
Filomat 29:3 (2015), 381–392
DOI 10.2298/FIL1503381B

Published by Faculty of Sciences and Mathematics,
University of Niš, Serbia
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Abstract. In this work, we focus on a class of timelike rotational surfaces in Minkowski space E4
1 with

2-dimensional axis. There are three types of rotational surfaces with 2-dimensional axis, called rotational
surfaces of elliptic, hyperbolic or parabolic type. We obtain all flat timelike rotational surface of elliptic and
hyperbolic types with pointwise 1-type Gauss map of the first and second kind. We also prove that there
exists no flat timelike rotational surface of parabolic type in E4

1 with pointwise 1-type Gauss map.

1. Introduction

The notion of finite type submanifolds of Euclidean space was introduced by B.-Y. Chen in late 1970’s,[3].
Since then many geometers have done works to characterize or classify the submanifolds of Euclidean and
pseudo-Euclidean space in terms of finite type. In [5], the definiton of finite type was given similarly for
differentiable maps, in particular, to Gauss map of submanifolds. A smooth map φ on a submanifold M of
a Euclidean space or a pseudo-Euclidean space is said to be of finite type if φ can be expressed as a finite
sum of eigenvectors of the Laplacian ∆ of M, that is, φ = φ0 +

∑k
i=1 φi, where φ0 is a constant map, φ1, . . . , φk

nonconstant maps such that ∆φi = λiφi, λi ∈ R, i = 1, . . . , k. If λ1, λ2, . . . , λk are all different, then φ is said
to be of k-type. From these definition, one can immediately seen that a submanifold M of a Euclidean space
or a pseudo Euclidean space has 1-type Gauss map if and only if its Gauss map ν satisfies ∆ν = λ(ν+ C) for
some λ ∈ R and for some constant vector C. In addition, B.-Y. Chen and P. Piccinni characterized compact
submanifolds of Euclidean space with finite type Gauss map, [5]. Besides this, there are many articles on
submanifolds with finite type Gauss map. (cf. [2, 4, 6])

In time, it has been observed that there are some geometrically important submanifolds, such as he-
licoids, B-scrolls in a 3-dimensional Minkowski space E3

1, generalized catenoids, spherical n-cones and
Enneper’s hypersurfaces in En+1

1 whose Gauss map satisfies

∆ν = f (ν + C) (1)

for some smooth function f on M and some constant vector C ([9, 14]). A submanifold of a Euclidean space
or a pseudo Euclidean space is said to have pointwise 1-type Gauss map if its Gauss map satisfies (1) for
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some smooth function f on M and some constant vector C. In particular, C is zero, it is said to be the first
kind. Otherwise, it is said to be of the second kind. (cf. [1, 7, 13])

Furthermore, rotational surfaces in a Euclidean space and a pseudo Euclidean space with pointwise
1-type Gauss map were recently studied. The complete classification of ruled surfaces inE3

1 with pointwise
1-type Gauss map of the first kind was obtained in [14]. Ruled surfaces in E3

1 with pointwise 1-type
Gauss map of the second kind were studied in [8, 11]. Also, a complete classification of rational surfaces of
revolution inE3

1 satisfying (1) was given in [13], and it was proved that a right circular cone and a hyperbolic
cone in E3

1 are the only rational surfaces of revolution in E3
1 with pointwise 1-type Gauss map of the second

kind. The second author and Turgay studied general rotational surfaces in E4 with pointwise 1-type Gauss
map, [12]. Moreover, in [15] a complete classification of cylindrical and non-cylindrical surfaces in Em

1
with pointwise 1-type Gauss map of the first kind was obtained. Recently, the authors studied rotational
spacelike surfaces of elliptic, hyperbolic and parabolic types in E4

1, [10].
In this article, we focus on a class of timelike rotational surfaces in Minkowski space E4

1 with 2-
dimensional axis. There are three types of rotational surfaces with 2-dimensional axis, called rotational
surfaces of elliptic, hyperbolic or parabolic type which are invariant under spacelike rotation, hyperbolic
rotation and screw rotation, respectively.

We obtain all flat timelike rotational surface of elliptic and hyperbolic types with pointwise 1-type
Gauss map of the first and second kind. We also show that there exists no flat timelike rotational surface of
parabolic type in E4

1 with pointwise 1-type Gauss map.

2. Prelimineries

Let Em
1 denote m-dimensional Minkowski space with the canonical metric given by

1 = dx2
1 + dx2

2 + · · · + dx2
m−1 − dx2

m,

where (x1, x2, . . . , xm) is a rectangular coordinate system in Em
1 .

A vector v ∈ Em
1 is called spacelike (resp.,timelike ) if 〈v, v〉 > 0 or v = 0 (resp., 〈v, v〉 < 0 ). A vector v is

called lightlike if 〈v, v〉 = 0 and v , 0.
Let M be an oriented n-dimensional pseudo Riemannian submanifold in an (n+2)-dimensional Minkowski

spaceEn+2
1 . We choose local orthonormal frame {e1, . . . , en+2} on M with εA = 〈eA, eA〉 = ±1 such that e1, . . . , en

are tangent to M and en+1, en+2 are normal to M. We use the following convention on the range of indices:
1 ≤ i, j, k, . . . ≤ n, n + 1 ≤ r, s, t, . . . ≤ n + 2.

Let ∇̃ be the Levi-Civita connection ofEn+2
1 and∇ the induced connection on M. Denote by {ω1, . . . , ωn+2

}

the dual frame and by {ωAB},A,B = 1, . . . ,n + 2, the connection 1-forms associated to {e1, . . . , en+2} with
ωAB + ωBA = 0. Then the Gauss and Weingarten formulas are given, respectively, by

∇̃ek ei =

n∑
j=1

ε jωi j(ek)e j +

n+2∑
r=n+1

εrhr
iker

and

∇̃ek er = −Ar(ek) + Dek er, Dek er =

n+2∑
s=n+1

εsωrs(ek)es

where D is the normal connection, hr
i j the coefficients of the second fundamental form h, and Ar the

Weingarten map in the direction er.
The mean curvature vector H and the squared length ‖h‖2 of the second fundamental form h are defined,

respectively, by

H =
1
n

∑
i,r

εiεrhr
iier (2)
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and

‖h‖2 =
∑
i, j,r

εiε jεrhr
i jh

r
ji. (3)

A submanifold M is said to have parallel mean curvature vector if the mean curvature vector satisfies
DH = 0 identically. Also, the Gaussian curvature K is given by

K =

n+2∑
s=n+1

εs(hs
11hs

22 − hs
12hs

21). (4)

If K vanishes identically, M is said to be flat.
The Codazzi equation of M in En+2

1 is given by

hr
i j,k = hr

jk,i,

hr
jk,i = ei(hr

jk) +

n+2∑
s=n+1

εshs
jkωsr(ei) −

n∑
`=1

ε`
(
ω j`(ei)hr

`k + ωk`(ei)hr
` j

)
.

(5)

Also, from the Ricci equation of M in En+2
1 , we get

RD(e j, ek; er, es) = 〈[Aer ,Aes ](e j), ek〉 =

n∑
i=1

εi

(
hr

ikhs
i j − hr

i jh
s
ik

)
, (6)

where RD is the normal curvature tensor.
A submanifold M in En+2

1 is said to have flat normal bundle if the normal curvature tensor RD vanishes
identically.

The gradient of a smooth function f defined on M intoR is defined by ∇ f =
n∑

i=1
εiei( f )ei, and the Laplace

operator of M with respect to induced metric is ∆ =
n∑

i=1
εi(∇ei ei − eiei).

Let G(m − n,m) be the Grassmannian manifold consisting of all oriented (m − n)–planes through the
origin of Em

t and
∧m−nEm

t the vector space obtained by the exterior product of m − n vectors in Em
t . Let

fi1 ∧ · · · ∧ fim−n and 1i1 ∧ · · · ∧ 1im−n be two vectors in
∧m−nEm

t , where { f1, f2, . . . , fm} and {11, 12, . . . , 1m} are two
orthonormal bases of Em

t . Define an indefinite inner product 〈, 〉 on
∧m−nEm

t by〈
fi1 ∧ · · · ∧ fim−n , 1i1 ∧ · · · ∧ 1im−n

〉
= det(

〈
fi` , 1 jk

〉
). (7)

Therefore, for some positive integer s, we may identify
∧m−nEm

t with some pseudo-Euclidean space EN
s ,

where N =
( m

m−n
)
. Let e1, . . . , en, en+1, . . . , em be an oriented local orthonormal frame on an n-dimensional

pseudo-Riemannian submanifold M in Em
t with εB = 〈eB, eB〉 = ±1 such that e1, . . . , en are tangent to M and

en+1, . . . , em are normal to M. The map ν : M → G(m − n,m) ⊂ EN
s from an oriented pseudo-Riemannian

submanifold M into G(m − n,m) defined by

ν(p) = (en+1 ∧ en+2 ∧ · · · ∧ em)(p) (8)

is called the Gauss map of M that is a smooth map which assigns to a point p in M the oriented (m−n)–plane
through the origin of Em

t and parallel to the normal space of M at p, [16].
We put ε = 〈ν, ν〉 = εn+1εn+2 · · · εm = ±1 and

M̃N−1
s (ε) =

{
SN−1

s (1) in EN
s if ε = 1

HN−1
s−1 (−1) in EN

s if ε = −1.

Then the Gauss image ν(M) can be viewed as ν(M) ⊂ M̃N−1
s (ε).
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2.1. Rotational surfaces in E4
1

In this work, we consider a class of rotational surfaces in Minkowski space E4
1 with 2-dimensional

axis. There are 3-types of rotational surfaces with 2-dimensional axis, called rotational surfaces of elliptic,
hyperbolic or parabolic type. These surfaces are invariant under spacelike rotation, hyperbolic rotation and
screw rotation, respectively.

Rotational Surfaces of Elliptic Type:
Let {η1, η2, η3, η4} be the standard orthonormal basis of E4

1, i.e., η1 = (1, 0, 0, 0), η2 = (0, 1, 0, 0), η3 = (0, 0, 1, 0),
η4 = (0, 0, 0, 1). Let α : I → E4

1, α(s) = (x(s), 0, z(s),w(s)) be a smooth regular curve defined on an open
interval I ⊆ R. The curve α(s) lies in the 3-dimensional subspace E3

1 = span{η1, η3, η4} of E4
1. We consider

the surface defined by

M1 : F1(s, t) = (x(s) cos t, x(s) sin t, z(s),w(s)), s ∈ I, t ∈ [0, 2π), (9)

which is the orbit of α(s) under the action of the orthogonal transformation of E4
1 that leaves the timelike

plane spanned by {η3, η4} pointwise fixed. The surface M1 is called a rotational surface of elliptic type, and
it is regular and timelike if x(s) > 0 and the profile curve α(s) is timelike on I.

Rotational Surfaces of Hyperbolic Type:
Let β : I → E4

1, β(s) = (x(s), y(s), 0,w(s)) be a smooth regular curve defined on an open interval I ⊆ R. The
curve β(s) lies in the 3-dimensional subspace E3

1 = span{η1, η2, η4} of E4
1. Now we consider the surface

defined by

M2 : F2(s, t) = (x(s), y(s),w(s) sinh t,w(s) cosh t), s ∈ I, t ∈ R, (10)

which is the orbit of β(s) under the action of the orthogonal transformation of E4
1 that leaves the spacelike

plane spanned by {η1, η2} pointwise fixed. The surface M2 is called a rotational surface of hyperbolic type,
and it is regular and timelike if w(s) > 0 and the profile curve β(s) is timelike on I.

Rotational Surfaces of Parabolic Type:
Now we take the pseudo-orthonormal basis {η1, η2, ξ3, ξ4} ofE4

1 such that ξ3 = (η4−η3)/
√

2, ξ4 = (η3+η4)/
√

2.
Note that 〈ξ3, ξ3〉 = 0, 〈ξ4, ξ4〉 = 0, 〈ξ3, ξ4〉 = −1. We consider a smooth regular curve γ(s) = x(s)η1 + z̄(s)η3 +

w̄(s)η4, s ∈ I lying in the subspace E3
1 = span{η1, η3, η4}. Since η3 = (ξ4 − ξ3)/

√
2 and η4 = (ξ3 + ξ4)/

√
2, we

have

γ(s) = x(s)η1 +
( w̄(s) − z̄(s)

√
2

)
ξ3 +

( w̄(s) + z̄(s)
√

2

)
ξ4, s ∈ I. (11)

If we put z(s) = (w̄(s) − z̄(s))/
√

2 and w(s) = (w̄(s) + z̄(s))/
√

2, then we have γ(s) = x(s)η1 + z(s)ξ3 + w(s)ξ4.
Now we consider the surface defined by

M3 : F3(s, t) = x(s)η1 +
√

2tw(s)η2 + (z(s) + t2w(s))ξ3 + w(s)ξ4, s ∈ I, t ∈ R, (12)

which is the orbit of γ(s) under the action of the orthogonal transformation T of E4
1 defined by T(η1) = η1,

T(η2) = η2 +
√

2tξ3, T(ξ3) = ξ3 and T(ξ4) =
√

2tη2 + t2ξ3 + ξ4 that leaves the degenerate plane spanned by
{η1, ξ3} pointwise fixed. The surface M3 is screw invariant and also called a rotational surface of parabolic
type. It is regular and timelike if w(s) > 0 and the profile curve γ(s) is timelike on I.

3. Timelike rotational surfaces with pointwise 1-type Gauss map

In this section, we study timelike rotational surfaces of elliptic, hyperbolic or parabolic type with
pointwise 1-type Gauss map. There are flat timelike rotational surfaces of elliptic and hyperbolic type in
E4

1 with pointwise 1-type Gauss map of the first and second kind. However, for flat timelike rotational
surfaces of parabolic type in E4

1, the Gauss map ν does not satisfy (1), that is, it is not of pointwise 1-type
Gauss map.

The Laplacian of the Gauss map ν for an n-dimensional submanifold M in a pseudo-Euclidean space
En+2

t was given by
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Lemma 3.1. [12] Let M be an n-dimensional submanifold of a pseudo-Euclidean space En+2
t . Then, the Laplacian of

the Gauss map ν = en+1 ∧ en+2 is given by

∆ν =||h||2ν + 2
∑
j<k

ε jεkRD(e j, ek; en+1, en+2)e j ∧ ek + ∇(trAn+1) ∧ en+2 + en+1 ∧ ∇(trAn+2)

+ n
n∑

j=1

ε jω(n+1)(n+2)(e j)H ∧ e j,
(13)

where ||h||2 is the squared length of the second fundamental form, RD the normal curvature tensor, and ∇(trAr) the
gradient of trAr.

Let M be a timelike surface in E4
1. We choose a local orthonormal frame field {e1, e2, e3, e4} defined on M

such that e1, e2 are tangent to M, and e3, e4 are normal to M. Let C be a vector field in Λ2E4
1 ≡ E

6
3. Since the

set {eA ∧ eB|1 ≤ A < B ≤ 4} is an orthonormal basis for E6
3, the vector C can be expressed as

C =
∑

1≤A<B≤4

εAεBCAB eA ∧ eB, (14)

where CAB = 〈C, eA ∧ eB〉. Let e1 be timelike, we have ε1 = −1 and ε2 = ε3 = ε4 = 1.
Then the condition of the constancy of the vector C written by (14) is similar to the constancy of C on a

spacelike surface in E4
1, given in [12]:

Lemma 3.2. A vector C in Λ2E4
1 ≡ E

6
3 written by (14) is constant if and only if the following equations are satisfied

for i = 1, 2

ei (C12) =h3
i2C13 + h4

i2C14 − h3
i1C23 − h4

i1C24, (15)

ei (C13) = − h3
i2C12 + ω34(ei)C14 + ω12(ei)C23 − h4

i1C34, (16)

ei (C14) = − h4
i2C12 − ω34(ei)C13 + ω12(ei)C24 + h3

i1C34, (17)

ei (C23) = − h3
i1C12 + ω12(ei)C13 + ω34(ei)C24 − h4

i2C34, (18)

ei (C24) = − h4
i1C12 + ω12(ei)C14 − ω34(ei)C23 + h3

i2C34, (19)

ei (C34) = − h4
i1C13 + h3

i1C14 + h4
i2C23 − h3

i2C24. (20)

3.1. Rotational surfaces of elliptic type with pointwise 1-type Gauss Map

In this subsection, we determine flat timelike rotational surfaces of elliptic type in E4
1 with pointwise

1-type Gauss map of the first and second kind.
Let M1 be a timelike rotational surface of elliptic type inE4

1 defined by (9). Without loss of generality, we
assume that the smooth timelike profile curveα is parametrized by its arc lenght s, i.e., x′2(s)+z′2(s)−w′2(s) =
−1.

We also suppose that the principal direction α′′ is nonnull. Then the curvature function κ of α is given
by κ(s) =

√
〈α′′(s), α′′(s)〉 =

√
x′′2(s) + z′′2(s) − w′′2(s) , 0, s ∈ I.

For the surface M1, we choose a moving frame field {e1, e2, e3, e4} such that e1, e2 are tangent to M1, and
e3, e4 are normal to M1 which are given as follows:

e1 =
∂
∂s
, e2 =

1
x(s)

∂
∂t
, x(s) > 0, (21)

e3 =
1
κ

(x′′ cos t, x′′ sin t, z′′,w′′), (22)

e4 =
1
κ

(µ cos t, µ sin t,w′x′′ − x′w′′, z′x′′ − x′z′′), (23)
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where µ = z′w′′ − w′z′′, ε1 = 〈e1, e1〉 = −1, ε2 = 〈e2, e2〉 = 1, ε3 = 〈e3, e3〉 = 1 and ε4 = 〈e4, e4〉 = 1.
By a direct computation, we can obtain the coefficients of the second fundamental form and the connec-

tion forms as follows

h3
11 = κ, h3

22 = −
x′′

κx
, h3

12 = 0, (24)

h4
11 = h4

12 = 0, h4
22 = −

µ

κx
, (25)

ω12(e1) = 0, ω12(e2) =
x′

x
, (26)

ω34(e1) = τ, ω34(e2) = 0, (27)

where τ is the torsion of the profile curve α. Therefore, we obtain the mean curvature vector and the
Gaussian curvature of M1, respectively, as follows

H = −
1
2

[(x′′

κx
+ κ

)
e3 +

µ

κx
e4

]
and K = −

x′′

x
. (28)

On the other hand, by using the Codazzi equation (5) we get

e1(h3
22) = −ω12(e2)

(
h3

11 + h3
22

)
+ τh4

22, (29)

e1(h4
22) = −ω12(e2)h4

22 − τh3
22. (30)

Theorem 3.3. Let M1 be a flat timelike rotational surface of elliptic type in E4
1 defined by (9). If the profile curve

α(s) = (x(s), 0, z(s),w(s)) has the nonnull principal curvature vector α′′(s), then

i. M1 has global 1-type Gauss map of the first kind if and only if α(s) is given by

x(s) =x1,

z(s) =
1
q0

cosh(κ1 + q0s) + z0, (31)

w(s) =
1
q0

sinh(κ1 + q0s) + w0, (32)

where q0 = ±κ0 and x1, z0,w0, κ0, κ1 ∈ R with x1, κ0 > 0. Moreover, ∆ν =
( 1
x2

1

+ κ2
0

)
ν.

ii. M1 has pointwise 1-type Gauss map of the second kind if and only if α(s) is given by

x(s) =x0s + x1,

z(s) =
√

x2
0 + 1

∫
sinh(q0 ln(x0s + x1) + ψ0)ds + z0, (33)

w(s) =
√

x2
0 + 1

∫
cosh(q0 ln(x0s + x1) + ψ0)ds + w0, (34)

and the Gauss map ν = e3 ∧ e4 satisfies (1) for the function

f (s, t) =
κ2

0 + x2
0 + 1

(x2
0 + 1)(x0s + x1)2

and for the constant vector

C = x2
0e3 ∧ e4 −

q0x2
0(x2

0 + 1)

κ0
e1 ∧ e3

where s > −x1/x0, q0 = ± κ0

x0

√
x2

0+1
and κ0, x0, x1, z0,w0, ψ0 ∈ R with κ0 > 0. The integrals given above can be

evaluated according to q0 , ±1, q0 = 1 or q0 = −1. Moreover, the profile curve α is a helix.
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Proof. Let M1 be a timelike rotational surface inE4
1 defined by (9). Suppose that the principal direction α′′(s)

is nonnull. Then we have an orthonormal moving frame {e1, e2, e3, e4} on M1 in E4
1 given by (21)–(23), and

the entries of the shape operators A3 and A4 are given by (24) and (25), respectively. Hence the Laplacian
of the Gauss map ν = e3 ∧ e4 from (13) is obtained as

∆ν =||h||2ν + (e1(h4
22) + τ(h3

22 − h3
11))e1 ∧ e3 + (e1(h3

11 − h3
22) + τh4

22)e1 ∧ e4.

If we use the Codazzi equations (29) and (30), then we get

∆ν =||h||2ν − (τh3
11 + ω12(e2)h4

22)e1 ∧ e3 + (κ′ + ω12(e2)(h3
11 + h3

22))e1 ∧ e4. (35)

Suppose that M1 is flat and has pointwise 1-type Gauss map of the second kind. Then, from the second
equation of (28) we have x′′ = 0, that is, x(s) = x0s + x1 with x0, x1 ∈ R, and hence h3

22 = 0. Considering (35)
and h3

22 = 0, we obtain

f (1 + C34) =‖h‖2 = (h3
11)2 + (h4

22)2, (36)

f C13 =τh3
11 + ω12(e2)h4

22, (37)

f C14 = − κ′ − ω12(e2)h3
11, (38)

C12 =C23 = C24 = 0. (39)

For i = 2, from (15), (18) and (19) we have, respectively,

h4
22C14 = 0, (40)

ω12(e2)C13 − h4
22C34 = 0, (41)

ω12(e2)C14 = 0. (42)

From (26), we have ω12(e2) =
x0

x
, and thus (42) implies that x0C14 = 0 from which x0 = 0 or C14 = 0.

CASE I. x0 = 0. So, x(s) = x1 and x1 ∈ R+ as x(s) > 0. In this case, the profile curve α(s) = (x1, 0, z(s),w(s))
is a plane curve, that is, τ(s) = 0, and 〈α′(s), α′(s)〉 = z′2(s) − w′2(s) = −1. Now we may put z′(s) = sinhθ(s),
w′(s) = coshθ(s). Then α′′(s) = (0, 0, θ′ coshθ, θ′ sinhθ) and 〈α′′, α′′〉 = θ′2. This means that κ = |θ′|. So,
θ′(s) = ±κ(s). On the other hand, the curvature of α(s) is also given by κ = |z′w′′ − w′z′′| = |µ|, that is,

µ = ±κ. Therefore, from (25), (26) and (27) we have, respectively, h4
22 = ±

1
x1

, ω12 = 0 and ω34 = 0. Now,

considering these quantities, (40) implies that C14 = 0. Hence, (38) gives κ = κ0, where κ0 ∈ R+. So, we
have θ(s) = q0s + κ1 where q0 = ±κ0. Also, (37) implies that C13 = 0, and thus (41) produces C34 = 0.
Therefore, C = 0, namely, the Gauss map ν is not of pointwise 1-type of the second kind. Moreover, (36)

gives f (s, t) =
1
x2

1

+κ2
0 which is a nonzero constant, and ν is of global 1-type of the first kind. Asθ(s) = q0s+κ1,

from z′(s) = sinhθ(s) and w′(s) = coshθ(s) we have (31) and (32).
CASE II. C14 = 0 and x0 , 0. So, we get κ′ +

x0

x
κ = 0 from (38) which yields κ =

κ0

x
=

κ0

x0s + x1
for some

constant κ0 > 0. Now, since α is parametrized by arc length parameter s, we get z′2 − w′2 = −1 − x2
0. Say

µ2
0 = x2

0 + 1 > 0. Then z′2 − w′2 = −µ2
0. Without loss of generality, we assume that µ0 > 0. When we write

w′(s) = µ0 coshψ(s) and z′(s) = µ0 sinhψ(s), we get w′′(s) = µ0ψ′(s) sinhψ(s) and z′′(s) = µ0ψ′(s) coshψ(s).
Thus, κ2 = 〈α′′, α′′〉 = z′′2−w′′2 = µ2

0ψ
′2 from which we obtainψ(s) = q0 ln(x0s+x1)+ψ0, where q0 = ± κ0

x0

√
x2

0+1

and ψ0 is an integration constant. Therefore, we obtain (33) and (34).

Also, we have µ = z′w′′ −w′z′′ = −µ2
0ψ
′ = −µ2

0
q0x0

x
. Hence, h4

22 = −
µ

κx
= µ2

0
q0x0

κ0x
and equation (41) gives

κ0C13 − µ
2
0q0C34 = 0. (43)
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Now, by a calculation we have τh3
11 + ω12(e2)h4

22 =
q0x2

0(µ2
0 + κ2

0)

κ0x2 and ‖h‖2 = (h3
11)2 + (h4

22)2 =
κ2

0 + µ2
0

x2 .

From (36) and (37), we get κ0C13 − q0x2
0C34 = q0x2

0 from which and (43) we obtain that C13 =
x2

0µ
2
0q0

κ0
and

C34 = x2
0. Hence, we get C = x2

0e3 ∧ e4 − q0
x2

0(x2
0 + 1)

κ0
e1 ∧ e3 by (14). Also, from equation (36) we have

f (s, t) =
x2

0 + κ2
0 + 1

(x2
0 + 1)(x0s + x1)2

. Considering the curve α(s) lying in E3
1, we obtain τ =

〈α′ × α′′, α′′′〉

κ2 =
q0x2

0

x
by a

direct computation. Note that τ/κ is a constant, and thus the profile curve α is a helix.
The converse of the proof follows from a direct calculation.

Note that if α′′(s) = 0 which means α(s) is a line, then it can be shown that M1 lies in Euclidean space E3

or Minkowski space E3
1. Rotational surfaces in Euclidean space E3 or Minkowski space E3

1 with pointwise
1-type Gauss map were studied in [7, 13].

3.2. Rotational surfaces of hyperbolic type with pointwise 1-type Gauss Map
In this subsection, we study flat timelike rotational surfaces of hyperbolic type in E4

1 with pointwise
1-type Gauss map of the second kind.

Let M2 be a timelike rotational surface of hyperbolic type in E4
1 defined by (10). Without loss of

generality, we assume that the smooth timelike profile curve β is parametrized by its arc lenght s, i.e.,
x′2(s) + y′2(s) − w′2(s) = −1. We also suppose that the principal direction β′′ is nonnull. Then the curvature

function κ of β is given by κ(s) =
√〈
β′′(s), β′′(s)

〉
=

√
x′′2(s) + y′′2(s) − w′′2(s) , 0, s ∈ I.

For the surface M2, we choose a moving frame field {e1, e2, e3, e4} such that e1, e2 are tangent to M2, and
e3, e4 are normal to M2 which are given as follows:

e1 =
∂
∂s
, e2 =

1
w(s)

∂
∂t
, w(s) > 0, (44)

e3 =
1
κ

(x′′, y′′,w′′ sinh t,w′′ cosh t), (45)

e4 =
1
κ

(y′w′′ − w′y′′,w′x′′ − x′w′′, ρ sinh t, ρ cosh t), (46)

where ρ = y′x′′ − x′y′′, ε1 = 〈e1, e1〉 = −1, ε2 = 〈e2, e2〉 = 1, ε3 = 〈e3, e3〉 = 1 and ε4 = 〈e4, e4〉 = 1.
By a direct computation, we can obtain the coefficients of the second fundamental form and the connec-

tion forms as

h3
11 = κ, h3

22 = −
w′′

κw
, h3

12 = 0, (47)

h4
11 = h4

12 = 0, h4
22 = −

ρ

κw
, (48)

ω12(e1) = 0, ω12(e2) =
w′

w
, (49)

ω34(e1) = τ, ω34(e2) = 0, (50)

where τ is the torsion of the profile curve β. Hence, the mean curvature vector and the Gaussian curvature
of M2 are, respectively, given by

H = −
1
2

[(w′′

κw
+ κ

)
e3 +

ρ

κw
e4

]
and K = −

w′′

w
. (51)

On the other hand, using the Codazzi equation (5) we get

e1(h3
22) = −ω12(e2)

(
h3

11 + h3
22

)
+ τh4

22, (52)

e1(h4
22) = −ω12(e2)h4

22 − τh3
22. (53)
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Theorem 3.4. Let M2 be a flat timelike rotational surface of hyperbolic type in E4
1 defined by (10). If the smooth

timelike profile curve β(s) = (x(s), y(s), 0,w(s)) has the nonnull principal curvature vector β′′(s), then M2 has
pointwise 1-type Gauss map of the second kind if and only if β(s) is given by

x(s) =

√
w2

0 − 1

w0(1 + q2
0)

(w0s + w1)(q0 sinψ(s) + cosψ(s)), (54)

y(s) =

√
w2

0 − 1

w0(1 + q2
0)

(w0s + w1)(sinψ(s) − q0 cosψ(s)), (55)

w(s) =w0s + w1,

ψ(s) =q0 ln(w0s + w1) + ψ0

and the Gauss map ν = e3 ∧ e4 satisfies (1) for the function

f (s, t) =
κ2

0 + w2
0 − 1

(1 − w2
0)(w0s + w1)2

and for the constant vector

C = −w2
0e3 ∧ e4 +

q0w2
0(w2

0 − 1)

κ0
e1 ∧ e3

where s > −w1/w0, |w0| > 1, q0 = ± κ0

w0

√
w2

0−1
and κ0,w0,w1, ψ0 ∈ R with κ0 > 0. Moreover, the profile curve β is a

helix.

Proof. Let M2 be a timelike rotational surface in E4
1 defined by (10). Suppose that the principal direction

β′′(s) is nonnull. Then we have an orthonormal moving frame {e1, e2, e3, e4} on M2 in E4
1 given by (44)–(46),

and the coefficients of the second fundamental form are given by (47) and (48). Hence the Laplacian of the
Gauss map ν = e3 ∧ e4 from (13) is obtained as

∆ν =||h||2ν + (e1(h4
22) + τ(h3

22 − h3
11))e1 ∧ e3 + (e1(h3

11 − h3
22) + τh4

22)e1 ∧ e4.

If we use the Codazzi equations (52) and (53), then we get

∆ν =||h||2ν − (τh3
11 + ω12(e2)h4

22)e1 ∧ e3 + (κ′ + ω12(e2)(h3
11 + h3

22))e1 ∧ e4. (56)

Suppose that M2 is flat and has pointwise 1-type Gauss map of the second kind. Then, from the second of
(51) we have w′′ = 0, that is, w(s) = w0s + w1 with w0,w1 ∈ R, and hence h3

22 = 0 because of (47). Considering
(56) and h3

22 = 0, we obtain

f (1 + C34) =‖h‖2 = (h3
11)2 + (h4

22)2, (57)

f C13 =τh3
11 + ω12(e2)h4

22, (58)

f C14 = − κ′ − ω12(e2)h3
11, (59)

C12 =C23 = C24 = 0. (60)

For i = 2, from (15), (18) and (19) we have, respectively,

h4
22C14 = 0, (61)

ω12(e2)C13 − h4
22C34 = 0, (62)

ω12(e2)C14 = 0. (63)
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From (49), we have ω12(e2) =
w0

w
, and thus (63) implies that w0C14 = 0. Since β is parametrized by arc

length parameter, that is, x′2 + y′2 − w2
0 = −1, w0 must be non-zero constant. Therefore, C14 = 0. So,

we get κ′ +
w0

w
κ = 0 from (59) which yields κ =

κ0

w
=

κ0

w0s + w1
for some constant κ0 > 0. Now, since

β′(s) = (x′(s), y′(s), 0,w0) and 〈β′, β′〉 = −1 we get x′2 + y′2 = −1 + w2
0. We put µ2

0 = w2
0 − 1 > 0 where

|w0| > 1. Then x′2 + y′2 = µ2
0. Without loss of generality, we assume that µ0 > 0. When we write

x′(s) = µ0 cosψ(s) and y′(s) = µ0 sinψ(s), we get x′′(s) = −µ0ψ′(s) sinψ(s) and y′′(s) = µ0ψ′(s) cosψ(s). Thus,
κ2 = 〈β′′, β′′〉 = x′′2 + y′′2 = µ2

0ψ
′2 from which we obtain ψ(s) = q0 ln(w0s + w1) + ψ0, where q0 = ± κ0

w0

√
w2

0−1

and ψ0 is an integration constant. Therefore, we obtain (54) and (55).

Also, we have ρ = y′x′′ − x′y′′ = −µ2
0ψ
′ = −µ2

0
q0w0

w
. Hence, h4

22 = −
ρ

κw
= µ2

0
q0w0

κ0w
and equation (62)

gives

κ0C13 − µ
2
0q0C34 = 0. (64)

Now, by a calculation we have τh3
11 + ω12(e2)h4

22 =
q0w2

0(κ2
0 + µ2

0)

κ0w2 and ‖h‖2 = (h3
11)2 + (h4

22)2 =
κ2

0 + µ2
0

w2 .

From (57) and (58), we get κ0C13 − q0w2
0C34 = q0w2

0 from which and (64) we obtain that C13 = −
(w2

0 − 1)w2
0q0

κ0

and C34 = −w2
0. Hence, we get C = −w2

0e3 ∧ e4 +
w2

0(w2
0 − 1)q0

κ0
e1 ∧ e3 by (14). Also, from equation (57) we

have f (s, t) =
w2

0 + κ2
0 − 1

(1 − w2
0)(w0s + w1)2

.

Considering the curve β(s) lying in E3
1, we obtain τ =

〈β′ × β′′, β′′′〉

κ2 =
q0w2

0

w
by a direct computation.

Note that τ/κ is a constant, and thus the profile curve β is a helix.
The converse of the proof follows from a direct calculation.

Note that if β′′(s) = 0, that is, β is line, then it can be shown that M2 lies in Euclidean space E3 or
Minkowski space E3

1. Rotational surfaces in Euclidean space E3 or Minkowski space E3
1 with pointwise

1-type Gauss map were studied in [7, 13].

3.3. Rotational surfaces of parabolic type with pointwise 1-type Gauss Map

In this subsection, we prove that there exists no flat timelike rotational surfaces M3 of parabolic type in
E4

1 defined by (12) with pointwise 1-type Gauss map.
Let M3 be a timelike rotational surface of parabolic type in E4

1 defined by (12). Suppose that the smooth
timelike profile curve γ : I → E3

1, γ(s) = x(s)η1 + z(s)ξ3 + w(s)ξ4 is parametrized by the arc lenght, i.e.,
x′2(s) − 2z′(s)w′(s) = −1, where I is an open interval in R.

For the surface M3, we consider the following orthonormal moving frame {e1, e2, e3, e4} such that e1, e2
are tangent to M3, and e3, e4 are normal to M3:

e1 =
∂
∂s
, e2 =

1
√

2w(s)

∂
∂t
, w(s) > 0, (65)

e3 = x′(s)η1 +
√

2tw′(s)η2 +
(
−

1
w′(s)

+ t2w′(s) + z′(s)
)
ξ3 + w′(s)ξ4, (66)

e4 =
x′(s)
w′(s)

ξ3 + η1, (67)

where s ∈ I, ε1 = 〈e1, e1〉 = −1, ε2 = 〈e2, e2〉 = 1, ε3 = 〈e3, e3〉 = 1 and ε4 = 〈e4, e4〉 = 1.
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By a direct computation, we have the coefficients of the second fundamental form and the connection
forms as follows

h3
11 =

w′′

w′
, h3

22 = −
w′

w
, h3

12 = h3
21 = 0, (68)

h4
11 =

x′′w′ − x′w′′

w′
, h4

22 = h4
12 = h4

21 = 0, (69)

ω12(e1) = 0, ω12(e2) =
w′

w
, (70)

ω34(e1) =
x′′w′ − x′w′′

w′
, ω34(e2) = 0. (71)

Then we obtain the mean curvature vector and Gauss curvature of M3, respectively, as

H = −
1
2

[(w′′

w′
+

w′

w

)
e3 +

(x′′w′ − x′w′′

w′
)
e4

]
and K = −

w′′

w
. (72)

On the other hand, from the Codazzi equation (5) we have

e1(h3
22) = −ω12(e2)

(
h3

11 + h3
22

)
, (73)

h4
11ω12(e2) + h3

22ω34(e1) = 0. (74)

Note that w′(s) , 0 because the timelike profile curve γ is parametrized by arc lenght parameter s.

Theorem 3.5. There exists no flat timelike rotational surface of the parabolic type defined by (12) inE4
1 with pointwise

1-type Gauss map.

Proof. Let M3 be a flat timelike rotational surface in E4
1 defined by (12). Then we have an orthonormal

moving frame {e1, e2, e3, e4} on M3 in E4
1 given by (65)–(67), and the components of the second fundamental

form are given by (68) and (69). Hence the Laplacian of the Gauss map ν = e3 ∧ e4 from (13) is obtained as

∆ν =||h||2ν + ((h3
22 − h3

11)ω34(e1) − e1(h4
11))e1 ∧ e3 + (e1(h3

11 − h3
22) − ω34(e1)h4

11))e1 ∧ e4.

If we use the Codazzi equation (73), then we get

∆ν =||h||2ν − (e1(h4
11) − (h3

22 − h3
11)ω34(e1))e1 ∧ e3 + (e1(h3

11) + ω12(e2)(h3
11 + h3

22) − h4
11ω34(e1))e1 ∧ e4. (75)

According to the hypothesis, from the second of (51) we get w′′ = 0, that is, w(s) = w0s + w1 with w0,w1 ∈ R
and w0 , 0. Thus, from (68)–(71), we obtain

h3
11 = 0, h3

22 = −
w0

w
, h3

12 = h3
21 = 0,

h4
11 = x′′, h4

22 = h4
12 = h4

21 = 0,

ω12(e1) = 0, ω12(e2) =
w0

w
,

ω34(e1) = x′′, ω34(e2) = 0.

(76)

Considering (75) and (76), we have

f (1 + C34) =
w2

0

w2 + x′′2, (77)

f C13 =x′′′ +
w0

w
x′′, (78)

f C14 =
w2

0

w2 + x′′2, (79)

C12 =C23 = C24 = 0. (80)
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Since w0 , 0 and C14 satisfies (79), C14 must be nonzero. Therefore, the Gauss map of M3 is not pointwise
1-type Gauss map of the first kind.
Now, assume that Gauss map ν is of pointwise 1-type Gauss map of the second kind. For i = 2, from (15),
(19) and (76) we have, respectively,

w0C13 = 0, (81)
w0(C14 − C34) = 0 (82)

because of w0 , 0, C13 = 0 and C14 = C34. However, by using the equations (77) and (79), we get C14−C34 = 1
which is a contradiction to C14 = C34. Consequently, M3 has no pointwise 1-type Gauss map.
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