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On Completing Triangles in Teichmüller Space
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Abstract. Let T(∆) be the universal Teichmüller space. Three points [ f ], [1] and [h] in T(∆) are called to
form a completing triangle if each pair of them has a unique geodesic joining them. Recently, Z. Zhou and
L. Liu constructed two Strebel points [ f ] and [1] such that [id], [ f ] and [1] form a non-completing triangle.
The computation in their construction is lengthy and complicated. In this note, it is shown that their results
can be obtained in much simpler a way. Indeed, the current theory of Teichmüller spaces allows us to give
more information on triangles in an infinite-dimensional Teichmüller space. Our method is self-contained
and applies for general Teichmüller spaces.

1. Introduction

Let S be a Riemann surface of topological type. The Teichmüller space T(S) is the space of equivalence
classes of quasiconformal maps f from S to a variable Riemann surface f (S). Two quasiconformal maps
f from S to f (S) and 1 from S to 1(S) are equivalent if there is a conformal map c from f (S) onto 1(S)
and a homotopy through quasiconformal maps ht mapping S onto 1(S) such that h0 = c ◦ f , h1 = 1 and
ht(p) = c ◦ f (p) = 1(p) for every t ∈ [0, 1] and every p in the ideal boundary of S. Denote by [ f ] the Teich-
müller equivalence class of f ; also sometimes denote the equivalence class by [µ] where µ is the Beltrami
differential of f . The basepoint of T(S) is denoted by [id] where id is the identity map of S.

The constants

K( f ) =
1 + ‖µ‖∞
1 − ‖µ‖∞

, K0([ f ]) = inf{K(1) : 1 ∈ [ f ]}

are called the maximal dilatation of f and the extremal maximal dilatation of [ f ] respectively. If K([ f ]) is attained
by f , then f is called an extremal quasiconformal mapping in [ f ]. f is said to be uniquely extremal if it is
extremal and if

K( f ) < K(1)

holds for any other 1 ∈ [ f ].
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The Teichmüller metric between two points [ f ] and [1] is defined as follows,

d([ f ], [1]) =
1
2

inf
f1∈[ f ],11∈[1]

log K(11 ◦ f−1
1 ).

The boundary dilatation of f is defined as

H∗( f ) = inf{K( f |S\E) : E is a compact subset of S},

where K( f |S\E) is the maximal dilatation of f |S\E. The boundary dilatation of [ f ] is defined as

H([ f ]) = inf{H∗(1) : 1 ∈ [ f ]}.

It is obvious that H([ f ]) ≤ K0([ f ]). Following [4], a point [ f ] ∈ T(S) is called a Strebel point if H([ f ]) < K0([ f ]);
otherwise, it is called a non-Strebel point.

Denote by Bel(S) the Banach space of Beltrami differentials µ = µ(z)dz̄/dz on S with finite L∞-norm and
by M(S) the open unit ball in Bel(S).

Let Q(S) be the Banach space of integrable holomorphic quadratic differentials on S with L1
−norm

‖ϕ‖ =

"
S
|ϕ(z)| dxdy < ∞.

In what follows, let Q1(S) denote the unit sphere of Q(S).
We shall use some geometric terminologies adapted from [1] by Busemann. Let X and Y be metric

spaces. An isometry of X into Y is a distance preserving map. A straight line in Y is a (necessarily closed)
subset L that is an isometric image of the real line R. A geodesic in Y is an isometric image of a non-trivial
compact interval of R. Its endpoints are the images of the endpoints of the interval, and we say that the
geodesic joins its endpoints.

It is well known that if τ ∈ T(S) is a Strebel point, then there are a unique geodesic joining the basepoint
[id] and τ. There are a lot of non-Strebel points τ ∈ T(S) such that there are infinitely many geodesics
connecting [id] and τ ([4, 9–11]).

Let τi (i = 1, 2, 3) be three distinct points in T(S). According to [5] by F. P. Gardiner, they form a
“completing triangle”, if for each pair of them, there is only one geodesic joining them. Otherwise, they form
a “non-completing triangle”.

In [15], Z. Zhou and L. Liu considered the following question in the universal Teichmüller space T(∆)
where ∆ is the unit disk in the complex plane.

QUESTION A . For arbitrarily given two Strebel points τ1 and τ2, do the three points [id], τ1 and τ2
always form a completing triangle?

In virtue of a result in [8] and by a lengthy and complicated computation, they gave a negative answer
to QUESTION A .

Theorem A. There are two Strebel points τ1 and τ2 with τ1 , τ2 such that [id], τ1 and τ2 do not form a completing
triangle.

Therefore, they asked the second question.
QUESTION B. Suppose both τ1 and τ2 are Strebel points. What are the conditions for the three points

[id], τ1 and τ2 to form a completing triangle?
With respect to QUESTION B, they gave a sufficient condition for three points to form a completing

triangle by following theorem.

Theorem B. Suppose both [ f ] and [1K] are Strebel points. Moreover, 1K is a Teichmüller mapping whose Beltrami
differential is

µK =
K − 1
K + 1

φ

|φ|
, (K > 1),

where φ , 0 is an integrable holomorphic quadratic differential on ∆. If K is sufficiently closed to 1, then the three
points [id], τ = [ f ] and τK = [1K ◦ f ] form a completing triangle.
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In the end of [15], they left the following question unsolved.
QUESTION C . For [ f ] and [1K] as in Theorem B, whether or not for all K > 1, [ f ◦ 1K] is always a Strebel

point?
Indeed, the current knowledge of Teichmüller space theory allows us to give more information on

completing triangles in a Teichmüller space. Their results can be obtained in much simpler a way. We
will prove more general results by basic techniques so that a slight computation is done. Certainly, the
self-contained argument contains a negative answer to QUESTION C in general.

In what follows, we always assume dimT(S) = ∞. The following theorems are a part of our main results.

Theorem 1.1. For any given Strebel point [ f ] in T(S), there exists infinitely many Strebel points [1] such that [id],
[ f ] and [1] do not form a completing triangle.

Theorem 1.2. Suppose [ f ] and [1] are two Strebel points in T(S) and there is a unique geodesic joining them. Then
there exists a neighborhood B of the basepoint [id] such that for any point τ ∈ B, the three points τ, [ f ] and [1] form a
completing triangle.

Theorem 1.3. Suppose there is a unique geodesic joining two points [ f ] and [1] in T(S). Then for any K >
(max{K0([ f ]), K0([1])})2, there exists a Strebel point [h] and a neighborhood B of [h] such that K0([h]) = K and for
any point τ ∈ B, the three points τ, [ f ] and [1] form a completing triangle.

In the next section, we introduce the basic notion of asymptotic Teichmüller space and prove several
lemmas for our use. The relationship among different Strebel and non-Strebel points will be investigated
in Section 3 where QUESTION C is answered negatively in general. The proofs of Theorems 1.1 ∼ 1.3 will
be given in the last section.

2. Asymptotic Teichmüller space and some lemmas

The asymptotic Teichmüller space is the space of a larger equivalence classes. The definition of the new
equivalence classes is exactly the same as that of Teichmüller equivalence classes with one exception; the
word conformal is replaced by asymptotically conformal. A quasiconformal map f is asymptotically conformal
if for every ε > 0, there is a compact subset E of S, such that the dilatation of f outside of E is less than 1 + ε.
Accordingly, denote by [[ f ]] the asymptotic equivalence class of f . There is a canonical projection π from
T(S) onto AT(S) defined by π([[ f ]]) = [ f ].

The boundary dilatation of [[ f ]] is defined by

H([[ f ]]) = inf{H∗(1) : 1 ∈ [[ f ]]}.

In fact, the definition of asymptotic equivalence classes implies that H([[ f ]]) = H([ f ]). The asymptotic
Teichmüller distance between two points [[ f ]] and [[1]] is defined as follows,

d̄([[ f ]], [[1]]) =
1
2

inf
f1∈[[ f ]],11∈[[1]]

log H(11 ◦ f−1
1 ).

For more knowledge of asymptotic Teichmüller space, the reader may refer to [2, 3, 6, 12].

Lemma 2.1. Suppose [ f ] ∈ T(S). Then K0([ f ]) = K0([ f−1]) and H([ f ]) = H([ f−1]) where we regard [ f−1] as a point
in T( f (S)). Moreover, f is extremal if and only if f−1 is extremal.

Proof. Let z, w be the local coordinates on S and f (S). Then w = f (z) in the local parameters. For a
quasiconformal mapping 1 ∈ [ f ], by the definition of Teichmüller equivalence class there is a conformal
mapping c from f (S) onto 1(S) such that 1 = c◦ f on the boundary ∂S. Therefore, we have 1̃ = 1−1

◦ c ∈ [ f−1].
A simple computation yields

µ1̃(w) = µ1−1◦c(w) = µ1−1 (c(w)) = µ1−1 (ζ) =
−1
ω
µ1(z),
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where ζ (= c(w)), z (= 1−1(ζ)) are the local coordinates on 1(S) and S respectively and ω = ∂z1/∂z1. It is easy
to see that

K(1) = K(1−1) = K(1̃), H∗(1) = H∗(1−1) = H∗(1̃).

This implies that K0([ f−1]) ≤ K0([ f ]) and H([ f−1]) ≤ H([ f ]) when 1 varies over [ f ]. Symmetrically, it holds
that K0([ f−1]) ≥ K0([ f ]) and H([ f−1]) ≥ H([ f ]). Therefore, we get K0([ f−1]) = K0([ f ]) and H([ f−1]) = H([ f ]).
It is clear that f is extremal if and only if f−1 is extremal.

Lemma 2.2. [ f ] is a Strebel point in T(S) if and only if [ f−1] is a Strebel point in T( f (S)).

Proof. By the definition of Strebel point, this lemma is a direct consequence of Lemma 2.1.

Generally, if [ f ] is a Strebel point and f is extremal, then both f and f−1 are Teichmüller mappings. In
particular, the Beltrami differential µ of f can be written as

µ(z) = k
ϕ(z)
|ϕ(z)|

, k ∈ (0, 1),

where ϕ ∈ Q1(S) is a holomorphic quadratic differential on S; and the Beltrami differential µ f−1 of f−1 has
the form

µ f−1 (w) = k
ψ(w)
|ψ(w)|

,

where ψ ∈ Q1( f (S)) is a holomorphic quadratic differential on f (S).

Lemma 2.3. Suppose [ f ] is a Strebel point in T(S). Let [̃h] ∈ T( f (S)). If K0([̃h]) <
√

K0([ f ])/H([ f ]), then [̃h ◦ f ] is
a Strebel point in T(S).

Proof. Let 1 = h̃ ◦ f . Then h̃ = 1 ◦ f−1. By the distance property, we have

1
2

log K0([̃h]) = d([ f ], [1]) ≥ d([ f ], [id]) − d([1], [id])

=
1
2

log K0([ f ]) −
1
2

log K0([1]).

Therefore,

K0([1]) ≥
K0([ f ])

K0([̃h])
>

K0([ f ])√
K0([ f ])/H([ f ])

=
√

K0([ f ])H([ f ]).

On the other hand, the property of the asymptotic Teichmüller distance implies

1
2

log H([[̃h]]) = d̄([[ f ]], [[1]]) ≥ d̄([[1]], [[id]]) − d̄([[ f ]], [[id]])

=
1
2

log H([[1]]) −
1
2

log H([[ f ]]).

Since H([[ f ]]) = H([ f ]) and H([[1]]) = H([1]), we have,

H([1]) = H([[1]]) ≤ H([[ f ]])H([[̃h]]) = H([ f ])H([̃h])

≤ H([ f ])K0([̃h]) < H([ f ])
√

K0([ f ])/H([ f ]) =
√

K0([ f ])H([ f ]).

Thus, we have proved that K0([1]) > H([1]) which implies that [1] is a Strebel point.
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Lemma 2.4. Suppose [ f ] is a Strebel point in T(S). Let [h] ∈ T(S). If K0([h]) <
√

K0([ f ])/H([ f ]), then [h ◦ f−1] is
a Strebel point in T( f (S)).

Proof. By Lemma 2.2, [ f−1] is a Strebel point in T(S̃) where S̃ = f (S). Replace the roles of S and f in Lemma 2.3
by S̃ and f−1 respectively. Combining Lemmas 2.1 and 2.3, it yields that, if K0([h]) <

√
K0([ f−1])/H([ f−1]) =√

K0([ f ])/H([ f ]), then [h ◦ f−1] is a Strebel point in T(S).

Lemma 2.5. Let [ f ] and [1] be two points in T(S). Then the situation of geodesic between [ f ] and [1] is identical
with that between [id] and [1 ◦ f−1] in T( f (S)) where id is viewed as the identity map of f (S).

Proof. It is easy to see that the map

σ : T(S)→ T( f (S))

[h]→ [h ◦ f−1],

is an isometry between T(S) and T( f (S)) with respect to the corresponding Teichmüller metrics. Therefore,
the geodesic configuration between [ f ] and [1] is determined by that between σ([ f ]) = [id] and σ([1]) =
[1 ◦ f−1] in T( f (S)) and vice versa.

3. Relationship among Strebel and non-Strebel points

In this section, we discuss the relationship among Strebel and non-Strebel points as well as the geodesic
configuration among them. A natural question is ask whether [1 ◦ f−1] is a Strebel point if [ f ] and [1] are
Strebel points. Also, the question whether [1 ◦ f−1] is a non-Strebel point if [ f ] and [1] are non-Strebel
points, should be asked. In general, the answers to these two questions are negative.

Theorem 3.1. Suppose [ f ] is a Strebel point in T(S) and [̃h] is a Strebel point in T( f (S)). Then [̃h ◦ f ] can be either
a Strebel point or a non-Strebel point in T(S), and the geodesic joining [id] and [̃h ◦ f ] in T(S) can be either unique or
non-unique.

Proof. By Lemma 2.3, when K0([̃h]) <
√

K0([ f ])/H([ f ]), [̃h◦ f ] is a Strebel point and then the geodesic joining
[id] and [̃h ◦ f ] is unique.

To prove that [̃h ◦ f ] can be a non-Strebel point, we need to choose [̃h] suitably. Let 1 = h̃ ◦ f and then
h̃ = 1 ◦ f−1. By Lemma 2.2, [ f−1] is a Strebel point in T(S̃) where S̃ = f (S). Applying Lemma 2.4, we see that,
when K0([1]) <

√
K0([ f ])/H([ f ]), [1 ◦ f−1] is a Strebel point in T(S̃). Choose 1 such that [1] is not a Strebel

point and the extremal maximal dilatation K0([1]) satisfies the inequality, then the corresponding [̃h] is the
desired Strebel point in T( f (S)). In such case, the geodesic joining [id] and [̃h◦ f ] = [1] can be non-unique. In
fact, if the Beltrami differential of the extremal quasiconformal mapping in [1] is not of constant modulus,
then there are infinitely geodesics connecting [id] and [1] (see [4, 14]).

Theorem 3.2. Suppose [ f ] and [1] are two Strebel points in T(S). Then [1 ◦ f−1] can be either a Strebel point or a
non-Strebel point in T( f (S)), and the geodesic joining [ f ] and [1] can be either unique or non-unique.

Proof. Let h̃ = 1 ◦ f−1, then 1 = h̃ ◦ f . By the foregoing reason, when K0([̃h]) <
√

K0([ f ])/H([ f ]), [1] = [̃h ◦ f ]
is a Strebel point which conversely indicates that [̃h] = [1◦ f−1] can be either a Strebel point or a non-Strebel
point in T( f (S)). Naturally, by Lemma 2.5, the geodesic between [ f ] and [1] is determined by that between
[id] and [̃h] in T( f (S)) which can be either unique or non-unique.
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The universal Teichmüller space T(∆) can be viewed as the set of the equivalence classes [ f ] of quasi-
conformal mappings f from ∆ onto itself. So, for any quasiconformal mapping from ∆ onto itself, there is
no difference between T(∆) and T( f (∆)). Both Theorems 3.1 and 3.2 answer QUESTION C negatively in
general.

In [15], the following Proposition is obtained by a complicated construction.

Proposition 3.3. There exist two non-Strebel points τ1 and τ2 in the universal Teichmüller space T(∆) such that
there is only a geodesic joining them.

This proposition is actually trivial by the following fact. Let µ ∈ M(S) be uniquely extremal with |µ| =
constant (, 0) a.e. on S such that [µ] is a non-Strebel point. Then the geodesic disk D = {[tµ/‖µ‖∞] : t ∈ ∆}
has the property: for any two points [µ1] and [µ2] inD, the geodesic connecting them is unique. In particular,
the point [1 ◦ f−1] is a non-Strebel point, where f and 1 are the quasiconformal mappings with the Beltrami
differentials µ1 and µ2 respectively. It should be noted here that any three points in D form a completing
triangle although they are all non-Strebel points.

We now prove the following stronger result in a simple way.

Theorem 3.4. For any given non-Strebel point [ f ] in T(S)\{[id]}, there exists infinitely many non-Strebel points
[1] ∈ T(S) such that [1 ◦ f−1] is a Strebel point in T( f (S)) and hence there is a unique geodesic joining [ f ] and [1].

Proof. Let [ f ] (, [id]) be a non-Strebel point. Assume that f is an extremal quasiconformal mapping with
the Beltrami differential µ ∈M(S). Choose a small disk D in S such that D ⊂ S and a Beltrami differential χ
defined on D such that χ and µ are not (Teichmüller ) equivalent restricted on D. Moreover, χ can be chosen
to satisfy ‖χ‖∞ ≤ ‖µ‖∞. In local parameter, put

ν(z) =

µ(z), z ∈ S\D,
χ(z), z ∈ D.

Let 1 be the quasiconformal mapping with the Beltrami differential ν. Then it is clear that 1 is extremal and
[1] is a non-Strebel point. We show that [1 ◦ f−1] is a Strebel point. By a simple computation,

µ1◦ f−1 (w) = µ1◦ f−1 ( f (z)) =
ν(z) − µ(z)

1 − ν(z)µ(z)

∂z f

∂z f
.

Therefore, µ1◦ f−1 (w) = 0 for w ∈ f (S\D). Hence we have H([1◦ f−1]) = 1. On the other hand, since [χ] , [µ|D]
in T(D), it yields that [1 ◦ f−1] , [id] in T( f (S)) and therefore K0([1 ◦ f−1]) > 1. This indicates that[1 ◦ f−1]
is a Strebel point and hence there is a unique geodesic joining [ f ] and [1] by Lemma 2.5. Clearly, such
non-Strebel points [1] are innumberable.

Theorem 3.5. Suppose [ f ] and [1] are two non-Strebel points in T(S)\{[id]}. Then [1 ◦ f−1] can be either a Strebel
point or a non-Strebel point in T( f (S)), and the geodesic joining [ f ] and [1] can be either unique or non-unique.

Proof. By Theorem 3.4, we only need to show that [1 ◦ f−1] can be a non-Strebel point and the geodesic
joining [ f ] and [1] can be non-unique. In fact, this can be done in an easy way. Suppose f is such an
extremal quasiconformal mapping that its Beltrami differential µ vanishes on an open subset of S. Let 1 be
the extremal quasiconformal mapping with the Beltrami differential tµ, t ∈ ∆. Then the rest proof follows
standard channels in the Teichmüller theory.
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4. How to form a completing triangle?

In this section, we are concerned with the condition for three points to form a completing triangle. Since
the set of Srebel points is open and dense in T(S) [7, 13], the completing triangles can be obtained with the
vertices varying over certain open subsets of T(S). Theorems 1.2 and 1.3 give sufficient conditions for such
construction while Theorem 1.1 disproves some cases which reproduces Theorem A. The following are the
proofs of them.

Proof of Theorem 1.1. Suppose that [ f ] is a Strebel point. By Theorem 3.2, we can choose another
Strebel point [1] such that [1 ◦ f−1] is a non-Strebel and the geodesic joining [ f ] and [1] in not unique. In
fact, by Lemma 2.3, if [̃h] ∈ T( f (S)) satisfies the condition K0([̃h]) <

√
K0([ f ])/H([ f ]), [1] = [̃h ◦ f ] is a Strebel

point. The geodesic configuration between [ f ] and [1] is identical with that between [id] and [̃h] in T( f (S)).
Therefore, we can get infinitely many Strebel points [1] such that [id], [ f ] and [1] do not form a completing
triangle by the foregoing reason.

Proof of Theorem 1.2. Suppose [ f ] and [1] are two Strebel points in T(S) and there is a unique geodesic
joining them. By Lemma 2.4, when

K0([h]) < K := min{
√

K0([ f ])/H([ f ]),
√

K0([1])/H([1])},

both [h ◦ f−1] and [h ◦ 1−1] are Strebel points (in T( f (S)) and T(1(S)) respectively). Therefore, if set

B = {τ ∈ T(S) : d(τ, [id]) <
1
2

log K},

then for any point τ ∈ B, the three points τ, [ f ] and [1] form a completing triangle.
Proof of Theorem 1.3. Suppose [ f ] and [1] are connected by a unique geodesic. For any sufficiently

large K > (max{K0([ f ]), K0([1])})2, there is a Strebel point [h] such that K0([h]) = K and√
K0([h])/H([h]) =

√
K/H([h]) > M := max{K0([ f ]), K0([1])}. (4. 1)

By Lemma 2.4, both [h ◦ f−1] and [h ◦ 1−1] are Strebel points. It is easy to prove that if τ ∈ T(S) satisfies

d([h], τ) < δ :=
1
4

log
K0([h])

H([h])M2 , (4. 2)

then the inequality (4. 1) still holds for τ, that is,√
K0(τ)/H(τ) =

√
K/H(τ) > M. (4. 3)

In fact, by the property of the Teichmüller and asymptotic Teichmüller distances, we have

1
2

log K0(τ) ≥
1
2

log K([h]) − δ, (4. 4)

1
2

log H(τ) ≤
1
2

log H([h]) + δ. (4. 5)

The inequality (4. 3) follows from (4. 2), (4. 4) and (4. 5) immediately.
Set

B = {τ ∈ T(S) : d([h], τ) < δ}.

Then for any point τ ∈ B, the three points τ, [ f ] and [1] form a completing triangle. The completes the
proof of Theorem 1.3.

By use of Lemma 2.4, one can furher prove that there exist three neighborhoods Bi (i = 1, 2, 3) of [h],
[ f ] and [1] separately such that any triangle with vertices in these three neighborhoods respectively is
completing. Also, we can even choose [h] such that K0([h]) = K together with H([h]) = 1. Such a point [h] is
generally called a T0-class [6].

At last, we give a corollary of Theorem 1.3.
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Corollary 4.1. Suppose there is a unique geodesic joining [id] and [ f ] in T(S). Then for any K > (K0([ f ]))2, there
exists a Strebel point [h] and a neighborhood B of [h] such that K0([h]) = K and for any point τ ∈ B, the three points
[id], [ f ] and τ form a completing triangle.

Note that [ f ] or [1] can be non-Strebel points in Theorem 1.3.
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