f (eit) = ρ(t)eiψ(t), ϕ(t) = ρ(t)eiψ(t) we set here and in the sequel

F(z) = |z| f (z/|z|). (6)

Then the following relations has been established ([2]):

h(t) := ‖DF(reit)‖

=
1
2
(
|ϕ′(t) + iϕ(t)| + |ϕ′(t) − iϕ(t)|

)
=
ρ(t)

2


√(

ψ′(t)
)2

sin2 αψ
+ 2ψ′(t) + 1 +

√(
ψ′(t)

)2

sin2 αψ
− 2ψ′(t) + 1


(7)

and

1(t) := ‖D(F−1)(F(reit)‖

=
1
2
((
|ϕ′(t) − iϕ(t)| − |ϕ′(t) + iϕ(t)|

))−1

=

√
(ψ′(t))2

sin2 αψ
+ 2ψ′(t) + 1 +

√
(ψ′(t))2

sin2 αψ
− 2ψ′(t) + 1

2ρ(t)ψ′(t)
.

(8)

From (7) and (8) we obtain

Lip(F) = ‖h‖ := ess supth(t) ≤ ess supt
ρ(t)
√

2

√(
ψ′(t)

)2

sin2 αψ
+ 1 (9)

and

Lip(F−1) = ‖1‖ := ess supt1(t) ≤ ess supt

√
(ψ′(t))2

sin2 αψ
+ 1

√
2ρ(t)ψ′(t)

. (10)
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Thus
biLip(F) = max{‖1‖, ‖h‖}.

In particular, if ψ(s) ≡ s, then

h(t) =
ρ(t)

2
(| cscαt| +

√
csc2 αt + 3) (11)

and

1(t) =
1

2ρ(t)
(| cscαt| +

√
csc2 αt + 3). (12)

Lemma 2.2. Let f (eit) = ρ(t)eiφ(t) be a L−biLipschitz homeomorphism of the unit circle T onto a Jordan curve γ
starlike w.r.t. origin and smooth almost everywhere. Then for almost every t we have

1
L
≤
ρ(t)|ψ′(t)|

sinαψ
≤ L (13)

and if in addition γ is convex then

1
ρ(t) sinαψ

≤
1

dist(γ, 0)
. (14)

In the opposite direction, if

ρ(t)|ψ′(t)|
sinαψ

≤ L (15)

then f is πL/2-Lipschitz.

Proof. The relation (13) follows from the simple relation

lim
s→t

| f (eit) − f (eis)|
|eit − eis|

=

∣∣∣∣∣∣∂ρ(t)eiψ(t)

∂t

∣∣∣∣∣∣ =
ρ(t)|ψ′(t)|

sinαψ
.

Let Tt be the tangent of the curve γ at f (t). Then we have dist(Tt, 0) ≥ dist(γ, 0) = mint ρ(t). Further by
Sine Rule we have

dist(Tt, 0)
ρ(t)

= sinαψ.

This implies (14). Relation (15) follows from the simple relations

| f (eix) − f (eiy)|
|eix − eiy|

≤
π
2
| f (eix) − f (eiy)|
|x − y|

≤
π
2

sup
t
|∂t f (eit)|.

Theorem 2.3. If f is a L−biLipschitz convex embedding of the unit circle into C, then it provides a 3
√

2
L3 bi-Lipschitz

extension onto the whole complex plane

Proof. Let K = f (T) and let D = Diam(K) = |a − b|, where a, b ∈ K. Let z ∈ [a, b] and γz be the part of the line
orthogonal to [a, b] inside the curve K and let d0 = maxz∈γ |γz| = |γp| for some p ∈ [a, b]. Let c be the center of
[a, b] and assume w.l.g. that c is between a and p. Since the triangle determined by a and the segment γp is
inside K, because K is convex, and since |a− c| ≥ |p− c|, it follows that d = |γc| ≥ d0/2 = |γp|/2. By Lemma 2.1
we have Lip( f−1) ≥ 2/d0, i.e. d0 ≥ 2/L. Thus

d ≥
1
L
. (16)
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Further, a = f (eiα) and b = f (eiβ) and therefore |a − b| ≤ L|eiα
− eiβ
| and this implies that

D ≤ 2L. (17)

Let ζ be the center of γc and, by using a translation, which are bi-Lipschitz invariant transformation we can
assume that ζ = 0. Let F be the radial extension of f . Then the minimal angle that makes the tangent of the
curve γ at a given point z with the point z is bigger than arctan( d

D ) ≥ arctan(1/(2L2)). Thus

sinα ≥
1

√

1 + 4L4
. (18)

Further we have

1
ρ(t) sinαψ

≤
2
d
. (19)

1
L
≤
ρ(t)|ψ′(t)|

sinαψ
≤ L. (20)

Thus

1
√

2
sup

t

√
1

ρ2(t) sin2 αψ
+

1
ρ2(t)(ψ′(t))2 ≤

1
√

2

√
4
d2 +

L2

sin2 α

≤
1
√

2

√

5L2 + 4L6 ≤
3
√

2
2

L3.

On the other hand

sup
t

ρ(t)
√

2

√(
ψ′(t)

)2

sin2 αψ
+ 1 ≤

√

L2 + 4L2
√

2
=

√
5
√

2
L.

This finishes the proof.

3. bi-Lipschitz extension of polar parametrization

Theorem 3.1. Let f (eit) = ρ(t)eit be a L−bi-Lipschitz mapping of the unit circle onto a starlike Jordan curve Γ. Then
it provides a 3

2 L3
− bi-Lipschitz extension of the complex plane onto itself. The power 3 is the best possible if we restrict

ourselves to radial extensions. If in addition γ is convex then it provides a 3
2 L bi-Lipschitz extension.

The result follows from the following two lemmas

Lemma 3.2. If f (eit) = ρ(t)eit is a L−bi-Lipschitz homeomorphism of the unit circle onto the starlike Jordan curve γ,
then Lip(F) ≤ 3

2 L.

Proof. From (11) and (13) we have

Lip(F) = ‖h‖ = ess supt
ρ(t)

2
(| cscαt| +

√
csc2 αt + 3) ≤

3
2
ρ(t)

sinαt
≤

3
2

L.

Lemma 3.3. If f (eit) = ρ(t)eit is a L−bi-Lipschitz homeomorphism of the unit circle onto the starlike Jordan curve γ,
then Lip(F−1) ≤ 3

2 L3. If the curve γ is convex then Lip(F−1) ≤ 3
2 L.
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Proof. We use the following proposition ([3]).

Proposition 3.4. If f (eit) = r(t)eit is a homeomorphism of the unit circle onto the starlike Jordan curve γ, and |z| ≤ r0
is an inscribed circle inside γ touching γ in a point, then Lip( f ) = 1/r0.

We now use (12) and (14) in order to obtain

Lip(F−1) = ‖1‖ = ess supt
1 +

√
1 + 3 sin2 αt

2r(t) sinαt

≤
3
2r
≤

3
2

L,

provided that γ is convex. If γ is not convex, then from (13) and Proposition 3.4 we have

Lip(F−1) = ‖1‖ = ess supt
1 +

√
1 + 3 sin2 αt

2r(t) sinαt

≤ L · ess supt
1 +

√
1 + 3 sin2 αt

2r(t)2

≤
3
2

L3.

In order to prove that the power 3 is optimal we take the following example. Let A = 1, B = i/L, C = −1
and D = −i/L and construct a curvilinear (concave) rectangle γ with vertices A, B, C and D symmetric with
respect to both axis and such that the angle at points A and B is approximately 2 arcsin(1/L) and in the other
two vertices is approximately 2 arcsin(1/L2). See Fig 1. Let f (t) = ρ(t)eit be polar parametrization of γ. Then
by Proposition 3.4, Lip( f−1) � L. Here and in the sequel A � B means that there exists an absolute constant C such
that 1/C ≤ A/B ≤ C. By Lemma 3.2 we have Lip( f ) ≤ 3/2L. But for F = |z| f (z/|z|) we have Lip(F−1) � L3.
Thus the power 3 is optimal in this context.

- 1.0 - 0.5 0.5 1.0

- 0.3

- 0.2

- 0.1

0.1

0.2

0.3

Figure 1: The curve γ for L = 3.

The following example implies that the set of polar parametrization of a curve w.r.t. some interior point
are not optimal bi-Lipschitz mappings.
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Example 3.5. Every polar parametrization of the unit circle of onto the triangle ∆ = ∆(A,B,C) with the vertices
A = −1/L, B = 1/L, C = iL, w.r.t any inner point, has at least a quadratic growth of bi-Lipschitz constant as a
function of L, but the following mapping and its radial extension has linear growth of distortion w.r.t. L. Define
ϕ : T→ ∆ by

ϕ(eit) =

{ 1
L +

2(− 1
L +iL)t
π 0 ≤ t ≤ π/2

iL +
2(− 1

L−iL)(− π2 +t)
π π/2 ≤ t ≤ π

−3π+2t
Lπ π ≤ t ≤ 2π

.

Then it can be proved that Lip(ϕ) = 2
√

L2+L−2

π and Lip(ϕ−1) = πL
2 .

Let f (eit) = ϕ(eit) − i/L and define F(z) = |z| f (z/|z|). Then

Lip(F) � L.

and
Lip(F−1) � L.

4. Minimal distortion of mappings between Jordan curve and the unit circle

To motivate the problem which we consider in this section, assume that γ is a rectifiable Jordan curve
of length |γ|. Let 1 : [0, |γ|]→ γ be arc-length parametrization and define the mapping f (eit) = 1(t |γ|2π ). Then

| f (eit) − f (eis)|
|eit − eis|

=
| f (eit) − f (eis)|
|t − s|

|t − s|
|eit − eis|

≤
|γ|

2π
π
2

=
|γ|

4
.

Thus

Lip( f ) ≤
|γ|

4
. (21)

The questions arises, is the inequality (21) sharp, and is the arc-length parametrization optimal for the
Lipschitz constant for the mapping f . The answer to the first question is affirmative, since we can consider
a rectangle which is approximately equal to the interval [−π/2, π/2]. Then the arc-length parametrization
of the rectangle provides the Lipschitz constant approximately equal to π/2. However the constant |γ|/4 is
far from optimal if γ is the unit circle. In this case of course the Lipschitz constant is 1. In order to find the
optimal Lipschitz constant of mappings between certain open domains in Euclidean spaces or manifolds,
we arrive to infinity-harmonic equations. Since we do not involve into this equation, we skip the details.
We recall the first specific examples of infinity harmonic mapping

Example 4.1 (Infinity - harmonic curves). ([6]) Any regular curve X : (a, b) → (Mm, 1) is an infinity-harmonic
map provided it is parameterized by arc length. Then Lip( f ) = 1.

Example 4.1 states that the best Lipschitz constant throughout all parameterizations of a curve is attained
by an arc-length parametrization. Now we consider the class of mappings from the unit circle and a curve
γ in complex plane. The question arises what is the least distortion throughout the class. Since chordal
metric in the unit circle is not a Riemannian metric, we cannot obtain any conclusion from Example 4.1.

In the rest of the section we will see that the arc-length parameterization in very rare cases yields the
optimal Lipschitz constant.

Example 4.2. a) Assume that γ = ∂([−1, 1]2). Let 1 be the arc-length parametrization: 1 : [0, 8] → γ and define
f (eit) = 1( 8

2π t). Then

Lip( f ) = max
|t|≤π/2

2
√

2|x|
π| sin x|

=
√

2
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and Lip( f−1) = π/(2
√

2). Thus the parametrization f yields the smaller bi-Lipschitz constant L =
√

2 than the
bi-Lipschitz constant of polar parametrization:

F(eis) = min
{ 1
| sin s|

,
1

| cos s|

}
eis

which is equal to 2 ([2]). Since d((−1,−1), (1, 1)) ≤ 2L, we have L ≥
√

2. Thus
√

2 is the minimal bi-Lipschitz
constant.

b) If Q = [−π/6, π/6] × [−2π/6, 2π/6] and γ is its boundary, then the arc-length parametrization f : S2
→ γ,

f (1) = π/3, does not provide the optimal Lipschitz constant. Namely

Lip( f ) =
| f (π/2) − f (π/6)|
|eπ/2 − eiπ/6|

=
2π

3
√

3
>

diam(γ)
2

=

√
5π
6

.

The second example of infinity harmonic mapping is

Example 4.3 (Projection to the unit sphere). Assume that f : Σ→ Sn−1 is a projection of an open subset U ⊂ Rn

to the unit sphere: f (x) = x
|x| . Then (see [3]) Lip( f ) = 1/dist(Σ, 0).

As a consequence of Lemma 2.1 and Example 4.3 we obtain the following theorem.

Theorem 4.4. Assume that γ is a curve bounding a starlike domain Ω w.r.t a point a such that D(a, r) ⊂ Ω ⊂
Strip(p, q), where Strip(p, q) is a strip domain bounded by two parallel lines p, q whose distance is 2r. Then the
mapping with the least constant of distortion between γ and the unit circle is the mapping f (z) = z−a

|z−a| , whose Lipschitz
constant is 1/r.

Remark 4.5. We can cover by the Theorem 4.4 the following special cases: the regular polygon with even number
of edges, the ellipse, the rectangle etc. The regular triangle does not satisfy the condition of Theorem 4.4, however it
can be proved that the mapping f (x) = (z − a)/|z − a|, where a is the center of triangle, yields the minimal constant
of distortion equal to 1/r where r is the radius of inscribed circle to the triangle. If the triangle is not regular, then
the mappings f (z) = (z − a)/|z − a| are not optimal in this context. It seems that in this case the optimal Lipschitz
constant is

√
3/x, where x is the length of the side of minimal regular triangle inscribed in a given triangle. It will be

of interest to find the optimal mappings provided that γ is a convex Jordan curve.
In the following proposition are obtained some approximately sharp two-sided estimates of a bi-Lipschitz constant

provided that the curve is very close to the unit circle. However as we will see in the rest of the paper, the estimates
are far from optimal.

Proposition 4.6. Let f : T → γ be an arc-length parametrization of a C2 smooth symmetric convex curve of the
length 2π. Then

κmin ≤ biLip( f ) ≤ κmax,

where κmin and κmax are minimal and maximal curvature of γ, respectively.

Proof. By the condition of lemma, there exists a smooth mapping β : [0, 2π] → [0, 2π] such that f (eis) =∫ s

0 eiβ(t)dt. Moreover β′(t) = κt, where κt is the curvature of the curve γ at the point f (eit). Thus

| f (s) − f (t)|2

|eis − eit|2
=

∣∣∣∣∫ t

s eiβ(τ)dτ
∣∣∣∣2

4 sin2 t−s
2

.

By differentiating the previous equality with respect to t, we see that the stationary points t of the quantity
A
B =

| f (s)− f (t)|2

|eis−eit |2
satisfy the differential equation

A
B

=
A′

B′
.
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Thus
| f (s) − f (t)|2

|eis − eit|2
=

∫ s

t cos(β(τ) − β(s))dτ

sin(s − t)
.

By differentiating now the quantity A′
B′ , we see that the stationary points t of it satisfy the equation

A′

B′
=

A′′

B′′
.

Thus minimum and maximum of the function

| f (s) − f (t)|
|eis − eit|

is bigger (smaller) than the minimum and the maximum of the function

F(s, t) =
cos(β(t) − β(s))

cos(t − s)
.

Let x = t − s and φ(x) = β(x + s) − β(s). Let

h(x) =
cosφ(x)

cos x
.

Then h is differentiable in [0, π]. The stationary points of h satisfy the equation

φ′
sinφ(x)

cos x
−

sin x
cos x

h = 0.

Therefore
h2(x) = (φ′(x))2 sin2 φ(x) + cos2 φ(x).

Since

2π = φ(2π) − φ(0) =

∫ 2π

0
φ′(x)dx,

we have that minx(φ′(x)) ≤ 1 ≤ maxx(φ′(x)). It follows that

min
x

(φ′(x))2
≤ h2(x) ≤ max

x
(φ′(x))2.

The conclusion is

min β′(x) ≤
| f (s) − f (t)|
|eis − eit|

≤ max β′(x).

In order to obtain the main result of this section, we prove first the following technical lemma.

Lemma 4.7. Let a,b and c be sides of a triangle. Then the function

f (x) =
b2(a − x)2 +

(
b2 + c2

− a2
)

(a − x)x + c2x2

12(x)
, x ∈ [0, a]

attains its maximum on {0, a} where 1(x) = px + q or 1(x) = a sin(ux + v), provided that q > 0, pa + q > 0 and
u, v > 0, au + v < π.
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Proof. We will prove the lemma for the case 1(x) = a sin(ux + v) by reducing it to the case 1(x) = px + q and
by proving the last case. First of all for x ∈ [0, a]

a sin(ux + v) ≥ px + q = a sin v − ax (sin v − sin(au + v)) .

So in [0, a]

f (x) ≤ h(x) :=
b2(a − x)2 +

(
−a2 + b2 + c2

)
(a − x)x + c2x2

(px + q)2 .

Further

h′(x) =
a
(
−(b − c)(b + c)(q − px) + a2(−q + px) + a

(
−2b2p + 2qx

))
(q + px)3 ,

So h′(x0) = 0 if and only if

x0 =
2ab2p +

(
a2 + b2

− c2
)

q

(a2 + b2 − c2) p + 2aq
.

If x0 < [0, a] we obtain that the maximum of h is in 0 or a and so the same hold for f .
So assume that x0 ∈ [0, a]. Then

h′′(x) =
2a

(
a2p(2q − px) + (b − c)(b + c)p(2q − px) + a

(
3b2p2 + q(q − 2px)

))
(q + px)4 .

After some straightforward computations we obtain that

h′′(x0) =
a
((

a2 + b2
− c2

)
p + 2aq

)4

8
(
ab2p2 + (a2 + b2 − c2) pq + aq2)3 .

We will prove that h′′(x0) > 0. It is enough to prove that the expression I = ab2p2 +
(
a2 + b2

− c2
)

pq + aq2

is positive. The quadratic form that appear in expression I is positive if and only if the discriminant is
positive. This means that

a2b2
− (a2 + b2

− c2)2/4 ≥ 0.

This inequality follows from the triangle inequalities |a − b| ≤ c ≤ a + b. So x0 is a local minimum of h
implying that

max
[0,a]

f (x) = max
[0,a]

h(x) = max{h(0), h(a)} = max{ f (0), f (a)}.

Theorem 4.8. Let Pn be a polygon and assume that f is a piecewise linear mapping of the unit circle onto Pn. Let
B = f (B) and C = f (C) be two consecutive vertices of Pn. Assume that X = f (X) ∈ [B,C] and A = f (A) ∈ Pn\[B,C].
Then

|AX|
|AX|

≤ max
{
|AB|
|AB|

,
|AC|
|AC|

}
.

Proof. Let A = eiα, B = eiβ, C = eiγ and assume that γ ≥ β. Then a piecewise linear mappings satisfies the
condition X = f (X) = f (eix) = Px + Q, β ≤ x ≤ γ and f (eiβ) = B, f (eiγ) = C. Let a = |BC|, b = |CA| and c = |AB|.
Now define

1(x) = f (ei((γ−β)x/a+β)) =
(
1 −

x
a

)
B +

x
a

C

and apply the previous lemma to the function

F(x) =
|1(x) − A|2

|ei((γ−β)x/a+β) − eiα|2
, x ∈ [0, a].
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Theorem 4.9. Assume that γ is a convex curve inside a circle S of radius R. Then there is a R−Lipschitz homeomor-
phism of the unit circle onto γ.

Proof. Assume that 1 : [0, |γ|] → γ is an arc-length parametrization and let Ak = 1((k/n)|γ|), k = 1, . . . ,n, be
points of the curve γ. Put A0 = An and assume that αk, k = 1, . . . ,n − 1 are concave angles determined by
points Ak−1AkAk+1. Assume that pk are bisectrices of angles αk. Assume that Bk belong to the arc AB ∩ pk.
Define the mapping from S to the γ by fn(Bi) = Ai, i = 1, . . . ,n and linearly from ̂[Bk,Bk+1] to [Ak,Ak+1]:
f (Re(αt+β)i) = at + b.

Then |BkBl| ≥ |AkAl|, 1 ≤ l ≤ n and by Theorem 4.8 we obtain that

Lip( fn) ≤ sup
i, j

| fn(Ai) − fn(A j)|
|Ai − A j|

≤ 1.

Now if ε > 0, we can choose n and points A1, . . .An from γ satisfying maxi |Ai − Ai+1| < ε. Then by letting
ε → 0, by using Arzela-Ascoli theorem the mappings fn tends uniformly to a mapping f , of γ onto S
with Lip( f ) ≤ 1. Now a linear mapping of the unit circle onto the circle of radius R is R−Lipschitz. The
composition of the corresponding mappings yields the desired Lipschitz mapping.

Corollary 4.10. a) There exists a Lipschitz homeomorphism f of the unit circle onto the triangle ∆ such that

Lip( f ) =

{
Diam(∆)/2, if ∆ is an obsture triangle;
R, if ∆ is an acute-angled triangle,

where R is the radius of outscribed triangle.
b) There exists a Lipschitz homeomorphism f of the unit circle onto the parallelogram P such that Lip( f ) =

Diam(P)/2.
c) Assume that Pn is a convex polygon inside a circle of radius R. Then there is a R−Lipschitz homeomorphism of

the unit circle onto Pn.

Corollary 4.11 (”Archimedes’ axiom”). The length of a convex curve inside of the unit circle is smaller than 2π.

Proof. Let f : T→ γ be a homeomorphism with Lip( f ) ≤ 1. Define F(t) = f (eit). Then |F′(t)| ≤ 1, and so

|γ| =

∫ 2π

0
|F′(t)|dt ≤ 2π.

Example 4.12. Let Qn be a regular polygon whose length is 2π, where n is an even integer. Assume that eis
→ f (eis)

is arc-length parametrization. Then

Lip( f ) =
Diam(Qn)

2
=

π
n sin π

n
.

We now make the following several dimensional generalization.

Theorem 4.13. Assume that Σ is a convex surface inside another convex surface S. Then there is a 1−Lipschitz
homeomorphism of the surface S onto Σ. In particular

Area(Σ) ≤ Area(S). (22)

Proof. In order to simplify the exposition, assume that Σ is two-dimensional. Further, assume that h is a
homeomorphism of the unit sphere S2 onto Σ and let P(ϕ, θ) : [0, 2π]× [0, π]→ S2 be spherical coordinates.
Assume that Pn = {(2kπ/n, lπ/n), 0 ≤ k, l ≤ n} is a net in [0, 2π]×[0, π]. Let G = h◦P. Let Ak,l = G(2kπ/n, lπ/n).
Then Ak+1,l, Ak−1,l, Ak,l+1, Ak,l−1 and Ak,l form a pyramid with the top at point Ak,l and base laying in the
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plane π. Now the line throughout Ak,l orthogonal to π intersects the surface S in a point Bk,l which belongs
to the same side of π as Ak,l. Define the discrete mappings fn(Bk,l) = Ak,l and extend it linearly between
corresponding polyhedra. Since ‖Ak,l−Ak′,l′‖ ≤ ‖Bk,l−Bk′,l′‖, by using Lemma 4.7, we obtain that Lip( fn) ≤ 1.
Then by letting n→∞ we obtain that fn tends uniformly to a mapping f which is 1−Lipschitz continuous
on a dense subset of S. By continuity we can extend f to be 1−Lipschitz continuous in S. Moreover, since
both surfaces are convex, f is a homeomorphism.

In order to deduce (22), observe that

Area(Σ) = Area( f (S)) =

∫
[0,2π]×[0,π]

D f◦Q,

where Q is a parametrization of S defined by Q(ϕ, θ) = ρ(ϕ, θ)P(ϕ, θ). If we fix a point p = Q(ϕ, θ) in
S and consider f ′(p), as a mapping between tangent spaces TSp and TΣ f (p), we obtain that D f◦Q(ϕ, θ) =
|det f ′(p)|DQ(ϕ, θ). But det f ′(p) = λ1 ·λ2, where λ2

1 and λ2
2 are eigenvalues of the matrix f ′(p) · ( f ′(p))t. Since

‖ f ′(p)‖ = max{λ1, λ2} ≤ 1, we obtain that

D f◦Q(ϕ, θ) ≤ DQ(ϕ, θ)

and therefore

Area(Σ) ≤
∫

[0,2π]×[0,π]
DQ = Area(S).
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