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1. Introduction

The isopermetric problem can be stated as follows:
(A) Among all closed curves in the plane enclosing a fixed area, which curve (if any) minimizes the
perimeter?
This question can be shown to be equivalent to the following problem:
(B) Among all closed curves in the plane of fixed perimeter, which curve (if any) maximizes the area of its
enclosed region?
Although the circle appears to be an obvious solution to the problem, proving this fact is rather difficult.
More precisely, if l is the length of a closed curve and A is the area of the planar region that it encloses, then
the isoperimetric inequality states that

4πA 6 l2, (1)

and that the equality holds if and only if the curve is a circle. Dozens of proofs of the isoperimetric
inequality have been found, see for example [3, 8, 15, 16, 20, 39, 48, 59, 60] and the literature cited there.
In particular we highly recommend Expository Lectures by Andrejs Treibergs, [59, 60], to the interested
reader as introduction in the subject, and more advanced Lectures by Druet [15] and Fusco [20]. For recent
developments concerning geometric and functional inequalities, Optimal Transport and Applications,
which incudesboth an overview of current knowledge and an update on the most recent advancements,
see for example [18, 29, 45, 61, 62, 67] and the literature cited there.

In this paper we prove various versions of isoperimetric inequality of two types (i) for the polydisk
related to recent work of M. Marković [31] and (ii) for the capacity. We also outline a few simple proofs of
the isoperimetric inequality related to our previous papers and give short review of known results using
some novelty.

The content of the paper is as follows. In Section 2 we consider the version of the Isoperimetric inequality
for logarithmical plurisubharmonic function (as an example see Theorem 2.4) and for the polydisk and in
Section 3 related results.
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In Section 4 we give a simple proof of isoperimetric inequality and in particular of the following result
due to Carleman: Among all ring domains A with given area and with given area of the ”holes” the
domain bounded by two concentric circles gives the greatest value of modulus of A. Some generalizations
and applications of these result are given(see for example Theorem 4.5). Possible connections between
results concerning polydisk and capacity is indicated in Proposition 4.7. Our review includes Lax’s Proof
of the Isoperimetric Inequality with some novelty (see for example Proposition 4.9) and Papus-Guldinus
theorem. Short discussion concerning Isoperimetric inequality in space is given in Section 5; in particular
in subsections 5.2 and 5.3 using a transportation approach by Knothe and Brenier maps, we outline proofs
of anisotropic isoperimetric inequality, and in subsection 5.5 we shortly consider isoperimetric inequality
for Euclidean polyhedra cf. [5]. Finally in section 6 some results concerning Abel summability which we
need are considered.

2. Isoperimetric inequality in polydisk

We will employ the following notation. Let Bn(x, r) = {z ∈ Rn : |z − x| < r}, Sn−1(x, r) = ∂Bn(x, r)
(abbreviated S(x, r)) and let Bn, S = Sn−1 stand for the unit ball and the unit sphere in Rn, respectively. In
particular, byU or Bwe denote the unit disk, by T the unit circle; we writeU′ = Ur {0} for the punctured
disk and E = {z : |z| > 1} for the exterior of circle. For r > 0, we denote byUr and Tr the disk and circle of
radius r with center at the origin respectively.

Frequently, Fourier and Laurent coefficient of function 1we denote 1̂(n) or 1̂n. It is convenient to identify
a function 1 : T→ Cwith t 7→ 1(eit), t ∈ [0, 2π].

By notation 1 ∼
∑
∞

n=−∞ 1̂n e−int we denote that the series on the right is Fourier series of 1.
Let 0 < p 6 ∞. For a function f : U→ Cwe define

Mp( f ; r) =

 1
2π

π∫
−π

| f (reit)|pdt


1/p

, if 0 < p < ∞

M∞( f ; r) = sup
t∈[ 0,2π]

| f (reit)|, if p = ∞

and ‖ f ‖p = lim
r→1

Mp( f ; r).

For a function f holomorphic in the polydiscUn we define

Mp( f ; r) =


∫
Tn

| f (rω|pdσ(ω)


1/p

, if 0 < p < ∞

M∞( f ; r) = sup
ω∈Tn
| f (rω)|, if p = ∞

where σ = σn is Haar measure on n-torus Tn and ‖ f ‖p = lim
r→1

Mp( f ; r).

If ‖ f ‖p is finite we say that f belongs to the Hardy class Hp(Un) and write f ∈ Hp(Un). It turns out that
if f ∈ Hp(Un), then there exists the finite limit

f∗(ω) = f ∗(ω) = lim
r→1

f (rω) a.e, on Tn,

and the boundary function f ∗ belongs to Lp(Tn). Moreover ‖ f ∗‖p = ‖ f ‖p. Let

Pr(t) =
1 − r2

1 − 2r cos(t) + r2

denote the Poisson kernel.
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If ψ ∈ L1[0, 2π] and

h(z) =
1

2π

∫ 2π

0
Pr(θ − t)ψ(t) dt,

then the function h = P[ψ] so defined is called Poisson integral of ψ.
A real valued function u(x, y) defined on some open domain Ω ⊂ C is said to be harmonic if it is locally

real part of an analytic function (at any point of its domain there is a neighborhood U and analytic function
f on U such that u = Re f on U). If f = u+ iv, then u and v satisfy the Cauchy-Riemann equations ux = vy and
uy = −vx in Ω. Hence ∆u = ∆v = 0. A function u(x, y) defined on some open domain Ω ⊂ C is said to have
as a conjugate a function v(x, y) if and only if they are respectively real and imaginary part of a holomorphic
function f (z) of the complex variable z := x + iy ∈ Ω. That is, v is conjugate to u if f (z) := u(x, y) + iv(x, y) is
holomorphic on Ω. As a first consequence of the definition, they are both harmonic real-valued functions on
Ω. Moreover, the conjugate of u, if it exists, is unique up to an additive constant. Also, u is conjugate to v if
and only if v is conjugate to −u. If u is harmonic on some open domain Ω ⊂ C then function 2uz = ux− iuy is
analytic and it has locally a primitive function and if Ω is simply connected then it has a primitive function
on Ω.

So any harmonic function always admits a conjugate function whenever its domain is simply connected,
and in any case it admits a conjugate locally at any point of its domain. Equivalently, v is conjugate to u in
Ω if and only if u and v satisfy the Cauchy-Riemann equations in Ω.

Let sh1(U) denote the class of subharmonic function u inU which is not identical to∞ and such that u
has a harmonic majorant in h1(U); it means that I(|u|, r) =

∫ 2π

0 |u(reit)|dt bounded for r ∈ (r0, 1).
It is a Littlewood theorem that radial limit u∗ exists a.e. for u ∈ sh1(U).
A function p , defined in a domain D, will be said to be of class PL in D provided the following conditions

are satisfied there. (i) p is continuous. (ii) p > 0. (iii) ln p is subharmonic in the part of D where p(u, v) > 0. If
p is of class PL, then p is subharmonic. Indeed, at points where p = 0 the condition (ii) of Riesz obviously is
satisfied; and elsewhere the fact that ln p is subharmonic implies that p(u, v) is subharmonic. For 0 < p < ∞,
denote by hp

PL (the notationRp is also used,see [28]) the class of function f in PL in the unit disk (the sub class
of PL) with bounded Mp( f ; r) in r ∈ (0, 1). It is important to note the following ”principle” has important
applications.

Theorem 2.1 (cf. Theorem 1, Lozinski [28]). For some fixed 0 < p < ∞, suppose that f ∈ hp
PL, that is

(i1) f is a log-subharmonic function in the unit disk,
(i2) with bounded Mp( f ; r) in r ∈ (0, 1).
Then there exists an analytic function a ∈ Hp such that
|a(z)| = f (z) a.e. for z ∈ T and
f (z) 6 |a(z)| for z ∈ U.

We outline a proof as follows. Suppose that f is a positive function on T and that ln f ∈ L1(T) and set
h = P[ln f ]. SinceU is simply-connected domain h has a conjugate harmonic function h̃. Let H = h + ih̃, and
a = eH. It is clear that |a| = eh. Since h is harmonic in U and f 6 eh. By Jensen’s ineqality |a|p 6 P[ f p] and
therefore a ∈ Hp.

In some application the following elementary form is enough: If f is a log-subharmonic function in the
unit disk, continuous in the closed unit disk, then there exists an analytic function a ∈ H∞ such that |a(z)| is
continuous in the closed unit disk,
|a(z)| = f (z) for z ∈ T and
f (z) 6 |a(z)| for z ∈ U.

This principle lies behind the proofs of Fejér-Riesz-Lozinski inequality, cf. [28], and Proposition 2.2.
If curvature of a surface is nonpositive, then metric density ρ is log-subharmonic function and we can

use principle of log-subharmonic function, which reduces the the proof of isoperimetric inequality to the
analytic case.

We refer to the next proposition as Isoperimetric inequality for log-subharmonic functions.
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Proposition 2.2 ([28, Theorem 4] , see also [42]). For a log-subharmonic function ϕ : B → R, ϕ ∈ h1(B) the
following sharp inequality holds∫

B

|ϕ(z)|2dxdy 6
1

4π

(∫ 2π

0
|ϕ(eit)|dt

)2

. (2)

The equality is attained if and only if ϕ(z) = b
|1−az|2 , a ∈ B, b ∈ R.

The solution to the isoperimetric problem is usually expressed in the form of an inequality that relates the
length l of a closed curve and the area A of the planar region that it encloses. The isoperimetric inequality
states that

4πA 6 l2, (3)

and that the equality holds if and only if the curve is a circle. Dozens of proofs of the isoperimetric inequality
have been found.

In [10] Carleman gave a beautiful proof of the isoperimetric inequality, reducing it to an inequality
for holomorphic functions on the unit disc. For more details and other proofs and generalizations of the
isoperimetric inequality we refer to [3, 40, 42, 48, 51], and [18]. In this section we discus isoperimetric
inequality for generalized polydisks.

In particular, if f is a fuction of one complex variable the statement (ii.0) of Proposition 2.3 is reduced to
(A1): If f ∈ Hp(B), 0 < p < ∞, then∫

B

| f (z)|2pdxdy 6
1

4π

(∫ 2π

0
| f (eit)|pdt

)2

. (4)

The inequality (4) has been rediscovered several times, see [24] a nd [14], and dates at least back to Carleman
[7].

We refer to this result as Hp-version of isoperimetric inequality (for one complex variable). It seems that
approach to the proof of (A1) via the Cauchy-Shwartz inequality is due to Carleman[10]; we rediscavered
this approach, see for example [40]. By using a similar approach as Carleman, Strebel in his book ([56],
Theorem 19.9) proved (4). In the case p = 2, (4) reduces to∫

U
1(z)4dxdy 6

1
4π

[∫ 2π

0
|1(eit)|2dt

]2

, (5)

which is just the Carleman inequality.
Let γ be a rectifiable Jordan closed curve of length L and D = Int(γ) and φ a conformal of B onto D. An

application of the Carleman inequality to 1 = (φ′)1/2 shows that 4πA 6 L2.
Vukotić [63] also rediscovered some results obtained in [36].
An n-dimensional multi-index is an n-tuple α = (α1, α2, . . . , αn) of non-negative integers (i.e. an element

of the n-dimensional set of natural numbers, denoted Nn
0 or Zn

+). For z = z = (z1, · · · zn) ∈ Cn, we define
zα = zα1

1 · · · z
αn
n . In the theory of functions of several complex variables, a branch of mathematics, a polydisc

is a Cartesian product of discs.
More specifically, if we denote by D(z, r) the open disc of center z and radius r in the complex plane,

then an open polydisc is a set of the form D(z1, r1) × · · · × D(zn, rn). In particular, Un = B × · · · × B and
Tn = T × · · · × T.

Haar measure on n-torus is dσn(eit1 , · · · , eitn ) = 1
(2π)n dt1 · · · dtn; dmn is the normilized measure onUn.

Let F be holomorphic in polydiskUn. By ϕn(p; r), we denote the function

ϕn(p; r) = ϕn(p; r,F) =

[∫
Tn
|F(rz)|pdσ

]2

−

∫
Un
|F(rz)|2pdmn,

where mn and σn are Lebesgue measure onUn and Tn. We define δn(p, r) = r2nϕn(p; r) and if n = 1, we write
ϕ(p; r) and δ(p, r) instead of ϕ1(p; r) and δ1(p, r), respectively.



Miodrag Mateljević / Filomat 29:2 (2015), 275–302 279

Proposition 2.3. (i.0) Let F be holomorphic in polydiskUn. Then ϕn(2; r) is nondecreasing in r ∈ (0, 1).
(ii.0) Let F ∈ Hp(Un), 0 < p < ∞. Then∫

Un
|F(z)|2pdmn 6

[∫
Tn
|F(z)|pdσ

]2

.

(iii.0) If n = 1, ϕ(p; r) is nondecreasing in r ∈ (0, 1), cf. [52].

Proof. (i.0) If F(z) =
∑
α∈Zn

+
c(α)zα, then

L(r) :=
∫
Tn
|F(rz)|2dσ =

∑
α∈Zn

+

A(α)r2|α| ,

where A(α) =
∑
β+γ=α |c(β)c(γ)|2. Note that F2(z) =

∑
α∈Zn

+
d(α)zα, where d(α) =

∑
β+γ=α c(β)c(γ).

Then

A(r) =

∫
Un
|F(rz)|4dmn =

∑
α∈Zn

+

B(α)r2|α|,

where B(α) = |d(α)|2(1 + α1)−1(1 + α2)−1 . . . (1 + αn)−1. Hence

ϕn(2; r) =
∑
α∈Zn

+

(A(α) − B(α))r2|α| .

By the Cauchy-Shwartz inequality, A(α) > B(α) and (a) follows.
(ii.0) Since |F| is logarithmical subharmonic, by Proposition 2.2, we get (ii.0).
For p = 2 it follows from previous Proposition.
(ii.0) Now we suppose that F is holomorphic in B. By the change of variables w = ρz,

ϕ(p; r) = ϕ(p; r,F) =

[∫
Tn
|F(rz)|pdσ

]2

−

∫
B

|F(w)|2pdmn =[
1

2π

∫
Tr

|F(w)|pd|w|
]2

−
1
π

∫
Br

|F(w)|2pdudv.

Let 0 6 r 6 R < 1. Using Blaschke product, we can find an analytic function 1 such that
A2 |F(z)|p 6 |1(z)|2 on BR and |F(z)|p = |1(z)|2 on TR.
By Proposition 2.3, δ(2, r) = ρ2ϕn(2;ρ), 0 6 ρ < 1, is a nondecreasing function. Hence[

1
2π

∫
TR

|1(w)|2d|w|
]2

>

[
1

2π

∫
Tr

|1(w)|2d|w|
]2

+
1
π

∫
Ur

|F(w)|4dmn.

Combining the above we get (c).

In several variables it is not possible to use a Blaschke product, but we can use subharmonic functions.
We say that, a nonnegative function u upper semi continuous defined in domain D is logarithmical

subharmonic if u = 0 or log u is subharmonic in D.
A function f : G → R ∪ {−∞}, with domain G ⊂ Cn is called plurisubharmonic if it is upper semi-

continuous, and for every complex line {a + bz | z ∈ C} ⊂ Cnwith a, b ∈ Cn the function z 7→ f (a + bz) is a
subharmonic function on the set {z ∈ C | a + bz ∈ G}.

Let D1 and D2 be a simply connected domains in C with a rectifiable boundaries and D = D1 ×D2 be a
generalized polydisk with distinguished boundary ∂0D = ∂D1 × ∂D2.
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Theorem 2.4. Let u be a logarithmical plurisubharmonic function in D = D1 ×D2 and continuous on D. Then∫
D

u2dV 6
1

(4π)2 L2 , (6)

where L =
∫
∂0D u ds =

∫
∂0D u(z1, z2)|dz1||dz2|.

Define χ by χ(z2) =
∫
∂D1

u(z1, z2) ds, where ds = |dz1|; it is logarithmical subharmonic function in z2 ∈ D2,
(see for example [53], rusian edition p.64). For a fixed z2 ∈ D2, since u(z1, z2) logarithmical subharmonic
function in z1 ∈ D1, by Proposition 2.2,∫

D1
u2(z1, z2)dx1dy1 6

1
4π

(∫
∂D1

u(z1, z2)ds
)2

= 1
4πχ

2(z2). By definition of χ and Fubini’s theorem,∫
∂D2

χ(z2)|dz2| =

∫
∂D2

(∫
∂D1

u(z1, z2)|dz1|

)
|dz2| (7)

=

∫
∂0D

u(z1, z2)|dz1||dz2| = L . (8)

Since χ is logarithmical subharmonic function in z2 ∈ D2, again by Proposition 2.2,∫
D2

χ2(z2) dx2dy2 6
1

4π

(∫
∂D2

χ(z2)|dz2|

)2

=
1

4π
L2. (9)

Hence,
∫

D u2dV 6 1
(4π)2

(∫
∂D uds

)2
.

In particular, as a corollary of Theorem 2.4, we find:

Proposition 2.5. If f ∈ Hp(D) and 1 ∈ Hq(D), 0 < p, q < ∞, then∫
D
| f |p|1|qdV 6

1
(4π)2

∫
∂0D
| f |pds

∫
∂0D
|1|qds . (10)

By Cauchy-Shwartz inequality,∫
D
| f |p|1|qdV 6

(∫
D
| f |2pdV

)1/2 (∫
D
|1|2qdV

)1/2

(11)

and therefore∫
D
| f |p|1|qdV 6

1
(4π)2

∫
∂0D
| f |pds

∫
∂0D
|1|qds . (12)

See also [24, 31]:

3. Further and related results

In [31] M. Markovic proved an isoperimetric inequality for holomorphic functions in the unit polydisc
Un. As a corollary he derives an inclusion relation between weighted Bergman and Hardy spaces of
holomorphic functions in the polydisc which generalizes the classical Hardy- Littlewood relation Hp

⊂ A2p.
Also, he extends some results due to Burbea. In order to describe these results we need first some definitions.

There are two standard generalizations of Hardy spaces on a hyperbolic simple connected plain domain
D. One is immediate, by using harmonic majorants, denoted by Hp(G). Let 0 < p < ∞ a holomorphic
function f on a domain G is in Hp(G) if the subharmonic function | f |p has a harmonic majorant v on D. It can
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be proved that there is a unique harmonic majorant u f , which will be called the least harmonic majorant of
f . Fixed z0 ∈ G and set | f |p = (u f (z0))1/p.

The second is due to Smirnov, usually denoted by Ep(D). The definitions can be found in the tenth
chapter of the book of Duren [14]. These generalizations coincide if and only if the conformal mapping
of D onto the unit disc is a bi-Lipschitz mapping (by [[14], Theorem 10.2]); for example this occurs if
the boundary is C1 with Dini-continuous normal (Warschawski’s theorem, see [64]). The previous can be
adapted for generalized polydiscs (see the paper of Kalaj [24]). Let D be the generalized polydomain given
as the Cartesian product of n open Jordan domains D1, ...,Dn: D =

∏n
i=1 Di and φk, k = 1, · · · n, the conformal

mapping of Dk onto the unit disc, and φ = (φ1, · · · , φn). In particular, Hp(Dn) = Ep(Dn), if the distinguished
boundary ∂0(D) is sufficiently smooth, which means φk, k = 1, · · · n are sufficiently smooth.

Let G be a simply-connected domain with rectifiable Jordan boundary γ. The set Ep(G) consists of all
functions holomorphic in G, such that for every function in it there is a sequence of closed rectifiable Jordan

curves Γn ⊂ G such that Γn tends to γ and Mp( f ) = sup
∫

Γn

| f |p|dz| < ∞; | f |p = Mp( f )1/p. This definition was

proposed by M.V. Keldysh and M.A. Lavrent’ev , and is equivalent to V.I. Smirnov’s definition in which
curves γr are used instead of Γn = Γn( f ). These curves γr are the images of the circles Tr under some
univalent conformal mapping ϕ from the disc onto the domain G, and the supremum is taken over all
0 < r < 1. The classes Ep(G) are the most known generalization of Hardy spaces and are related in the
following way: f ∈ Ep(G) if and only if f ◦ ϕ(ϕ′)1/p

∈ Hp(U).
This definition can be extended for generalized polydiscs Gn; let Γr, 0 < r < 1, be the Cartesian product

of n Jordan curves γr and

Mp( f ) = sup
0<r<1

∫
Γr

| f |p|dz| < ∞ , (13)

where |dz| = |dz1| · · · |dzn|. Set | f |p = Mp( f )1/p.
A bounded simply-connected domain G with a rectifiable Jordan boundary in the complex plane C

having the following property: there is a univalent conformal mapping ϕ from the disc onto the domain G
such that the harmonic function ln |ϕ′| can be written as the Poisson integral of its non-tangential boundary
values ln |ϕ′(eit

|. These domains were introduced by V.I. Smirnov in 1928 in the course of investigating
the completeness of a system of polynomials in the Smirnov class E2(G). The problem of the existence of
non-Smirnov domains with rectifiable Jordan boundaries was solved by M.V. Keldysh and M.A. Lavrentiev
, who gave a sophisticated and intricate construction of such domains and of the corresponding mapping
functions ϕ, with the additional property |ϕ′(eit)| = 1 that for almost-all eit. In several complex variables, the
Cauchy integral formula can be generalized to polydiscs (see Hörmander book 1966 [23], Theorem 2.2.1).
Let D be the polydisc given as the Cartesian product of n open discs D1, ...,Dn: D =

∏n
i=1 Di.

Suppose that f is a holomorphic function in D continuous on the closure of D. Then

f (ζ) =
1

(2πi)n

∫
· · ·

"
∂D1×···×∂Dn

f (z1, . . . , zn)
(z1 − ζ1) . . . (zn − ζn)

dz1 . . . dzn, (14)

where ζ = (ζ1, ..., ζn) ∈ D.

If we set Kn(z,w) =

n∏
k=1

1
zkwk

and dW =
1

(2πi)n dw1 . . . dwn, we can rewrite the Cauchy integral formula in

the form: f (z) =
∫

D Kn(z,w) f (w)dW.
E2(Dn) is a Hilbert space with the reproducing kernel given by

KDn (z,w) = Kn(z,w)(
n∏

k=1

φ′k(zk)φ′k(wk))1/2 . (15)
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Proposition 3.1 ([31]). Let f be an upper semi-continuous function on a product D × G of domains D ⊂ Rn and

G ⊂ Rp. Let µ be a positive measure on G and E ⊂ G such that µ(E) < ∞. Then f (x) =

∫
E

f (x, y)dµ(y), x ∈ D is

(logarithmically) subharmonic if f (·, y) is (logarithmically) subharmonic for all (almost all with respect to the measure
µ) y ∈ G.

The following lemma has a role in finding extremal function in corresponding inequalities.

Lemma 3.2 (Lemma 2.5,[31]). If f ∈ Hp(U2) , then 1(z) =

∫ π

−π
| f (z, eit)|pdt is logarithmically subharmonic and

belongs to the space h1
PL.

Let Vn be the volume measure in the space Cn and λ be the Poincare metric on the generalized polydisc
Gn. By vector-valued function we mean Cl-valued for some integer l. We allow vector-valued holomorphic
functions f = ( f1, f2, ..., fl) to belong to the spaces Ep(Gn) if they satisfy the growth condition (13) with || · ||
instead of | · |. Note that if f = ( f1, f2, ..., fl) vector-valued holomorphic function then λ(z) = (

∑l
j=1 | f j(z)|2)1/2

is (logarithmically) subharmonic.

Theorem 3.3 ([31]). Suppose that G is simply-connected and that the distinguished boundary ∂0(Gn) of the gener-
alized polydisc Gn, is sufficiently smooth. If f j ∈ Hp j (Gn), 0 < p j < ∞, j = 1, · · · ,m, be holomorphic vector-valued
functions on a generalized polydisc Gn, then∫

Gn

m∏
j=1

| f j|
p jλ2−mdVn 6

m∏
k=1

Mp j
( f j) .

For complex-valued functions f , the equality in the above inequality occurs if and only if either some of the f j,
j = 1, · · · ,m are identically equal to zero or if for some point w ∈ Gn, and constants a j , 0 or b j , 0, f j = 0, the
functions have the following form f p j

j = ap j

j Kn(·,w)2 = bp j

j

∏n
k=1 ψ

′

k, j = 1, · · · ,m, where Kn is the reproducing kernel
for the domain Gn and ψk,k = 1, · · · ,n, are conformal mappings of Gk ontoU.

In particular, for n = 1 and m = 2 and in the case of complex-valued functions, the above inequality reduces
to the result of Mateljević and Pavlović [40]. Burbea [9] extended Carlemans inequality by proving the
following. Let 1 ∈ Hp in the unit discU, and let m be an integer m > 2, then

m − 1
π

∫
U
1(z)mp(1 − |z|)m−2dxdy 6

[
1

2π

∫ 2π

0
|1(eit)|pdt

]m

. (16)

In the case m = 2, p = 2, the inequality reduces to Carleman’s inequality mentioned in the Section 2.
In [55], the integration formula is proved:
(B1)

∫
S 1(z1)dσ(z) = m−1

π

∫
U 1(z)2m(1 − |z|)m−2dxdy,

which may be called integration by slices, and the following result:
(B2) If z′ = (z1, · · · , zn−1), then
f 0(z) = 1

2π

∫ π
−π

f (eitz)dt, f 1(z) = 1
2π

∫ π
−π

f (z′, eitzn)dt,
and∫

S f (z)dσ(z) =
∫

S f 0(z)dσ(z) =
∫

Bn−1
f 1(z)dν(z′).

Note if z′ is picked, then f 1 is independent of zn; for example if f holomorphic then f 1(z) = f (z′, 0).
Let Un and Bn be the unit polydisc and the unit all in Cn, respectively. In [50] it is proved that if f is

in the Hardy space H2(Un), then f is in H2n(Bn) and that the norm of the inclusion is equal to one. More
precisely, if f ∈ H2(Un)∫

∂Bn

| f (w)|2ndmn 6

[∫
Tn
| f (z)|2dσ

]n

.
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If f depends on one variable only, then the result also reduces to the Carleman inequality.
By (B1) this inequality coincides with Burbea inequality (16) for m = n; p = 2 and f (z) = f (z1), that is if f

actually depends only on one complex variable.

4. Isoperimetric inequality, capacity and Wirtinger inequality

The isoperimetric problem is to determine a plane figure of the largest possible area whose boundary
has a specified length. If L = L(γ) is the circumference of a closed Jordan rectifiable curve γ in the plane and
the area of a plane region it encloses A = A(γ), then A 6 L2/4π.

A version which includes self-intersecting curve is outlined in [35, 36].

Proposition 4.1 ([35]). Let K be positively oriented unit circle and let a curve γ be defined by w = φ(eiθ), 0 6 θ 6 2π,
is of bounded variation and φ(eiθ) ∼

∑
∞

n=−∞ φ̂n e−inθ. Then the sign area bounded by this curve is A(φ) = i
2

∫
K φ dφ.

If we denote by L = |γ| length of the curve γ, then by isoperimetric inequality, A(φ) 6 L2/4π.

By the next Proposition 4.2, A(φ) = π
∞∑
−∞

n|φ̂n|
2 < ∞.

Let a curve γ be defined on [0, 2π] and γ ∼
∑
∞

n=−∞ γ̂n e−inθ. If γ is of bounded variation, closed and

continuous curve, then the sign area determined by γ is given by A(γ) = i
2

∫ 2π

0 γ dγ = π
∞∑
−∞

n|γ̂n|
2 < ∞.

Proposition 4.2. Then

A(γ) = π
∞∑
−∞

n|γ̂n|
2 < ∞ . (17)

Proof. Set 1 = P[γ] and an = n|γ̂n|. For 0 6 r < 1, we define B(γr) := i
2

∫ 2π

0 γr dγ = π
∞∑
−∞

nr|n||γ̂n|
2 and

B(γr) → A(γ) when r → 1−. Hence the series (17) is Abel summable. By Theorem 6.3, n|γ̂n| → 0 and
therefore n2

|γ̂n|
2
→ 0. Since nan = n(n|γ̂n|

2) → 0, by Theorem 6.2 (Tauber’s convergence theorem) it is
convergent in the ordinary sense as well.

If we set

A+(γ) = π
∞∑
1

n|γ̂n|
2, A−(γ) = π

1∑
−∞

n|γ̂n|
2, it is clear that A(γ) = A+(γ) + A−(γ) and A(γ) 6 A+(γ).

If γ is closed Jordan positively oriented curve, the oriented area is the same as the usual area of Int(γ).
Let γ be closed Jordan curve and G̃ = Ext(γ). By Riemann’s theorem there is a conformal mapping

(4) f (z) = λ z + a0 +
a1

z
+ · · · +

ak

zk
+ · · ·

of E onto G̃. For ρ > 1, set γρ(t) = f (ρeit), s(ρ) = A(γρ), τ(ρ) = ρ−2s(ρ) and |γ|∗1 = infc
∫ 2π

0 |γ(t) − c|dt.

Theorem 4.3. Under the above hypothesis
(i.1) τ is not decreasing in [1,∞]
(ii.1) τ(ρ)→ π|λ|2 if ρ→ +∞.
(iii.1) A(γ) 6 π|λ|2

(iv.1) |λ| 6 |γ|∗1
(v.1) 2π|λ| 6 L, where L is length of γ.

For (iii.1) see also [36, 40].
Note that from (iii.1) and (v.1), we immediately find a version of isopermetric inequality: A(γ) 6 π|λ|2 6

L2

4π . Note that in [59, 60] Treibergs also gives several arguments which depend on more elementary geometric
and analytic inequalities.
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Proof. Since

τ(ρ) = ρ−2s(ρ) = π
1∑

k=−∞

k|ak|
2ρ2k−2 = π|λ|2 + π

1∑
k=−∞

k|ak|
2ρ2k−2

we get (i.1) and (ii.1).
(iii.1) follows from A+(γ) = π|λ|2.

Using λ =
∫ 2π

0 γ(t)e−itdt and

iλ =
∫ 2π

0 γ′(t)e−itdt we find (iv.1) and (v.1) respectively.

As a corollary of (iii.1) and (v.1), we get the isoperimetric inequality for simple curve: 4πA 6 L2.
The next example shows that the estimate (iv.1) can be better than (v.1). Let r > 1, zk = eik2π/n, wk = rzk

and Pn polygon z1w1z2w2 · · · zn−1wn−1znwnz1, then l(Pn)→∞ and it is clear that |Pn|
∗

1 6 2πr.

4.1. area-modulus inequality

For 0 < r < R, let A(r,R) = {r < |z| < R} be the annulus with inner radius r and other radius R.
A domain A is ring if Ac has exactly two components. By topology, ∂A has also two components C1 and

C2. Denote by Γ = ΓA the collection of curves γ ⊂ A connecting C1 and C2.
There is A(r1, r2) and conformal maping φ of A(r1, r2) onto A. Modulus of A is defined as

M(A) =
log(r2/r1)

2π
.

Theorem 4.4. Let F ⊂ D and A = D r F topological annulus. Then

e4πM(A)area(F) 6 area(D). (18)

If equality holds in (4.4), then A is a circular regular ring.

If we set S0 = areaF = πr2
0 and S1 = areaD = πr2

1, and A0 = A(r0, r1) then:

4πM(A) 6 ln
S1

S0
= 4πM(A0) .

Hence we rewrite Theorem 4.4 respectively in the form:
(I.1) M(A) 6M(A(r1, r2)). We can also restate Theorem 4.4:
(I.1’) Consider the family of all doubly-connected plane domains bounded by an outer curve C1 and an
inner curve C0. For each domain D, let Ai be the area bounded by Ci, i = 0, 1. Then among all domains
conformally equivalent to a given one, the minimum of A1/A0 is attained by a circular annulus.
We give here a proof due to Szegö (see [48] [1]) based on the isoperimetric inequality.
Let r0 < |z| < r1 be a given annulus, and let D be its image under a conformai map f (z). Let L(r) be the length
of the image of |z| = r, and A(r) the area enclosed. Then 4πA(r) 6 L2(r) 6 2πA′(r)/A(r) and 2/r 6 2A′(r)/A(r),

r0 < r < r1. Integrating from r0 to r1, yields 2 ln r1
r0
6 ln A1

A0
, or

r2
1

r2
0
6 A1

A0
, which proves the theorem.

Proof. There exists an annulus Ar = {r < |z| < 1} and a conformal mapping φ : Ar → A, φ(z) =
∑

akzk.
Let Γρ = φ ◦ Kρ and Gρ = Int(Γρ). Then

s(ρ) = area(Gρ) =
∑

k|ak|
2ρ2k.

Let
τ(ρ) = ρ−2s(ρ) =

∑
k|ak|

2ρ2k−2

Since k(2k−2) > 0, τ′ is non negative and τ is increasing function and consequently τ(1) > τ(r) and therefore
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s(1)
s(r)
>

1
r2 = e2 ln 1

r . (19)

Hence, since M(A) = M(Ar) = ln 1
r /2π, it follows s(r)e4πmod(A) 6 s(1). Since s(1) = area(D) and s(r) =

area(F), this yields (4.4).
If equality holds in (4.4), then equality holds in (19). Hence ak = 0, k , 1, and thereforeφ(z) = a0 +a1z.

If function φ is analytic on an annulus Ar = {r < |z| < 1}, then τ(ρ) = ρ−2s(ρ) is not decreasing.
As a corollary A(r1,R1) and A(r2,R2) are conformally equivalent if and only if R1/r1 = R2/r2.
Let f be a holomorphic function on A(r,R), r < ρ < R, Γρ = f ◦ Kρ, where Kρ positively oriented circle of

radius ρ withe center at the origin.
Denote by S(ρ) = S f (ρ) the oriented area surrounded by Γρ and set τ(ρ) = τ f (ρ) = ρ−2S(ρ). The method

of the proof of Theorem 4.4 can be used to prove more general result:

Theorem 4.5. Let f be a holomorphic function on A = A(r,R), r < ρ < R, Γρ = f ◦ Kρ and S(ρ) the oriented area
surrounded by Γρ.

Then τ(ρ) = ρ−2S(ρ) is increasing, that is for r < r1 6 R1 < R,

R2
1

r2
1

6
S(R1)
S(r1)

.

Proof. Let f (z) =
∑+∞
−∞ akzk, z ∈ A. It is known

S(ρ) =

∫
Γρ

u dv =
i
2

∫
Γρ

w dw =
i
2

∫ 2π

0
Γρ d Γρ .

Hence

S(ρ) = π
+∞∑
−∞

k|ak|
2ρ2k , r < ρ < R .

Since k(2k− 2) > 0, τ′ is non negative and τ is not a decreasing function and consequently τ(R1) > τ(r1).

Theorem 4.6. (i.2) τ f is increasing on [r,R], that is for r < r1 6 R1 < R,

R2
1

r2
1

6
S(R1)
S(r1)

.

(ii.2) Let A1 be two ring domain in the plane and ψ : A→ A1 be a covering with degree p.
(iii.2) Then τp(ρ) = ρ−2pS(ρ) is increasing, that is for r < r1 6 R1 < R,

R2p
1

r2p
1

6
S(R1)
S(r1)

.

(iv.2) Let A and A1 be two ring domains in the plane and let ψ : A→ A1 be K-qr. Then |de1ψ|M(A) 6 KM(A1).

The proof will appear in a forthcoming paper. If f is univalent, Theorem 4.6 (i.2) is reduced to Theorem A.
Beardon and Minda proved (Theorem 13.6, [4]):

If ψ is a holomorphic function. Then |de1ψ|M(A) 6M(A1).
In addition, if ψ is a covering with degree p, then M(A1) = pM(A).

Note: Let γ be a closed rectifiable curve of length L = l(γ). Then
L > 2πcapγ.

Let G = [0, 1]×B, and for each τ ∈ [0, 1] fτ : B→ C continuous mapping, and 1 homeomorphism of [0, 1].

Set F = Fτ(z) = ( fτ(z), 1(τ)) and G∗ = F(G). Define capav(G∗) = (
∫ 1

0 cap2(τ)dτ)1/2, where cap(τ) = cap( fτ(B).
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Proposition 4.7. Suppose that F is continuous and injective on G and that G∗ = F(G). Then m3(G∗) 6 πcap2
av(G∗).

Proof. The proof is based on the following facts:

(a) By Fubini’s theorem m3(G∗) =
∫ 1

0 m2( fτ(B))dτ, and
(b) By Theorem 4.3(iii.1), m2( fτ(B)) 6 πcap2(τ).

Using Goodman -Papus theorem we can prove the following.

Proposition 4.8. Suppose that the volume V of a solid of revolution generated by rotating a plane figure F about an
external axis and the distance d traveled by its geometric centroid. Then

V 6 πdcap2(F) .

4.2. Wirtinger and Isoperametric inequality
The union of all closed spheres of radius r whose centeres lie in D is called the exterior parallel set Dr and

denote by A(r) the area of Dr. Let D be a convex domain in R2, r0 the radius of the smallest circumbscribed
circle in D and L be the length of ∂D. Then A(r0) = A + Lr0 + πr2

0 6 2Lr0; for a simple proof see [15]. Hence
A 6 Lr0 − πr2

0 6
L2

4π .
An annulus A = A(r,R) is a ring bounded by two concentric circles KR and Kr with radii r, R (r < R).

The annulus is said to enclose C if KR encloses and meets C, while C encloses and meets KR; to bi-enclose
C if C passes at least four time between Kr and KR. For a simple closed rectifiable curve γ we define
the isoperimetric deficiency ∆(γ) = L2

− 4πA and ∆1(γ) = L2/2π − 2A, where A = A(γ) and L = L(γ) are
respectively the sign area and the length of γ.

T. Bonnesen showed that for a convex closed curve C there is a unique annulus which bi-enclose C and
established the inequality 2(R − r)2 6 ∆1(C). Fuglede extended Bonnesen result to any closed rectifiable
curve γ in the plane.

If z = γ = x + iy, and t = 2πs/L, where s denotes natural parameter, then ∆1(γ) =
∫ 2π

0 [(x′)2 + y′2]dt −

2
∫ 2π

0 xy′dt. Hence, since [(x′)2 + y′2]−2xy′ = (x− y′)2 + (x′)2
− (x)2, we find ∆1(γ) =

∫ 2π

0 (x− y′)2dt+
∫ 2π

0 [(x′)2
−

(x)2]dt.
In the complex notation, L2 =

∫ 2π

0 |z
′(t)|2dt, 2iA = (z′, z) and |iz′ + z|2 = |z′(t)|2 + |z(t)|2 + 2i(z′, z). Hence

∆(γ) = L2
− 4πA = 2π(

∫ 2π

0 (|z′(t)|2 + i(z′, z))dt) = π(
∫ 2π

0 (|z′(t)|2 − |z(t)|2 + |iz′ + z|2)dt.
For a complex valued function f defined on [a, b] we define W( f ) := W( f ; [a, b]) =

∫ π
0 (| f ′|2 − | f |2)dx.

Suppose that (a1): f is real-valued function defined on [0, 2π] and
∫ 2π

0 f (t)dt = 0.
Since f has mean 0, you can write f = F′ for F another 2πperiodic function and we can consider the curve

C = C f defined by C(t) = f (t) + iF(t), t ∈ [0, 2π]. By Cauchy-Schwartz inequality L2/2π 6
∫ 2π

0 [ f 2 + f ′2]dt.
Hence ∆1(C f ) = L2/2π − 2A 6W( f ). We might summarize the above consideration in the form:

Proposition 4.9. (i) If γ is a closed rectifiable curve, s natural parameter and t = 2πs/L, then
W(γ) 6 ∆1(γ).
(ii) Under the hypothesis (a1), ∆1(C f ) 6W( f ).

Hence using Wirtinger’s inequality one can prove the Isoperametric inequality and vice versa. Hurwitz
used Wirtinger inequality in 1904 to prove the isoperimetric inequality.

Theorem 4.10 (Version 1). Let f : R → R be a periodic function of period 2π, which is continuous and has a
continuous derivative throughoutR ( more generally if f is absolutely continuous on [0, 2π] and f ′ ∈ L2(0, 2π)), and
such that

∫ 2π

0 f (x) dx = 0. Then ∫ 2π

0
f ′2(x) dx >

∫ 2π

0
f 2(x) dx
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with equality if and only if f (x) = a sin(x) + b cos(x), for some a and b (or equivalently f (x) = c sin(x + d) for some c
and d ).

This version of the Wirtinger inequality is the one-dimensional Poincaré inequality, with optimal constant.
Before we proceed further note that the hypothesis that f is absolutely continuous function has a

important role in correspoding version of previous theorem. Indeed, if f is odd periodic function of period
2π, which satisfies the condition f (π/2 + x) = f (π/2 − x), x ∈ R, defined by f (t) = C(2t/π), 0 6 t 6 π/2,
where C is Cantor function on [0, 1], then f is continuous onR,

∫ 2π

0 f (x) dx = 0, and f ′ = 0 a.e. onR, but we
can not apply the theorem on f .

The following related inequality is also called Wirtinger’s inequality (see Dym & McKean 1985). We
will call it Wirtinger’s inequality version 2.

Theorem 4.11 (Version 2). If a > 0 and f is a C1 function such that f (0) = f (a) = 0, then

π2
∫ a

0
| f |2 6 a2

∫ a

0
| f ′|2 .

In this form, Wirtinger’s inequality is seen as the one-dimensional version of Friedrich’s inequality.

Proof. The proof of the two versions are similar. The first version can be scaled to give the second version.
Here is a proof of the first version of the inequality. Since Dirichlet’s conditions are met, we can write

f (x) =
1
2

a0 +
∑
n>1

(
an

sin nx
√
π

+ bn
cos nx
√
π

)
,

and moreover a0 = 0 since the integral of f vanishes. By Parseval’s identity,∫ 2π

0
f 2(x)dx =

∞∑
n=1

(a2
n + b2

n)

and ∫ 2π

0
f ′2(x) dx =

∞∑
n=1

n2(a2
n + b2

n)

and since the summands are all > 0, we get the desired inequality, with equality if and only if an = bn = 0
for all n > 2.

The version of (Poincaré-) Wirtinger inequality on [0, π] is often appears in the practice. Although it is
formally a corollary of Version 2, in fact it is equivalent statement and since it has independent significance
we will state it as a separate result.

Theorem 4.12 (Version 3). f : [0, π]→ C is C1 and f (0) = f (π) = 0 then∫ π

0
| f (t)|2dt 6

∫ π

0
| f ′(t)|2dt .

More generally the theorem holds if f is absolutely continuous on [0, 2π] and f ′ ∈ L2(0, π) and
∫ π

0 f (x) dx = 0.

The following proof is found in section 7.7 of Hardy-Littlewood-Polya Inequalities, it is motivated by
Hilbert’s investigations into calculus of variations, especially Hilbert’s method of invariant integrals.

Proposition 4.13. If y : [0, π] → R is absolutely continuous function, y′ ∈ L2(0, π) and y(0) = y(π) = 0, then
I(y) :=

∫ π
0 (y′2 − y2)dx =

∫ π
0 (y′ − y cot x)2dx > 0

with equality only if y′ = y cot x, which is when y = k sin x.
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Proof. Note that from the hypothesis that y is absolutely continuous function follows that y(x) =
∫ x

0 y′(s)ds,
x ∈ [0, π]. Consider the expression A(x) = (y′2 − y2) − (y′ − y cot x)2 = −(1 + cot2 x)y2 + 2yy′ cot x and
B(x) = y2 cot x. One can check that dB = A(x)dx.
Now, since y′ ∈ L2, we have that y2(x) = (

∫ x

0 y′(s)ds)2 6 (
∫ x

0 y′2(s)ds)
∫ x

0 1ds = x
∫ x

0 y′2(s)ds and therefore
y2(x) = o(1)x, when x→ 0. In a similar way, for every a ∈ [0, π], we have y2(x) = o(1)(x − a), when x→ a.
Hence limx→0 B(x) = limx→π B(x) = 0 and
I =

∫ π
0 A(x)dx =

∫ π
0 dB = B|π0 = B(π) − B(0) = 0 − 0 = 0, and therefore

I(y) =
∫ π

0 (y′2 − y2)dx =
∫ π

0 (y′ − y cot x)2dx > 0
with equality only if y′ = y cot x, which is when y = k sin x.

4.3. Lax’s Proof of the Isoperimetric Inequality

Let α be a closed curve. Recall then area A = A(α) enclosed by α is A =
∫
α

xdy = i
2

∫
α

zdz̄ = − 1
2 Im(

∫
α

zdz̄).
Peter Lax constructed what is currently considered to be the shortest and most elementary of all existing

proofs. Tapia [58] presents a short, elementary, and teachable solution of the isoperimetric problem.
He demonstrates that Euler’s approach can be extended to give a sufficiency proof which is short and
elementary and therefore for which he believes that is competitive with the Lax proof from this point of
view. The following proof is due to Peter Lax and is taken from a paper presented in American Mathematical
Monthly [27]. This journal is generally a good source for short, readable papers.

Proof. Let α(s) be parameterized by arc length, and α(s) = (x(s), y(s)). In this proof, we will assume that the
perimeter of the image of α is equal to 2π, and show that the area is less than π. We will later show that the
results can be scaled to give the formula proposed in the theorem. Since α is unit speed, (x′)2 + (y′)2 = 1.
Also, we may assume that y(0) = y(π) = 0. If this is not the case, then rotate the coordinate axes to make it
so.

Area is a positive quantity, but the integrals used to compute the area bounded by the image of α carry
an ambiguity due to the orientation of α and in general A(α) =

∫
α

ydx can have negative value.

Set |A| = ±
∫
α

ydx = ±(B + C), where B =
∫ π

0 yx′ds and C =
∫ 2π

π
yx′ds. Since (x′)2 + (y′)2 = 1,

|B| 6 1
2

∫ π
0 [y2 + (x′)2]ds = 1

2

∫ π
0 (y2 + 1 − (y′)2)ds. Set a(s) = y2 + 1 − (y′)2 and J(y) :=

∫ π
0 a(s)ds. Since

J(y) = π − I(y), by the version 3 of (Poincare-) Wirtinger inequality, we find J(y) 6 π. Lax gave direct proof

of this inequality. Write y(s) = u(s) sin(s) for 0 6 s 6 π and show that J =
∫ π

0 c(s)ds, where c(s) = 1−(u′)2 sin2 s.
Now we outline his argument which uses a bit of cleverness.. Using y′ = u′ sin s + u cos s, we find

a(s) = u2(sin2 s − cos2s) + 1 − (u′)2 sin2 s − 2uu′ sin s cos s. Set b(s) = u2(sin2 s − cos2s) − 2uu′ sin s cos s, b1(s) =

u2(sin2 s − cos2s), b3(s) = −2uu′ sin s cos s, c(s) = b2(s) = 1 − (u′)2 sin2 s and Bk =
∫ π

0 bk(s)ds.
Since we know very little about the function u, we know even less about its derivative u′. A standard

mathematical technique is to remove unwanted derivatives using integration by parts. Note that 2uu′ =

(u2)′, and so we take t = u2 and v = sin s cos s, we have B1 = −
∫ π

0 u2dv. Since v(0) = v(π) = 0, by the formula

for integration by parts, we find B3 = −
∫ π

0 d(u2)v =
∫ π

0 u2dv and therefore B1 + B3 = 0. Hence J =
∫ π

0 c(s)ds
and since c(s) 6 1, we get J 6 π and |B| 6 π/2.

A similar proof can be used to show that the second integral is also less than or equal to π/2. Hence
A 6 2 · π/2 = π, as claimed.

4.4. Goodman -Papus theorem
In geometry the term barycenter is a synonym for ”centroid”, in physics ”barycenter” may also mean

the physical center of mass or the center of gravity, depending on the context. The center of mass (and
center of gravity in a uniform gravitational field) is the arithmetic mean of all points weighted by the local
density or specific weight. If a physical object has uniform density, then its center of mass is the same as
the centroid of its shape.

The centroid of a triangle is the intersection of the three medians of the triangle (each median connecting
a vertex with the midpoint of the opposite side). It lies on the triangle’s Euler line, which also goes through
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various other key points including the orthocenter and the circumcente. The geometric centroid of a convex
object always lies in the object. A non-convex object might have a centroid that is outside the figure itself.
The centroid of a ring or a bowl, for example, lies in the object’s central void.

If the centroid is defined, it is a fixed point of all isometries in its symmetry group. In particular, the
geometric centroid of an object lies in the intersection of all its hyperplanes of symmetry. The centroid of
many figures (regular polygon, regular polyhedron, cylinder, rectangle, rhombus, circle, sphere, ellipse,
ellipsoid, superellipse, superellipsoid, etc.) can be determined by this principle alone.

In particular, the centroid of a parallelogram is the meeting point of its two diagonals. This is not true
for other quadrilaterals.

For the same reason, the centroid of an object with translational symmetry is undefined (or lies outside
the enclosing space), because a translation has no fixed point.

For a plane figure X, in particular, the barycenter coordinates are

Cx =

∫
xSy(x) dx

A
and (20)

Cy =

∫
ySx(y) dy

A
, (21)

where A is the area of the figure X; Sy(x) is the length of the intersection of X with the vertical line at abscissa
x; and Sx(y) is the analogous quantity for the swapped axes. Pappus’ centroid theorem (also known as
the Guldinus theorem, Pappus-Guldinus theorem or Pappus’ theorem) is either of two related theorems
dealing with the surface areas and volumes of surfaces and solids of revolution, cf. [66].

The first theorem states that the surface area A of a surface of revolution generated by rotating a plane
curve C about an axis external to C and on the same plane is equal to the product of the arc length L of C
and the distance d traveled by its geometric centroid: A = Ld.

The second theorem states that the volume V of a solid of revolution generated by rotating a plane
figure F about an external axis is equal to the product of the area A of F and the distance d traveled by its
geometric centroid:

V = Ad.

For example, the volume of the torus with minor radius r and major radius R is

V = (πr2)(2πR) = 2π2Rr2.

The theorem can be generalized for arbitrary curves and shapes, under appropriate conditions, cf. [21].

5. Isoperimetric inequality in space

A condenser in Rn is a pair E = (A,F), where A is open set in Rn and F is a compact subset of A. The
p-capacity of E is defined by

cappE = inf
∫

A
|∇u|pdm, 1 6 p < ∞, (22)

where the infimum is taken over all nonnegative functions u in ACLp(A) (for ACL propery see subsection
5.4) with compact support in A and u|F > 1. The n-capacity (respectively 2-capacity) of E is called the
conformal capacity (respectively electrostatic capacity) of E and denoted by capE.

For all condenser E = (A,F) in Rn

cap(A,F) = Mod(4( f , ∂A; A)) .
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If R = R(C0,C1) is a ring and if C∗0 and C∗1 are the spherical symmetrization of C0 and C1 in opposite rays
L0,L1, then capR∗ 6 capR, where R∗ = R(C∗0,C

∗

1). The n-dimensional generalization of planar isoperimetric
inequality is

(mesnD)
n−1

n 6 cnHn−1(∂D), (23)

where D is a domain with smooth boundary ∂D and compact closure, and Hn−1 is the (n - 1)-dimensional
area. The constant cn is such that (23) becomes equality for any ball, that is cn = n−1ω1/n

n with ωn standing
for the volume of the unit ball. Inequality (23) holds for arbitrary measurable sets with Hn−1 replaced by
the so called perimeter in the sense of De Giorgi (1954-1955).

The isoperimetric inequality in n-dimensions can be quickly proven by the Brunn-Minkowski inequality
(Osserman [48](1978); Federer (1969, 3.2.43)).

The Minkowski-Steiner formula is used, together with the BrunnMinkowski theorem, to prove the
isoperimetric inequality.

The Minkowski-Steiner formula is a formula relating the surface area and volume of compact subsets
of Euclidean space. More precisely, it defines the surface area as the ”derivative” of enclosed volume in an
appropriate sense. Define the quantity λ(∂A) by the Minkowski-Steiner formula

λ(∂A) := lim inf
δ→0

µ
(
A + Bδ

)
− µ(A)

δ
,

where Bδ = {x : |x| 6 δ}.
The Brunn-Minkowski inequality: Let n > 1 and let µ denote the Lebesgue measure on Rn. Let A and B

be two nonempty convex compact subsets of Rn. Then the following inequality holds:

[µ(A + B)]1/n > [µ(A)]1/n + [µ(B)]1/n,

where A + B denotes the Minkowski sum: A + B := { a + b ∈ Rn
| a ∈ A, b ∈ B }.

In general, no reverse bound is possible, since one can find convex bodies A and B of unit volume so
that the volume of their Minkowski sum is arbitrarily large. Milman’s theorem states that one can replace
one of the bodies by its image under a properly chosen volume-preserving linear map so that the left-hand
side of the BrunnMinkowski inequality is bounded by a constant multiple of the right-hand side.

The n-dimensional isoperimetric inequality is equivalent (for sufficiently smooth domains) to the
Sobolev inequality on Rn with optimal constant:(∫

Rn
|u|

n
n−1

) n−1
n

6 n−1ω−1/n
n

∫
Rn
|∇u|

for all u ∈W1,1(Rn). For recent development see [15].
If F is compact set in a domain D ⊂ Rn and E = (D,F), then [43]

capnE > nnvn

[
ln

mesn(D)
mesn(F)

]1−n

. (24)

5.1. Recent developments concerning isoperimetric inequality in space
There are new ideas concerning isoperimetric inequality in space; see for example [15, 20] and the

literature cited there. Fusco’s notes [20] contains five lectures given by the author at the CNA Summer
School held at Carnegie Mellon University in Pittsburgh from May 30 to June 7, 2013. The course gives a
self contained introduction to the classical isoperimetric inequality and to various stability results proved
in recent years for this inequality and other related geometric and analytic inequalities. Druet paper [15]
yields an overview of what is known about isoperimetric inequalities on nonpositively curved spaces,
more precisely on Cartan-Hadamard manifolds. The whole course turns around a conjecture, which is still
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open, which asserts that the Euclidean isoperimetric inequality should hold on complete, simply-connected
Riemannian manifolds of nonpositive sectional curvature (Cartan-Hadamard manifolds). A natural way
to prove the isoperimetric inequality is to find a map from a domain into the ball of same volume which
preserves the volume and decreases the area. In particular a proof is given due to Gromov. Although
exact reference for this proof is not given in [15] 1) Duret follows M. Berger, who in one of his books on
differential geometry, writes that this proof is due to Gromov and we will follow the same. Note that
according McCann-Gullien [45], McCann and Trudinger observed independently that a solution to the
second boundary value problem for the Monge-Ampère equation (M-A) (see subsection 5.3) yields a simple
proof of the isoperimetric inequality (with its sharp constant).

The proof of Gromov uses the Knothe map. There is another nice proof in in the same spirit using
the Brenier map coming from optimal transport. The course gives some backgrounds to understand why
this conjecture should be true and to realize the outlines of the proofs of some of the main results on the
subject, leaving details to the reader who can refer to the original papers. If E is a subset of Rn we denote
by |E| = mn(E) the Lebesgue n- dimensional measure and by Hk(E), 1 6 k 6 n, Hausdorff k-dimensional
measure. We also use notation |∂E| for (n − 1)- dimensional surface measure of ∂E. If ωn = |Bn

| and
σn−1 = |Sn−1

|, it is known that σn−1 = nωn.
One can use the general Stokes’ Theorem to equate the n-dimensional volume integral of the divergence

of a vector field F over a region V to the (n − 1)-dimensional surface integral of F over the boundary of V:∫
V
∇ · F dVn =

∮
∂V

F · n dSn−1 .

The left side is a volume integral over the domain V, the right side is the surface integral over the boundary
of the domain V. The closed manifold ∂V is quite generally the boundary of V oriented by outward-pointing
normals, and n is the outward pointing unit normal field of the boundary ∂V. In terms of the intuitive
description above, the left-hand side of the equation represents the total of the sources in the volume V,
and the right-hand side represents the total flow across the boundary ∂V. This equation is also known as
the Divergence theorem. When n = 2, this is equivalent to Green’s theorem. When n = 1, it reduces to the
Fundamental theorem of calculus.

We now outline a formal proof of the isoprimetric inequality. By scaling invariance of isoperi-
metric inequality, we can assume that the volume of E is the volume of unit ball ωn. Let M(x) =
(M1(x1),M2(x1, x2), ...,Mn(x)) be the Knothe map which maps E onto B, see for example [18] and subsection
5.2. This map has several interesting properties, that are easily checked at a formal level. Its gradient ∇M
is upper triangular, its diagonal entries (the partial derivatives dk = ∂Mk/∂xk) are positive on E, and their
product, the Jacobian of M, J(M) is constantly equal to 1 := |K|/|E|, i.e.,

J(M) = det∇M =

n∏
k=1

dk = 1 . (25)

By the arithmetic-geometric mean inequality n = nJ(M)1/n 6 div(M), that is n 6 div(M), and therefore
σn−1 = nωn = n

∫
E 1dx 6

∫
E div(M)dx. Hence we first conclude that σn−1 6

∫
E div(M)dx and if the boundary of

E is oriented by outward-pointing normals, and ν is the outward pointing unit normal field of the boundary,
by a formal application of the Divergence Theorem 2),

σn−1 6

∫
E

div(M)dx =

∫
∂E

M · ν dS . (26)

Since |M| = 1 on ∂E we find |M · ν| 6 1 on ∂E. Hence
∫
∂E M · νdS 6 |∂E| , and we obtain that n|E| 6 |∂E|which

is exactly the isoprimetric inequality.

1)the reference may be the appendix by M. Gromov in [46].
2)we suppose enough regularity to apply Stokes theorem
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For further discussion we borrow a few details from Villani [62], see p.28 and p.362. Apart from the
Euclidean one, the most famous isoperimetric inequality in differential geometry is certainly the Levy-
Gromov inequality, which states that if A is a reasonable set in a manifold (M, 1) with dimension n and Ricci
curvature bounded below by K, then

|∂A|

|A|
n−1

n

>
|∂B|

|B|
n−1

n

,

where B is a spherical cap in the model sphere S (that is, the sphere with dimension n and Ricci curvature
K) such that |B|/|S| = |A|/|M|. In other words, isoperimetry in M is at least as strong as isoperimetry in the
model sphere.

According Villani it is not known if the Levy-Gromov inequality can be retrieved from optimal transport,
and this is one of the most exciting open problems in the field. He writes: ”Indeed, there is to my knowledge
no reasonable proof of the Levy-Gromov inequality, in the sense that the only known arguments rely on
subtle results from geometric measure theory, about the rectifiability of certain extremal sets. A softer
argument would be conceptually very satisfactory”. He records this in the form of a loosely formulated
open problem:

Open Problem : Find a transport-based, soft proof of the Levy-Gromov isoperimetric inequality (see
21.16[62]).

Next, in [18], a sharp quantitative version of the anisotropic isoperimetric inequality is established,
corresponding to a stability estimate for the Wulff shape of a given surface tension energy. This is achieved
by exploiting mass transportation theory, especially Gromovs proof of the isoperimetric inequality and the
Brenier-McCann Theorem. A sharp quantitative version of the Brunn-Minkowski inequality for convex
sets is proved as a corollary. In [22], motivated by Carlemans proof of isoperimetric inequality in the plane,
the authors study some sharp integral inequalities for harmonic functions on the upper halfspace. They
also derive the regularity for nonnegative solutions of the associated integral system and some Liouville
type theorems, [22].

Anisotropic perimeter. The anisotropic isoperimetric inequality arises in connection with a natural
generalization of the Euclidean notion of perimeter. In dimension n > 2, we consider an open, bounded,
convex set K ofRn containing the origin. Starting from K, we define for every x ∈ Rn, |x|K = inf{λ > 0 : x ∈ K},
and a weight function on directions through the Euclidean scalar product |υ|∗ := sup{x · υ : x ∈ K}, υ ∈ Sn−1,
where Sn−1 = {x ∈ Rn : |x| = 1}, and |x| = |x|e is the Euclidean norm of x ∈ Rn. Let E be an open subset of Rn,
with smooth or polyhedral boundary ∂E oriented by its outer unit normal vector υE, and let Hn−1 stand for
the (n − 1)-dimensional Hausdorff measure on Rn. The anisotropic perimeter of E is defined as

PK(E) :=
∫
∂E
|υE(x)|∗ dHn−1(x) .

This notion of perimeter obeys the scaling law PK(λE) = λn−1PK(E), λ > 0, and it is invariant under
translations. However, by contrast to the Euclidean perimeter, PK is not invariant by the action of O(n), or
even of SO(n).

When K is the Euclidean unit ball B = {x ∈ Rn : |x|e < 1} of Rn then |v|∗ = 1 for every v ∈ Sn−1, and
therefore PK(E) coincides with the Euclidean perimeter (surface area) of E. Set n′ = n/(n− 1) and denote by
|E| the Lebesgue measure of E. The notion of volume obeys the scaling law |λE| = λn

|E|, λ > 0. Hence

PK(λE)
|λE|1/n′

=
PK(E)
|E|1/n′

. (27)

Apart from its intrinsic geometric interest, the anisotropic perimeter PK arises in applications as a model
for surface tension in the study of equilibrium configurations of solid crystals. If a liquid drop or a crystal of
mass m is subject to the action of a potential, at equilibrium, its shape minimizes (under a volume constraint)
the free energy, that consists of a (possibly anisotropic) interfacial surface energy PK(E) plus a bulk potential
energy, see [17] and literature cited there and posted on Figalli site [17](b).
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In both settings, one is naturally led to minimize PK(E) under a volume constraint. By (27), this is, of
course, equivalent to study the isoperimetric problem

inf{
PK(E)
|E|1/n′

: 0 < |E| < ∞} .

As conjectured by Wulff back to 1901, the unique minimizer (modulo the invariance group of the functional,
which consists of translations and scalings) is the set K itself. In particular the anisotropic isoperimetric
inequality holds,

(A1) PK(E) > n|K|1/n|E|1/n
′

.

Dinghas showed how to derive (A1) from the Brunn-Minkowski inequality:

(A2) |E + F|1/n > |E|1/n + |F|1/n

for every E,F ⊂ Rn. The formal argument is well known. (A2) implies |E + εK| > (|E|1/n + ε|K|1/n)n and
therefore

|E + εK| − |E|
ε

>
(|E|1/n + ε|K|1/n)n

− |E|
ε

.

As ε→ 0, the right hand side converges to n|K|1/n|E|1/n′ , while, if E is regular enough, the left hand side
has PK(E) as its limit. For y ∈ Rn, we define a weight function on directions through the Euclidean scalar
product |y|∗ = |y|∗,K := sup{x · υ : x ∈ K}, which gives the following Cauchy-Schwarz type inequality

(A3) x · y 6 |x||y|∗ .

Gromov [46] deals with the functional version of (A1), proving the anisotropic Sobolev inequality∫
Rn
| −∇ f |∗ dx > n|K|1/n | f |Ln′ (Rn) (28)

for every f ∈ C1
c (Rn).

5.2. Knothe map
In this subsection we outline a proof of anisotropic isoperimetric inequality (A1) using the Knothe map.

Let E and K be two subset in Rn. We first construct the Knothe map M between E and K. The Knothe
construction depends on the choice of an ordered orthonormal basis of Rn. Let us use, for example, the
canonical basis of Rn, with coordinates x = (x1, x2, ..., xn), and for every x ∈ E , y ∈ K and 1 6 k 6 n − 1, let
us define the corresponding (n − k)-dimensional sections of E and K as
E(x1,x2,··· ,xk) = {z ∈ E : z1 = x1, · · · , zk = xk} and
K(y1,y2,··· ,yk) = {z ∈ K : z1 = y1, · · · , zk = yk}.
We will define M(x) = (M1(x1),M2(x1, x2), ...,Mn(x)) as follows. The vertical section Ex1 of E is sent into
the vertical section KM1(x1) of K, where M1(x1) is chosen so that the relative measure of Êx1 = {z ∈ E : z1 <
x1} in E equals the relative measure of {z ∈ K : z1 < M1(x1)} in K. The same idea is used to displace
Ex1 along KM1(x1): the point x = (x1, x2) is placed in KM1(x1) at the height M2(x) such that the relative
H(n−1)-measure of Ê(x1,x2) = {z ∈ Ex1 : z2 < x2} in Ex1 equals the relative H(n−1)-measure of {z ∈ KM1(x1) :
z2 < M2(x)} in KM1(x1). We proceed by induction. Set Ak := Ê(x1,x2,··· ,xk,xk+1) = {z ∈ E(x1,x2,··· ,xk) : zk+1 < xk+1} and
Bk := K̂(M1,M2,··· ,Mk,Mk+1) = {z ∈ K(M1,M2,··· ,Mk)) : zk+1 < Mk+1}. For given (x1, x2, · · · , xk) if the functions M1(x1),
M2(x1, x2), ..., and Mk(x1, x2, · · · , xk) are determined, then for given xk+1, we define Mk+1 such that

Hn−k(Ak)
Hn−k(E(x1,x2,··· ,xk))

=
Hn−k(Bk)

Hn−k(E(M1,M2,··· ,Mk ,Mk+1))
.



Miodrag Mateljević / Filomat 29:2 (2015), 275–302 294

By the construction M is volume-preserving and Mk does depend only on x1, ..., xk. Thus the matrix
DiM j is upper diagonal. The resulting map has several interesting properties, that are easily checked at a
formal level. Its gradient ∇M is upper triangular, its diagonal entries (the partial derivatives dk = ∂Mk/∂xk)
are positive on E, and their product, the Jacobian of M, J(M) is constantly equal to a := |K|/|E|, i.e.,

J(M) = det∇M =

n∏
k=1

dk = a . (29)

By the arithmetic-geometric mean inequality, we find

nJ(M)1/n 6 div M (30)

on E. By (29), (30) and a formal application of the Divergence Theorem,
n|K|1/n|E|1/n′ =

∫
E nJ(M)1/n 6

∫
E div M =

∫
∂E M · υE(x)dHn−1(x).

Hence

n|K|1/n|E|1/n
′

6

∫
∂E

M · υE(x)dHn−1(x) . (31)

¿From (31) and (A3), we find

(A4) n|K|1/n|E|1/n
′

6

∫
∂E
|M||υE(x)|∗ dHn−1(x) 6 PK(E)

and the isoperimetric inequality is proved.

5.3. Brenier map
The above argument could be repeated verbatim if the Knothe map is replaced by the Brenier map. The

Brenier-McCann Theorem furnishes a transport map between E and K, which is analogous to the Knothe
map, but enjoys a much more rigid structure.

Theorem 5.1 (A version of Brenier’s theorem). If µ� dx and ν are Borel probability measures on X = Y = Rd,
then there exists a unique convex, Lipschitz continuous function L : Rd

→ R ∪ {+∞} such that its gradient T = ∇L
pushes µ forward to ν. Apart from changes on a set of measure zero, 1 is unique.

A construction of Brenier’s map for some special measures in a summary An Elementary Introduction to
Monotone Transportation, written by Ivanisvili, [67], p.44-48. First, we consider the case when the measure
ν is atomic, i.e. with finite support {u j : 1 6 j 6 m}.

For such a measure we find a convex function of the form L(x) = max j{(u j, x)− s j}with some apropriate
nambers s j, such that it satisfyes the required property. In general, we approximate measure ν weakly
by atomic measures vk. It turns out that we can choose corresponding convex functions Lk so that they
converge locally uniformly to some convex function L, moreover ∇Lk → ∇L except for some set. Finally, by
standard weak limit arguments we can see that the map L transports the measure µ to ν.

For connections between Optimal Transport and isoperimetric problem see [67] and literature cited
there. Postponing a rigorous discussion to the proof of (A1), we recall that Brenier-McCann Theorem
ensures the existence of a convex, continuous function. Let (X, µ) and (Y, ν) be two Borel measurable space
and a cost funtion c : X × Y → R. Any Borel map S : X → Y defines an image or push-forward measure
ν = S∗µ on Y by ν[B] = µ[S−1(B)].

The optimal transport problem (The Monge problem) seeks a measurable map T : X → Y such that
T∗µ = ν, and

(M)
∫

c(x,Tx)µ(dx) = inf
S∗µ=ν

∫
c(x,Sx)µ(dx) .



Miodrag Mateljević / Filomat 29:2 (2015), 275–302 295

Original Monge cost function is c(x, y) = |x − y| in R3. For this cost, existence of a minimizer proven
around 1998−2003!! (Ambrosio, Caffarelli, Evans, Feldman, Gangbo, McCann, Sudakov, Trudinger, Wang).
Easier solution when the cost is ”strictly convex”.

Suppose now that X,Y ⊂ Rn dµ = ρ(x)dx with measures dν = ρ̃(x)dx absolutely continuous with respect to
Lebesgue measure. InRn if S is 1-to-1, using changes of variables ρ̃(y)dy = ρ̃(Sx)|det(dS)(x)|, ν[B] = µ[S−1(B)]
yields
(M1) ρ(x) = ρ̃(Sx)|det(dS)(x)|.

Hence it is clear that solutions T to (M) satisfy ρ(x) = ρ̃(Tx)|det(dT)(x)|. Now due to the characterization
T = Du, it can be seen that solutions to (M) satisfy an equation of Monge-Ampère type:
(M-A) ρ(x) = ρ̃(Du(x))|det(D2u(x)|.

For the quadratic cost function c(x, y) = −(x, y) it was shown by Brenier that there exists a unique solution
T = Du which is the gradient of some convex potential function u. This result was extended to more general
cost functions by Gangbo and McCann. Thus solution of the Euclidean optimal transport T = ∇L, L is
convex. In particular T is monotone. Monotone changes of variables have applications .

Recall that Euclidean isoperimetric problem states that:
(A) Among all domains of fixed volume the sphere has minimal surface. We now outline Gromov’s
approach. Let D be a domain and denote by S the boundary of D. Set f (x) = 1/|D|, 1(y) = 1/|B|, and
consider µ = f dx and ν = 1dy. By Brenier’s theorem there is T : D→ B such that T pushes uniform measure
forward µ to uniform measure ν and T = ∇u, where u is convex. Then dT has nonnegative eigenvalues λi.
Hence, by Proposition 5.3, (

|B|
|D|

)1/n

= (det dT)1/n = (
∏

λi)1/n 6

∑
λi

n
=

divT
n

and

A = A(D,B) =:=
∫

D
(det dT)1/n = |D|

(
|B|
|D|

)1/n

= |B|1/n|D|1/n
′

and therefore

A = |D|
(
|B|
|D|

)1/n

6

∫
D

divT
n
.

Using the divergence theorem ∫
D

divT
n

=
1
n

∫
S

T · n,

we find

A 6
1
n

∫
S
|T| =

|S|
n
.

Hence
n|D|(n−1)/n

|B|1/n 6 |S| .

Using the Brenier map, it is (formally) easy to characterize the minimizers of the inequality. Indeed, equality
implies that n(det dT)1/n = divT on D. Thus, we have equality in the arithmetic-geometric mean inequality
which in turn implies that λ1 = λ2 = · · ·λn. Therefore T = Id and consequently, D must be a translate of B.

If K is a convex set, in a similar way we can prove (A1) PK(E) > n|K|1/n|E|1/n′ . Equality holds if D is
a translate of K. A rigorous discussion requires more details. Without loss of generality, we can assume
E ⊂ Rn bounded and smooth. Let Br = B(0, r) be the ball centered at the origin with radius r > 0. By
Brenier’s Theorem 5.1, there exists a unique convex, Lipschitz continuous function L : Rn

→ R such that

its gradient T = ∇L pushes forward the probability density
1
|E|
χE(x)dx onto the probability density

1
ωnrnχBr (y)dy ,
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where |E| denotes the volume of E. By Caffarelli’s regularity result we can assume T ∈ C∞(E,Br). Moreover
L solves the following Monge-Ampere equation

det∇2L =
ωnrn

|E|

on E, where ∇2L is the Hessian matrix of L. As L is convex, the Hessian matrix ∇2L is a positive definite
symmetric matrix, and so by the arithmetic-geometric inequality we get n(det∇2L)1/n 6 ∆L. Now we can
proceed as in subsections 5.2 and 5.3 by application of the Divergence Theorem.

5.4. Appendix 1, Hessian matrix, Trace of matrix & ACL propery
Given the real-valued function f (x1, x2, . . . , xn), if all second partial derivatives of f exist and are contin-

uous over the domain of the function, then the Hessian matrix of f is

H( f )i j(x) = DiD j f (x)

where x = (x1, x2, ..., xn) and Di is the differentiation operator with respect to the i-th argument.
If u is harmonic in a domain in Rn, n > 3, such that at every point x, the Hessian matrix H has at most

one negative eigenvalue, then either detH never vanishes, or it vanishes identically.
Because f is often clear from context, H( f )(x) is frequently abbreviated to H(x).
The Hessian matrix is related to the Jacobian matrix by H( f )(x) = J(∇f )(x).
The determinant of the above matrix is also sometimes referred to as the Hessian. Hessian matrices are

used in large-scale optimization problems within Newton-type methods because they are the coefficient
of the quadratic term of a local Taylor expansion of a function. Assuming still that the function f is twice
continuously differentiable on a domain G ⊂ Rn, by using Taylor’s Theorem, we have for x, x + ∆x ∈ G that

y = f (x + ∆x) = f (x) + f ′(x)∆x +
1
2

∆xTH(x)∆x + o|∆x|2, ∆x→ 0 . (32)

Sometimes in the literature the above formula is written in the form:

y = f (x + ∆x) ≈ f (x) + J(x)∆x +
1
2

∆xTH(x)∆x, (33)

where J is the Jacobian matrix, which is a vector (the gradient) for scalar-valued functions: J = ∇ f =
(D1 f ,D2 f , ...,Dn f ).

The following test can be applied at a non-degenerate critical point x. If the Hessian is positive definite
at x(we write H(x) > 0), then f attains a local minimum at x. If the Hessian is negative definite at x(we write
H(x) < 0), then f attains a local maximum at x. If the Hessian has both positive and negative eigenvalues
then x is a saddle point for f (this is true even if x is degenerate).

Let X be a convex set in a real vector space and let f : X→ R be a function.
f is called convex if:
(B1) ∀x1, x2 ∈ X,∀t ∈ [0, 1] : f (tx1 + (1 − t)x2) 6 t f (x1) + (1 − t) f (x2).
f is called strictly convex if:
(B2) ∀x1 , x2 ∈ X,∀t ∈ (0, 1) : f (tx1 + (1 − t)x2) < t f (x1) + (1 − t) f (x2).
A function f is said to be (strictly) concave if − f is (strictly) convex.
We can determine the concavity/convexity of a function by determining whether the Hessian is negative

or positive semidefinite, as follows.

Proposition 5.2. Let f be a function of many variables with continuous partial derivatives of first and second order
on the convex open set S and denote the Hessian of f at the point x by H(x). Then
(B3) f is concave if and only if H(x) is negative semidefinite for all x ∈ S;
(B4) if H(x) is negative definite for all x ∈ S then f is strictly concave;
(B5) f is convex if and only if H(x) is positive semidefinite for all x ∈ S;
(B6) if H(x) is positive definite for all x ∈ S then f is strictly convex.
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The concept of strong convexity extends and parametrizes the notion of strict convexity. A strongly
convex function is also strictly convex, but not vice versa.

A differentiable function f is called strongly convex with parameter m > 0 if the following inequality
holds for all points x, y in its domain:

(B7) (∇ f (x) − ∇ f (y))T(x − y) > m‖x − y‖22.
A function f is strongly convex with parameter m if and only if the function x 7→ f (x)− m

2 ‖x‖
2 is convex.

If the function f is twice continuously differentiable, then f is strongly convex with parameter m if and
only if ∇2 f (x) � mI for all x in the domain, where I is the identity and ∇2 f is the Hessian matrix, and the
inequality �means that
(B8) ∇

2 f (x) −mI is positive semi-definite.
If the domain is just an interval I = (a, b) in the real line R, then ∇2 f (x) is just the second derivative f ′′(x),
so the condition becomes f ′′(x) > m, x ∈ I. In particular if m = 0 it means that f ′′(x) > 0), which implies the
function is convex, and perhaps strictly convex, but not strongly convex if f ′′(x0) = 0 for some x0 ∈ I.

The condition (B8) is equivalent to requiring that
(B’8): the minimum eigenvalue of ∇2 f (x) be at least m for all x.
If m = 0, then this means the Hessian is positive semidefinite.

Assuming still that the function is twice continuously differentiable, one can show that the lower bound
of ∇2 f (x) implies that it is strongly convex. Start by using Taylor’s Theorem:

f (y) = f (x) + ∇ f (x)T(y − x) +
1
2

(y − x)T
∇

2 f (z)(y − x)

for some (unknown) z ∈ {tx + (1 − t)y : t ∈ [0, 1]}. Then by the assumption about the eigenvalues (B’8),

(y − x)T
∇

2 f (z)(y − x) > m(y − x)T(y − x)

and therefore
(B9) f (y) − f (x) + ∇ f (x)T(x − y) > m

2 |y − x|2.
If x and y change their roles in (B9), we find
(B’9) f (x) − f (y) − ∇ f (y)T(x − y) > m

2 |y − x|2.
Hence, summing (B9) and (B’9), we recover the second strong convexity equation (B7) above.

The trace of a matrix is the sum of the (complex) eigenvalues, and it is invariant with respect to a change
of basis. If A is a square n-by-n matrix with real or complex entries and if λ1, ..., λn are the eigenvalues of A
(listed according to their algebraic multiplicities), then

tr(A) =
∑

i

λi.

This follows from the fact that A is always similar to its Jordan form, an upper triangular matrix having
λ1, ..., λn on the main diagonal. In contrast, the determinant of A is the product of its eigenvalues; i.e.,

det(A) =
∏

i

λi.

Geometrically, the trace can be interpreted as the infinitesimal change in volume (as the derivative of the
determinant), which is made precise in Jacobi’s formula.

Proposition 5.3. If u is convex,then dT has nonnegative eigenvalues and

(det dT)1/n 6
divT

n
.

If u is convex and T = ∇u, then by Proposition 5.2, dT has nonnegative eigenvalues. Hence, since divT =
tr(T) =

∑
λi, we get

(det dT)1/n = (
∏

λi)1/n 6

∑
λi

n
=

divT
n

.
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We denote Rn−1
k = {x ∈ Rn : xk = 0}. The projection Pk, given by Pkx = x − xk ek, is the orthogonal

projection of Rn onto Rn−1
k .

We now define ACL propery.
Let I = {x ∈ Rn : ak 6 xk 6 bk} be a closed n-interval.
A mapping f : I → Rm is said to be absolutely continuous on lines (ACL) if f is continuous and if f is
absolutely continuous on almost every line segment in I, parallel to the coordinate axes.

More precisely, if Ek is the set of all x ∈ PkI such that the functions t → u(x + tek) is not absolutely
continuous on [ak, bk], then mn−1(Ek) = 0 for 1 6 k 6 n.

If Ω is an open set in Rn, a mapping f : Ω → Rm is ACL (absolutely continuous on lines) if f |I is ACL
for every closed interval I ⊂ Ω.

If f : Ω→ R is continuous we say that f ∈W1,p if f is ACL and Dk f ∈ Lp.
Absolutely Continuous on Lines (ACL) characterization of Sobolev functions
Let Ω be an open set in Rn and 1 6 p 6 ∞. If a function is in W1,p(Ω), then, possibly after modifying the

function on a set of measure zero, the restriction to almost every line parallel to the coordinate directions
in Rn is absolutely continuous; what’s more, the classical derivative along the lines that are parallel to the
coordinate directions are in Lp(Ω). Conversely, if the restriction of f to almost every line parallel to the
coordinate directions is absolutely continuous, then the pointwise gradient ∇ f exists almost everywhere,
and f is in W1,p(Ω) provided f and |∇ f | are both in Lp(Ω). In particular, in this case the weak partial
derivatives of f and pointwise partial derivatives of f agree almost everywhere.

5.5. Appendix 2, Isoperimetry for Euclidean polyhedra
In this section we follow [5]. The polytopes are, by definition, the convex envelopes of finite sets of points

of an affine space. When this space is of dimension 2 (a plane), we speak of polygons; if the dimension
is 3, we speak of polyhedra, and from then on- or from the very beginning-of polytopes. We are thus
dealing with objects that are simplest after triangles. Now a detailed study of polyhedra is very recent. If
we exclude the fundamental book of Steinitz from 1934 and his papers from between 1906 and 1928, we
find practically nothing on polyhedra before the 1960s. We can read an interesting analysis of Steinitz’s
book in Tucker (1935-2000), but even though the analysis is very enthusiastic, the polyhedra are qualified
as Steinitz’s ,,hobby”.

For each polyhedron with f faces, we always have

A3/V2 > 54( f − 2)(4 sin2 ω f − 1) tan2 ω f , (34)

where ω f =
π f

6( f−2) , equality holding only for the regular tetrahedron, cube and dodecahedron. The proof of
(VIII.7.1) is difficult and was preceded by several incomplete proofs. But it is also interesting to know that
for f = 8 and f = 20 we can do better,for A3/V2, than the value for the regular octahedron and icosahedron.
Still with a fixed number of faces, we know since Minkowski (1897) that there always exists at least one
optimal polyhedron; Lindelöf (1869) showed that such an optimal polyhedron is always circumscribed
about a sphere and that, moreover, the faces touch this sphere at their centers of gravity. Conjecture: for all
polyhedra with v vertices we have

A3/V2 >
27
√

3
2

(v − 2)(3 tan2 ωv − 1) tan2 ωv, (35)

where ω is defined as above, equality holding only for regular tetrahedra, octahedra and icosahedra.
We also know that the cube and dodecahedron are not the best for v = 8 and v = 20. Finally, in the case

where the number a of edges is fixed, we know since (Steinitz, 1927) that there exists at least one polyhedron
realizing the minimum and since Fejes Tóth (1948) that it is always simplicial.

Despite of the appearance of simplicity for polyhedra, the isoperimetric questions are far from being
resolved for them. In fact, there are several types of problems, depending on how the combinatorics are
imposed, either the number of vertices, or faces or edges. See the Florian report in 1.6 of Gruber and
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Wills (1993). A first question of Steiner in 1842: is it the case that, in their combinatorial class, the regular
polyhedra are those having the best isoperimetric ratio? It has to do with the ratio A3/V2 between the area
of the boundary and the enclosed volume. The question is natural in the sense that the regular polyhedra
play the role of the regular polygons. Steiner’s question has not been completely resolved, although many
have attacked it. Contrary to the case of polygons, we can not proceed by compactness, because a limit will
have to have a different combinatoric. Another difficulty (see the case of polygons) is the fact that not all the
combinatorial types are inscribable (or circumscribable) in a sphere; see the following section. Still another
difficulty (see Sect. VII.9) is that polarity, which can make it possible to treat just half the cases, does not
respect volumes. And above all we lack a conceptual tool, even imagining that any exist. It is of course
possible that one day we will be able to reduce isoperi metric problems to a computer program; but here is
where we are today, to the best knowledge of the author. Steiners conjecture is true for the combinatorial
types of the regular polyhedra, with the exception of the icosahedron, for which the problem still remains
open. For the tetrahedron, it is classic (the proof is left to readers); for the octahedron Steiner proved it as
early as 1842, by symmetrization. For the cube and the octahedron, its a consequence of a general result
of Fejes Tóth (1948). To find the convex polyhedra in Euclidean 3-space R3, with a given number of faces
and with minimal isoperimetric quotient, is a centuries old question of geometry. We know from Marcel
Berger’s book [5] that it is not yet established which polyhedron in R3 on 8 vertices achieves the optimal
isoperimetric ratio A3/V2, where A is the surface area and V the volume. Berger says ”We also know that
the cube is not the best for v = 8” (where v is the number of vertices).

Let P and P′ be two polyhedra (convex as usual) and f a mapping between their boundaries that
preserves combinatorics, i.e. sends faces onto faces while respecting incidence relations. Suppose that,
restricted to each face, f is a Euclidean isometry. Then there exists an isometry f ∗ of all space such that f is
the restriction of f ∗ to the boundary of P.

6. Appendix 3, Abel summability and Tauber’s theorem

Abel summability is a generalized convergence criterion for power series. It extends the usual definition
of the sum of a series, and gives a way of summing up certain divergent series. Let us start with a series∑
∞

n=0 an, convergent or not, and use that series to define a power series

f (r) =

∞∑
n=0

anrn.

Note that for |r| < 1 the summability of f (r) is easier to achieve than the summability of the original series.
Starting with this observation we say that the series

∑
an is Abel summable if the defining series for f (r) is

convergent for all |r| < 1, and if f (r) converges to some limit L as r→ 1−. If this is so, we shall say that
∑

an
Abel converges to L.

Of course it is important to ask whether an ordinary convergent series is also Abel summable, and
whether it converges to the same limit? This is true, and the result is known as Abel’s limit theorem, or
simply as Abel’s theorem.

Let a = {ak : k > 0} be any sequence of real or complex numbers and let

Fa(z) =

∞∑
k=0

akzk

be the power series with coefficients a. Suppose that the series
∑
∞

k=0 ak converges. Then

lim
z→1−

Fa(z) =

∞∑
k=0

ak, (∗)

where the variable z is supposed to be real, or, more generally, to lie within any Stolz angle, that is, a region
of the open unit disk where |1 − z| 6M(1 − |z|) .
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Theorem 6.1 (Abel). Let
∑
∞

n=0 an be a series; let

sn = a0 + · · · + ak, k ∈N,

denote the corresponding partial sums; and let f (r) be the corresponding power series defined as above. If
∑

an is
convergent, in the usual sense that the sn converge to some limit L as n → ∞, then the series is also Abel summable
and f (r)→ L as r→ 1−.

The standard example of a divergent series that is nonetheless Abel summable is the alternating series

∞∑
n=0

(−1)n.

The corresponding power series is
1

1 + r
=

∞∑
n=0

(−1)nrn.

Since
1

1 + r
→

1
2

as r→ 1−,

this otherwise divergent series Abel converges to 1
2 .

That theorem has its main interest in the case that the power series has radius of convergence exactly
1: if the radius of convergence is greater than one, the convergence of the power series is uniform for r in
[0, 1] so that the sum is automatically continuous and it follows directly that the limit as r tends up to 1 is
simply the sum of the an. When the radius is 1 the power series will have some singularity on |z| = 1; the
assertion is that, nonetheless, if the sum of the an exists, it is equal to the limit over r. This therefore fits
exactly into the abstract picture.

Abel’s theorem is the prototype for a number of other theorems about convergence, which are collectively
known in analysis as Abelian theorems. An important class of associated results are the so-called Tauberian
theorems. These describe various convergence criteria, and sometimes provide partial converses for the
various Abelian theorems.

The general converse to Abel’s theorem is false, as the example above illustrates3). However, in the
1890’s it is proved the following partial converse.

Theorem 6.2 (Tauber). Suppose that
∑

an is an Abel summable series and that nan → 0 as n→∞. Then,
∑

k ak is
convergent in the ordinary sense as well.

We also need some results concerning magnitude of Fourier coefficients.
In applications, it is often useful to know the size of the Fourier coefficient.
If f is an absolutely continuous function, ∣∣∣∣ f̂ (n)

∣∣∣∣ 6 K
|n|

for a constant K that only depends on f .

Theorem 6.3 ([57]). If f is a bounded variation function,∣∣∣∣ f̂ (n)
∣∣∣∣ 6 var( f )

2π|n|
.

3)We want the converse to be false; the whole idea is to describe a method of summing certain divergent series!
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