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Available at: http://www.pmf.ni.ac.rs/filomat

On the Structure Tensors of Almost Contact B-Metric Manifolds

Hristo Maneva,b

aMedical University of Plovdiv, Faculty of Pharmacy, Department of Pharmaceutical Sciences, 15-A Vasil Aprilov Blvd.,
Plovdiv 4002, Bulgaria

bPaisii Hilendarski University of Plovdiv, Faculty of Mathematics and Informatics, Department of Algebra and Geometry,
236 Bulgaria Blvd., Plovdiv 4027, Bulgaria

Abstract. The space of the structure (0,3)-tensors of the covariant derivatives of the structure endomor-
phism and the metric on almost contact B-metric manifolds is considered. A known decomposition of
this space in orthogonal and invariant subspaces with respect to the action of the structure group is used.
We determine the corresponding components of the structure tensor and consider the case of the lowest
dimension 3 of the studied manifolds. Some examples are commented.

Introduction

The idea of decomposition of the space of the structure (0,3)-tensors, generated by the covariant deriva-
tive of the fundamental tensor of type (1, 1), is used by different authors in order to obtain classifications
of manifolds with additional tensor structures. For example, let us mention the classification of almost
Hermitian manifolds given in [4], of almost complex manifolds with Norden metric – in [2], of almost
contact metric manifolds – in [1], of almost contact manifolds with B-metric – in [3], of Riemannian almost
product manifolds – in [8], of Riemannian manifolds with traceless almost product structure – in [10], of
almost paracontact metric manifolds – in [7], of almost paracontact Riemannian manifolds of type (n,n) –
in [6].

The almost contact structure is well studied, especially in the case when it is equipped with a compatible
Riemannian (or pseudo-Riemannian) metric, i.e. the almost contact endomorphism ϕ acts as an isometry
with respect to the metric in each tangent fibre of the contact distribution H = ker(η), where η is the contact
1-form. An indefinite counterpart is the almost contact B-metric structure, i.e. ϕ acts as an anti-isometry
with respect to B-metric in H.

The goal of this work is the description of the structure tensor generated by the covariant derivative of
ϕ and the B-metric by its components in the different basic classes of the classification of the almost contact
B-metric manifolds made by G. Ganchev, V. Mihova, K. Gribachev in [3]. The case of the lowest dimension
3 of the studied manifolds is considered and it is establish that four of the basic classes are restricted to the
spacial class with zero structure tensors.

The paper is organized as follows. In Sect. 1 we recall some facts about the almost contact manifolds with
B-metric. In Sect. 2 we decompose the vector space of the structure tensors on the considered manifolds.
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In Sect. 3 we deduce the components of the structure tensor in the case of the lowest dimension 3. In Sect. 4
we comment some examples in relation with the above investigations.

1. Almost contact manifolds with B-metric

Let (M, ϕ, ξ, η, 1) be an almost contact manifold with B-metric or an almost contact B-metric manifold, i.e.
M is a (2n+1)-dimensional differentiable manifold with an almost contact structure (ϕ, ξ, η) consisting of an
endomorphism ϕ of the tangent bundle, a vector field ξ, its dual 1-form η as well as M is equipped with a
pseudo-Riemannian metric 1 of signature (n + 1,n), such that the following algebraic relations are satisfied:
[3]

ϕξ = 0, ϕ2 = − Id +η ⊗ ξ, η ◦ ϕ = 0, η(ξ) = 1, 1(ϕx, ϕy) = −1(x, y) + η(x)η(y) (1)

for any x, y of the algebra X(M) of the smooth vector fields on M. Further x, y, z will stand for arbitrary
elements of X(M) or vectors in the tangent space TpM at p ∈M.

The associated metric 1̃ of 1 on M is defined by 1̃(x, y) = 1(x, ϕy) + η(x)η(y). The manifold (M, ϕ, ξ, η, 1̃)
is also an almost contact B-metric manifold. Both metrics 1 and 1̃ are necessarily of signature (n + 1,n). The
Levi-Civita connection of 1 and 1̃will be denoted by ∇ and ∇̃, respectively.

Let us denote the structure group of (M, ϕ, ξ, η, 1) by G. It is determined by G = O(n;C) × I, where I is
the identity on span(ξ) and O(n;C) = GL(n;C) ∩ O(n,n), i.e. G consists of the real square matrices of order
2n + 1 of the following type A B ϑ>

−B A ϑ>

ϑ ϑ 1

 , A>A − B>B = In,
B>A + A>B = On,

A,B ∈ GL(n;R),

where ϑ and its transpose ϑ> are the zero row n-vector and the zero column n-vector; In and On are the unit
matrix and the zero matrix of size n, respectively.

A classification of the almost contact B-metric manifolds is given in [3]. This classification, consisting of
eleven basic classes F1, F2, . . . , F11, is made with respect to the tensor F of type (0,3) defined by

F(x, y, z) = 1
((
∇xϕ

)
y, z

)
, (2)

which have the following properties

F(x, y, z) = F(x, z, y) = F(x, ϕy, ϕz) + η(y)F(x, ξ, z) + η(z)F(x, y, ξ). (3)

The intersection of the basic classes is the special class F0 determined by the condition F(x, y, z) = 0.
Hence F0 is the class of the almost contact B-metric manifolds with ∇-parallel structures, i.e. ∇ϕ = ∇ξ =
∇η = ∇1 = ∇1̃ = 0.

If {ei; ξ} (i = 1, 2, . . . , 2n) is a basis of TpM and
(
1i j

)
is the inverse matrix of the matrix

(
1i j

)
of 1, then the

following 1-forms are associated with F:

θ(z) = 1i jF(ei, e j, z), θ∗(z) = 1i jF(ei, ϕe j, z), ω(z) = F(ξ, ξ, z). (4)

These 1-forms are known also as the Lee forms. Obviously, the identities ω(ξ) = 0 and θ∗ ◦ ϕ = −θ ◦ ϕ2 are
always valid.

Further we use the following characteristic conditions of the basic classes: [5]

F1 : F(x, y, z) = 1
2n

{
1(x, ϕy)θ(ϕz) + 1(ϕx, ϕy)θ(ϕ2z) + 1(x, ϕz)θ(ϕy) + 1(ϕx, ϕz)θ(ϕ2y)

}
;

F2 : F(ξ, y, z) = F(x, ξ, z) = 0, F(x, y, ϕz) + F(y, z, ϕx) + F(z, x, ϕy) = 0, θ = 0;

F3 : F(ξ, y, z) = F(x, ξ, z) = 0, F(x, y, z) + F(y, z, x) + F(z, x, y) = 0;

F4 : F(x, y, z) = − 1
2nθ(ξ)

{
1(ϕx, ϕy)η(z) + 1(ϕx, ϕz)η(y)

}
;

F5 : F(x, y, z) = − 1
2nθ

∗(ξ)
{
1(x, ϕy)η(z) + 1(x, ϕz)η(y)

}
;

(5a)
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F6 : F(x, y, z) = F(x, y, ξ)η(z) + F(x, z, ξ)η(y),

F(x, y, ξ) = F(y, x, ξ) = −F(ϕx, ϕy, ξ), θ = θ∗ = 0;

F7 : F(x, y, z) = F(x, y, ξ)η(z) + F(x, z, ξ)η(y), F(x, y, ξ) = −F(y, x, ξ) = −F(ϕx, ϕy, ξ);

F8 : F(x, y, z) = F(x, y, ξ)η(z) + F(x, z, ξ)η(y), F(x, y, ξ) = F(y, x, ξ) = F(ϕx, ϕy, ξ);

F9 : F(x, y, z) = F(x, y, ξ)η(z) + F(x, z, ξ)η(y), F(x, y, ξ) = −F(y, x, ξ) = F(ϕx, ϕy, ξ);

F10 : F(x, y, z) = F(ξ, ϕy, ϕz)η(x);

F11 : F(x, y, z) = η(x)
{
η(y)ω(z) + η(z)ω(y)

}
.

(5b)

2. A decomposition of the space of the structure tensors

Let us consider TpM at arbitrary p ∈ M as a (2n + 1)-dimensional vector space equipped with almost
contact B-metric structure (ϕ, ξ, η, 1). LetF be the vector space of all tensors F of type (0,3) over TpM having
properties (3), i.e.

F =
{
F(x, y, z) ∈ R | F(x, y, z) = F(x, z, y) = F(x, ϕy, ϕz) + η(y)F(x, ξ, z) + η(z)F(x, y, ξ)

}
. (6)

The metric 1 induces an inner product 〈·, ·〉 on F defined by

〈F′,F′′〉 = 1iq1 jr1ksF′(ei, e j, ek)F′′(eq, er, es)

for any F′,F′′ ∈ F and a basis {ei} (i = 1, 2, . . . , 2n + 1) of TpM.
The standard representation of the structure group G in TpM induces a natural representation λ of G in

F as follows

((λa)F) (x, y, z) = F
(
a−1x, a−1y, a−1z

)
(7)

for any a ∈ G and F ∈ F , so that for F′,F′′ ∈ F

〈(λa)F′, (λa)F′′〉 = 〈F′,F′′〉.

The decomposition x = −ϕ2x +η(x)ξ generates the projectors h and v on TpM determined by h(x) = −ϕ2x
and v(x) = η(x)ξ, having the properties h ◦ h = h, v ◦ v = v, h ◦ v = v ◦ h = 0.

Therefore, we have the orthogonal decomposition TpM = h(TpM) ⊕ v(TpM).
Bearing in mind these projectors on TpM, we construct a partial decomposition of F as follows.
At first, we define the operator p1 : F → F by

p1(F)(x, y, z) = −F(ϕ2x, ϕ2y, ϕ2z). (8)

It is easy to check the following

Lemma 2.1. The operator p1 has the following properties:

(i) p1 ◦ p1 = p1;

(ii) 〈p1(F′),F′′〉 = 〈F′, p1(F′′)〉, F′,F′′ ∈ F ;

(iii) p1 ◦ (λa) = (λa) ◦ p1.

According to Lemma 2.1 we have the following orthogonal decomposition of F by the image and the
kernel of p1:

W1 = im(p1) = {F ∈ F | p1(F) = F}, W⊥

1 = ker(p1) = {F ∈ F | p1(F) = 0}. (9)

Further, we consider the operator p2 :W⊥

1 →W
⊥

1 defined by

p2(F)(x, y, z) = η(y)F(ϕ2x, ξ, ϕ2z) + η(z)F(ϕ2x, ϕ2y, ξ) (10)

for which we obtain
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Lemma 2.2. The operator p2 has the following properties:

(i) p2 ◦ p2 = p2;

(ii) 〈p2(F′),F′′〉 = 〈F′, p2(F′′)〉, F′,F′′ ∈ W⊥

1 ;

(iii) p2 ◦ (λa) = (λa) ◦ p2.

Then, bearing in mind Lemma 2.2, we obtain

W2 = im(p2) =
{
F ∈ W⊥

1 | p2(F) = F
}
, W⊥

2 = ker(p2) =
{
F ∈ W⊥

1 | p2(F) = 0
}
. (11)

Finally, we consider the operator p3 :W⊥

2 →W
⊥

2 defined by

p3(F)(x, y, z) = η(x)F(ξ, ϕ2y, ϕ2z)

and we get the following

Lemma 2.3. The operator p3 has the properties:

(i) p3 ◦ p3 = p3;

(ii) 〈p3(F′),F′′〉 = 〈F′, p3(F′′)〉, F′,F′′ ∈ W⊥

2 ;

(iii) p3 ◦ (λa) = (λa) ◦ p3.

By virtue of Lemma 2.3 we have

W3 = im(p3) = {F ∈ W⊥

2 | p3(F) = F}, W4 = ker(p3) = {F ∈ W⊥

2 | p3(F) = 0}. (12)

From Lemma 2.1, Lemma 2.2 and Lemma 2.3 we have immediately

Theorem 2.4. The decomposition F =W1 ⊕W2 ⊕W3 ⊕W4 is orthogonal and invariant under the action of G.
The subspacesWi (i = 1, 2, 3, 4) are determined by

W1 : F(x, y, z) = −F(ϕ2x, ϕ2y, ϕ2z),

W2 : F(x, y, z) = η(y)F(ϕ2x, ξ, ϕ2z) + η(z)F(ϕ2x, ϕ2y, ξ),

W3 : F(x, y, z) = η(x)F(ξ, ϕ2y, ϕ2z),

W4 : F(x, y, z) = −η(x)
{
η(y)F(ξ, ξ, ϕ2z) + η(z)F(ξ, ϕ2y, ξ)

}
.

(13)

Obviously, we have

F = p1(F) + p2(F) + p3(F) + p4(F). (14)

Corollary 2.5. The subspacesWi (i = 1, 2, 3, 4) are characterized as follows:

W1 =
{
F ∈ F | F(v(x), y, z) = F(x, v(y), z) = F(x, y, v(z)) = 0

}
,

W2 =
{
F ∈ F | F(v(x), y, z) = F(x, h(y), h(z)) = 0

}
,

W3 =
{
F ∈ F | F(h(x), y, z) = F(x, v(y), z) = F(x, y, v(z)) = 0

}
,

W4 =
{
F ∈ F | F(h(x), y, z) = F(x, h(y), h(z)) = 0

}
.

(15)

According to (13), (15) and (4) we obtain the following

Corollary 2.6. The Lee forms of F have the following properties in each of the subspacesWi (i = 1, 2, 3, 4):

(i) If F ∈ W1, then θ ◦ v = θ∗ ◦ v = ω = 0;

(ii) If F ∈ W2, then θ ◦ h = θ∗ ◦ h = ω = 0;

(iii) If F ∈ W3, then θ = θ∗ = ω = 0;

(iv) If F ∈ W4, then θ = θ∗ = 0.

Further we continue the decomposition of the subspacesWi (i = 1, 2, 3, 4) of F .
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2.1. The decomposition ofW1

Let us consider the 2n-dimensional distribution H = ker(η) of the tangent bundle of (M, ϕ, ξ, η, 1), the
endomorphism J = ϕ|H and the metric h = 1|H, where ϕ|H and 1|H are the restrictions of ϕ and 1 on H,
respectively. Let us remark that J and h are an almost complex structure and a Norden metric on H,
respectively, i.e.

J2 = − Id, h(Jx, Jy) = −h(x, y). (16)

Then (H, J, h) can be considered as an almost complex manifold with Norden metric.
Moreover, the subspaceW1 coincides with the restriction of F on H. By this reason the decomposition

of W1 is made as the decomposition, known from [2], of the corresponding space of F for an almost
complex manifold with Norden metric. Then we obtain the following

Proposition 2.7. Let F ∈ F and Fi (i = 1, 2, 3) be the projections of F on the subspaces Fi, respectively. Then

F1(x, y, z) =
1

2n

{
1(ϕx, ϕy)θ(ϕ2z) + 1(x, ϕy)θ(ϕz) + 1(ϕx, ϕz)θ(ϕ2y) + 1(x, ϕz)θ(ϕy)

}
;

F2(x, y, z) = −
1
4

{
F(ϕ2x, ϕ2y, ϕ2z) + F(ϕ2y, ϕ2z, ϕ2x) − F(ϕy, ϕ2z, ϕx) + F(ϕ2x, ϕ2z, ϕ2y)

+ F(ϕ2z, ϕ2y, ϕ2x) − F(ϕz, ϕ2y, ϕx)
}
−

1
2n

{
1(ϕx, ϕy)θ(ϕ2z) + 1(x, ϕy)θ(ϕz)

+ 1(ϕx, ϕz)θ(ϕ2y) + 1(x, ϕz)θ(ϕy)
}
;

F3(x, y, z) = −
1
4

{
F(ϕ2x, ϕ2y, ϕ2z) − F(ϕ2y, ϕ2z, ϕ2x) + F(ϕy, ϕ2z, ϕx) + F(ϕ2x, ϕ2z, ϕ2y)

− F(ϕ2z, ϕ2y, ϕ2x) + F(ϕz, ϕ2y, ϕx)
}
.

(17)

Therefore, the component of F onW1 is

p1(F) = F1 + F2 + F3. (18)

2.2. The decomposition ofW2

Let us consider linear operators L j : W2 →W2 ( j = 1, 2) defined by

L1(F)(x, y, z) = F(ϕx, ϕy, ξ)η(z) + F(ϕx, ϕz, ξ)η(y),

L2(F)(x, y, z) = F(ϕ2y, ϕ2x, ξ)η(z) + F(ϕ2z, ϕ2x, ξ)η(y).
(19)

It is easy to check the following

Lemma 2.8. The linear operator L j ( j = 1, 2) is an involutive isometry onW2 and it is invariant with respect to the
group G, i.e.

L j ◦ L j = IdW2 , 〈L j(F′),L j(F′′)〉 = 〈F′,F′′〉, L j((λa)F) = (λa)(L j(F)),

where F′, F′′ ∈ W2 and λa is determined by (7).

Therefore, L1 has two eigenvalues +1 and −1, and the corresponding eigenspaces

W
+
2 = {F ∈ W2 | L1(F) = F} , W

−

2 = {F ∈ W2 | L1(F) = −F}

are invariant orthogonal subspaces ofW2.
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In order to decomposeW+
2 andW−

2 , we use the operator L2 onW+
2 andW−

2 , respectively. Let us denote
the corresponding eigenspacesW2,k (k = 1, 2, 3, 4) by

W2,1 =
{
W

+
2 | L2(F) = −F

}
, W2,2 =

{
W
−

2 | L2(F) = −F
}
,

W2,3 =
{
W

+
2 | L2(F) = F

}
, W2,4 =

{
W
−

2 | L2(F) = F
}
.

Thus we establish the truthfulness of the following

Theorem 2.9. The decompositionW2 =W2,1 ⊕W2,2 ⊕W2,3 ⊕W2,4 is orthogonal and invariant with respect to
the structure group.

Proposition 2.10. Let F ∈ F and F j ( j = 4, . . . , 9) be the projections of F in the classes F j. Then we have

F4(x, y, z) = −
θ(ξ)
2n

{
1(ϕx, ϕy)η(z) + 1(ϕx, ϕz)η(y)

}
;

F5(x, y, z) = −
θ∗(ξ)

2n

{
1(x, ϕy)η(z) + 1(x, ϕz)η(y)

}
;

F6(x, y, z) =
θ(ξ)
2n

{
1(ϕx, ϕy)η(z) + 1(ϕx, ϕz)η(y)

}
+
θ∗(ξ)

2n

{
1(x, ϕy)η(z) + 1(x, ϕz)η(y)

} (20a)

+
1
4

[
F(ϕ2x, ϕ2y, ξ) + F(ϕ2y, ϕ2x, ξ) − F(ϕx, ϕy, ξ) − F(ϕy, ϕx, ξ)

]
η(z)

+
1
4

[
F(ϕ2x, ϕ2z, ξ) + F(ϕ2z, ϕ2x, ξ) − F(ϕx, ϕz, ξ) − F(ϕz, ϕx, ξ)

]
η(y);

F7(x, y, z) =
1
4

[
F(ϕ2x, ϕ2y, ξ) − F(ϕ2y, ϕ2x, ξ) − F(ϕx, ϕy, ξ) + F(ϕy, ϕx, ξ)

]
η(z)

+
1
4

[
F(ϕ2x, ϕ2z, ξ) − F(ϕ2z, ϕ2x, ξ) − F(ϕx, ϕz, ξ) + F(ϕz, ϕx, ξ)

]
η(y);

F8(x, y, z) =
1
4

[
F(ϕ2x, ϕ2y, ξ) + F(ϕ2y, ϕ2x, ξ) + F(ϕx, ϕy, ξ) + F(ϕy, ϕx, ξ)

]
η(z)

+
1
4

[
F(ϕ2x, ϕ2z, ξ) + F(ϕ2z, ϕ2x, ξ) + F(ϕx, ϕz, ξ) + F(ϕz, ϕx, ξ)

]
η(y);

F9(x, y, z) =
1
4

[
F(ϕ2x, ϕ2y, ξ) − F(ϕ2y, ϕ2x, ξ) + F(ϕx, ϕy, ξ) − F(ϕy, ϕx, ξ)

]
η(z)

+
1
4

[
F(ϕ2x, ϕ2z, ξ) − F(ϕ2z, ϕ2x, ξ) + F(ϕx, ϕz, ξ) − F(ϕz, ϕx, ξ)

]
η(y).

(20b)

Proof. Lemma 2.8 implies that the tensor 1
2 {F + L1(F)} is the projection of F ∈ W2 inW+

2 =W2,1 ⊕W2,3 and
moreover 1

2 {F − L2(F)} is the projection of F ∈ W+
2 inW2,1. Thus, we find the expression of the projection

p2,1 of F fromW2 toW2,1 in terms of L1 and L2, namely

p2,1(F) =
1
4
{F − L1(F) + L2(F) − L2 ◦ L1(F)} .

In a similar way we treat with the projections p2,k(F) inW2,k (k = 2, 3, 4). After that, using (19), we get the
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following expressions

p2,1(F)(x, y, z) =
1
4

[
F(ϕ2x, ϕ2y, ξ) + F(ϕ2y, ϕ2x, ξ) − F(ϕx, ϕy, ξ) − F(ϕy, ϕx, ξ)

]
η(z)

+
1
4

[
F(ϕ2x, ϕ2z, ξ) + F(ϕ2z, ϕ2x, ξ) − F(ϕx, ϕz, ξ) − F(ϕz, ϕx, ξ)

]
η(y);

p2,2(F)(x, y, z) =
1
4

[
F(ϕ2x, ϕ2y, ξ) − F(ϕ2y, ϕ2x, ξ) − F(ϕx, ϕy, ξ) + F(ϕy, ϕx, ξ)

]
η(z)

+
1
4

[
F(ϕ2x, ϕ2z, ξ) − F(ϕ2z, ϕ2x, ξ) − F(ϕx, ϕz, ξ) + F(ϕz, ϕx, ξ)

]
η(y);

p2,3(F)(x, y, z) =
1
4

[
F(ϕ2x, ϕ2y, ξ) + F(ϕ2y, ϕ2x, ξ) + F(ϕx, ϕy, ξ) + F(ϕy, ϕx, ξ)

]
η(z)

+
1
4

[
F(ϕ2x, ϕ2z, ξ) + F(ϕ2z, ϕ2x, ξ) + F(ϕx, ϕz, ξ) + F(ϕz, ϕx, ξ)

]
η(y);

p2,4(F)(x, y, z) =
1
4

[
F(ϕ2x, ϕ2y, ξ) − F(ϕ2y, ϕ2x, ξ) + F(ϕx, ϕy, ξ) − F(ϕy, ϕx, ξ)

]
η(z)

+
1
4

[
F(ϕ2x, ϕ2z, ξ) − F(ϕ2z, ϕ2x, ξ) + F(ϕx, ϕz, ξ) − F(ϕz, ϕx, ξ)

]
η(y).

(21)

By virtue of Corollary 2.6, (4) and (21), we establish that the Lee forms θ and θ∗ of F are zero inW2,k
(k = 2, 3, 4). We have no additional conditions for θ and θ∗ in W2,1. Then, W2,1 can be additionally
decomposed to three subspaces determined by the conditions θ = 0, θ∗ = 0 and θ = θ∗ = 0, respectively, i.e.

W2,1 =W2,1,1 ⊕W2,1,2 ⊕W2,1,3,

where

W2,1,1 =
{
F ∈ W2,1 | θ∗ = 0

}
, W2,1,2 =

{
F ∈ W2,1 | θ = 0

}
,

W2,1,3 =
{
F ∈ W2,1 | θ = 0, θ∗ = 0

}
.

According to (5), the classes F4 and F5 are defined by explicit expressions of F, which have the form of
p2,1(F) in (21). Hence we conclude that F4 and F5 are the subspacesW2,1,1 andW2,1,2 ofW2,1, respectively,
and the projections of F on them have the form given in the first line of (20). Therefore, the equality for F6
in (20) follows from the form of p2,1(F) in (21) and the fact that F6 coincides withW2,1,3.

The form of p2,2(F), p2,3(F) and p2,4(F) in (21) satisfies the conditions in (5) for the subspace F7, F8 and F9,
respectively.

Thus, the subspacesW2,1,1,W2,1,2,W2,1,3,W2,2,W2,3,W2,4 correspond to the classes F4, F5, F6, F7, F8,
F9, respectively.

Therefore, the component of F onW2 is

p2(F) = F4 + F5 + F6 + F7 + F8 + F9. (22)

2.3. The decomposition ofW3 andW4

Finally, since F10 and F11 are determined in (5) by an expression of F which coincide with the conditions
in (13) forW3 andW4, respectively, we have the following

Proposition 2.11. Let F ∈ F and Fl (l = 10, 11) be the projections of F in the subspaces Fl. Then we have

F10(x, y, z) = η(x)F(ξ, ϕ2y, ϕ2z);

F11(x, y, z) = −η(x)
{
η(y)F(ξ, ξ, ϕ2z) + η(z)F(ξ, ϕ2y, ξ)

}
.

(23)
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Therefore, the components of F onW3 andW4 are

p3(F) = F10, p4(F) = F11, (24)

respectively. Then, bearing in mind (18), (22) and (24), we obtain that

F(x, y, z) =

11∑
i=1

Fi(x, y, z),

where the components Fi of F in the corresponding subspaces Fi (i = 1, . . . , 11) of F are determined in
Proposition 2.7, Proposition 2.10 and Proposition 2.11.

In conclusion we give

Theorem 2.12. The almost contact B-metric manifold (M, ϕ, ξ, η, 1) belongs to the basic class Fi (i = 1, . . . , 11) if
and only if the structure tensor F satisfies the condition F = Fi, where the components Fi of F are given in (17), (20)
and (23).

It is easy to conclude that an almost contact B-metric manifold belongs to a direct sum of two or more
basic classes, i.e. (M, ϕ, ξ, η, 1) ∈ Fi ⊕F j ⊕ · · · , if and only if the structure tensor F on (M, ϕ, ξ, η, 1) is the sum
of the corresponding components Fi, F j, . . . of F, i.e. the following condition is satisfied F = Fi + F j + · · · .

3. The components of the structure tensor for dimension 3

In this section we are interesting in the lowest dimension of the manifolds under consideration, i.e. we
consider the case of dim M = 3 for (M, ϕ, ξ, η, 1).

Let us denote the components Fi jk = F(ei, e j, ek) of the structure tensor F with respect to a ϕ-basis
{ei}

2
i=0 =

{
e0 = ξ, e1 = e, e2 = ϕe

}
, which satisfies the following conditions

1(e0, e0) = 1(e1, e1) = −1(e2, e2) = 1, 1(ei, e j) = 0, i , j ∈ {0, 1, 2}. (25)

Then, using (4) and (25), we obtain the components of the Lee forms with respect to the basis {ei}
2
i=0 as

follows
θ0 = F110 − F220, θ1 = F111 − F221, θ2 = F112 − F211,

θ∗0 = F120 + F210, θ∗1 = F112 + F211, θ∗2 = F111 + F221,

ω0 = 0, ω1 = F001, ω2 = F002.

(26)

Let us consider arbitrary vectors x, y, z ∈ TpM. Therefore we have x = xiei, y = yiei, z = ziei with respect
to {ei}

2
i=0.

By direct computations we obtain

Proposition 3.1. The components Fi (i = 1, 2, . . . , 11) of the structure tensor F in the corresponding basic classes Fi
are the following

F1(x, y, z) =
(
x1θ1 − x2θ2

) (
y1z1 + y2z2

)
, θ1 = F111 = F122, θ2 = −F211 = −F222;

F2(x, y, z) = F3(x, y, z) = 0;

F4(x, y, z) = 1
2θ0

{
x1

(
y0z1 + y1z0

)
− x2

(
y0z2 + y2z0

)}
, 1

2θ0 = F101 = F110 = −F202 = −F220;

F5(x, y, z) = 1
2θ
∗

0

{
x1

(
y0z2 + y2z0

)
+ x2

(
y0z1 + y1z0

)}
, 1

2θ
∗

0 = F102 = F120 = F201 = F210;

F6(x, y, z) = F7(x, y, z) = 0;

F8(x, y, z) = λ
{
x1

(
y0z1 + y1z0

)
+ x2

(
y0z2 + y2z0

)}
, λ = F101 = F110 = F202 = F220;

F9(x, y, z) = µ
{
x1

(
y0z2 + y2z0

)
− x2

(
y0z1 + y1z0

)}
, µ = F102 = F120 = −F201 = −F210;

F10(x, y, z) = νx0
(
y1z1 + y2z2

)
, ν = F011 = F022;

F11(x, y, z) = x0
{(

y1z0 + y0z1
)
ω1 +

(
y2z0 + y0z2

)
ω2

}
, ω1 = F010 = F001, ω2 = F020 = F002.

(27)
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Proof. Using Theorem 2.12 and the expressions of the components Fi of F for the corresponding classes Fi
(i = 1, . . . , 11), determined by (17), (20) and (23), the equalities (25), (26) and the properties (3) of F, we
obtain the corresponding explicit expression of Fi for dimension 3.

According to Theorem 2.12 and Proposition 3.1, we obtain

Theorem 3.2. The class of almost contact B-metric manifolds of dimension 3 is

F1 ⊕ F4 ⊕ F5 ⊕ F8 ⊕ F9 ⊕ F10 ⊕ F11,

i.e. the basic classes F2, F3, F6, F7 are restricted to the special class F0.

4. Some examples

4.1. Time-like sphere as a manifold from the class F4 ⊕ F5

In [3], an example of an almost contact manifold with B-metric is given. It is constructed as a time-like
sphere ofR2n+2 with complex structure and Norden metric. Namely, letR2n+2 =

{(
u1, . . . ,un+1; v1, . . . , vn+1

) ∣∣∣
ui, vi

∈ R
}

be considered as a complex Riemannian manifold with the canonical complex structure J and the
metric 1 defined by

J
∂

∂ui =
∂

∂vi , J
∂

∂vi = −
∂

∂ui , 1(x, x) = −δi jλ
iλ j + δi jµ

iµ j,

where x = λ ∂
∂ui +µ ∂

∂vi . Identifying the point p inR2n+2 with its position vector Z, we define the unit time-like
sphere

S2n+1 : 1(Z,Z) = −1.

The almost contact structure is determined by

ξ = sin t · Z + cos t · JZ, Jx = ϕx + η(x)Jξ,

where t = arctan
(
1(z, Jz)

)
∈

(
−
π
2 ; π2

)
and x, ϕx ∈ TpS2n+1. The metric on the hypersurface is the restriction

of 1 and it is denote by the same letter. Then
(
S2n+1, ϕ, ξ, η, 1

)
is an almost contact B-metric manifold. It

belongs to the class F4 ⊕ F5 because the structure tensor has the following form

F(x, y, z) = − cos t {1(ϕx, ϕy)η(z) + 1(ϕx, ϕz)η(y)} − sin t {1(x, ϕy)η(z) + 1(x, ϕz)η(y)},

where cos t =
θ(ξ)
2n , sin t =

θ∗(ξ)
2n and then we obtain the following expression of F, bearing in mind (20):

F = F4 + F5.

If we consider the 3-dimensional unit time-like sphere (S3, ϕ, ξ, η, 1) then we have the following form of
the structure tensor, using (27):

F(x, y, z) =
1
2

{(
θ0x1 + θ∗0x2

) (
y0z1 + y1z0

)
+

(
θ∗0x1

− θ0x2
) (

y0z2 + y2z0
)}

where 1
2θ0 = F101 = F110 = −F202 = −F220 and 1

2θ
∗

0 = F102 = F120 = F201 = F210 with respect to the orthonormal
ϕ-basis {ei}

2
i=0.
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4.2. Lie group as a manifold from the class F9 ⊕ F10
Let L be a (2n + 1)-dimensional real connected Lie group and its associated Lie algebra with a global

basis {E0,E1, . . . ,E2n} of left invariant vector fields on L defined by

[E0,Ei] = −aiEi − an+iEn+i, [E0,En+i] = −an+iEi + aiEn+i, (28)

where a1, . . . , a2n are real constants and [E j,Ek] = 0 in other cases. Let an invariant almost contact structure
be defined for i ∈ {1, . . . ,n} by

ϕE0 = 0, ϕEi = En+i, ϕEn+i = −Ei, ξ = E0, η(E0) = 1, η(Ei) = η(En+i) = 0. (29)

Let 1 be a pseudo-Riemannian metric such that for i ∈ {1, . . . ,n} and j, k ∈ {1, . . . , 2n}, j , k the following
equalities are valid

1(E0,E0) = 1(Ei,Ei) = −1(En+i,En+i) = 1, 1(E0,E j) = 1(E j,Ek) = 0. (30)

Thus, because of (1), the induced (2n + 1)-dimensional manifold (L, ϕ, ξ, η, 1) is an almost contact B-metric
manifold.

Let us remark that in [9] the same Lie group with the same almost contact structure but equipped with
a compatible Riemannian metric is studied as an almost cosymplectic manifold.

Let us consider the constructed almost contact B-metric manifold (L, ϕ, ξ, η, 1) in dimension 3, i.e. for
n = 1.

By virtue of (28) and (30) for n = 1, and using the Koszul equality

21
(
∇Ei E j,Ek

)
= 1

(
[Ei,E j],Ek

)
+ 1

(
[Ek,Ei],E j

)
+ 1

(
[Ek,E j],Ei

)
(31)

for the Levi-Civita connection ∇ of 1, we obtain

∇E1 E1 = ∇E2 E2 = −a1E0, ∇E0 E1 = −a2E2, ∇E0 E2 = −a2E1, ∇E1 E0 = a1E1, ∇E2 E0 = −a1E2. (32)

Then, using the latter equalities, (29) and (2), we get the following nonzero components Fi jk = F(Ei,E j,Ek)
of the structure tensor:

F011 = F022 = −2a2, F102 = F120 = −F201 = −F210 = a1.

Thus, we establish the following form of F for arbitrary vectors x = xiEi, y = yiEi, z = ziEi

F(x, y, z) = −2a2x0
(
y1z1 + y2z2

)
+ a1

{
z0

(
x1y2

− x2y1
)

+ y0
(
x1z2
− x2z1

)}
.

The latter equality implies that F is represented in the form

F(x, y, z) = F9(x, y, z) + F10(x, y, z),

bearing in mind (27) for µ = a1, ν = −2a2; or alternatively, the corresponding equalities from (20) and (23).
Therefore, we prove that the constructed 3-dimensional manifold belongs to the class F9 ⊕ F10.
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