On Some Classes of Generalized Quasi Einstein Manifolds

Sinem Güler ${ }^{\text {a }}$, Sezgin Altay Demirbağ ${ }^{\mathbf{a}}$
${ }^{a}$ Department of Mathematics, Institute of Science and Technology, Istanbul Technical University

Abstract

In the present paper, we investigate generalized quasi Einstein manifolds satisfying some special curvature conditions $R \cdot S=0, R \cdot S=L_{S} Q(g, S), C \cdot S=0, \tilde{C} \cdot S=0, \tilde{W} \cdot S=0$ and $W_{2} \cdot S=0$ where $R, S, C, \tilde{C}, \tilde{W}$ and W_{2} respectively denote the Riemannian curvature tensor, Ricci tensor, conformal curvature tensor, concircular curvature tensor, quasi conformal curvature tensor and W_{2}-curvature tensor. Later, we find some sufficient conditions for a generalized quasi Einstein manifold to be a quasi Einstein manifold and we show the existence of a nearly quasi Einstein manifolds, by constructing a non trivial example.

1. Introduction

A Riemannian manifold $\left(M^{n}, g\right),(n \geqslant 2)$ is said to be an Einstein manifold if the Ricci tensor S of type $(0,2)$ is non-zero and satisfies the condition

$$
\begin{equation*}
S(X, Y)=\frac{r}{n} g(X, Y) \tag{1}
\end{equation*}
$$

where r is the scalar curvature of $\left(M^{n}, g\right)$.
In 2000, M.C. Chaki and R.K. Maity introduced the notion of quasi-Einstein manifolds as generalization of the Einstein manifolds. According to them, a Riemannian manifold $\left(M^{n}, g\right)(n>2)$ is said to be a quasi Einstein manifold [1] if its Ricci tensor of type $(0,2)$ is non-zero and satisfies the condition

$$
\begin{equation*}
S(X, Y)=a g(X, Y)+b A(X) A(Y) \tag{2}
\end{equation*}
$$

where a and b are real valued, non-zero scalar functions on $\left(M^{n}, g\right), X, Y \in \mathfrak{X}\left(M^{n}\right)$ and A is a non-zero 1-form, equivalent to the unit vector field U, that is,

$$
\begin{equation*}
g(X, U)=A(X), g(U, U)=1 \tag{3}
\end{equation*}
$$

A is called an associated 1-form and U is called a generator of $\left(M^{n}, g\right)$. If $b=0$, then the manifold reduces to an Einstein manifold.

The notion of generalized quasi Einstein manifold has been first introduced by M.C. Chaki in 2001 [2]. A Riemannian manifold $\left(M^{n}, g\right)(n>2)$ is called a generalized quasi Einstein manifold if its Ricci tensor of type $(0,2)$ is non-zero and satisfies the following condition [2]

$$
\begin{equation*}
S(X, Y)=a g(X, Y)+b A(X) A(Y)+c[A(X) B(Y)+A(Y) B(X)] \tag{4}
\end{equation*}
$$

[^0]where a, b, c are real valued, non-zero scalar functions on $\left(M^{n}, g\right)$ of which $b \neq 0, c \neq 0, A$ and B are two non-zero 1-forms such that
\[

$$
\begin{equation*}
g(X, U)=A(X), g(X, V)=B(X), g(U, V)=0 \quad g(U, U)=g(V, V)=1 \tag{5}
\end{equation*}
$$

\]

That is, U and V are orthonormal vector fields corresponding to the 1-forms A and B, respectively. Similarly, a, b and c are called associated scalars, A and B are called associated 1-forms and U and V are generators of manifold. Such an n-dimensional manifold has been denoted by $G(Q E)_{n}$. If $c=0$, then the manifold reduces to a quasi Einstein manifolds and if $b=c=0$, then the manifold reduces to an Einstein manifold. Also, the operator Q defined by $g(Q X, Y)=S(X, Y)$ is called the Ricci operator.

Contracting (4) over X and Y, we get the scalar curvature function of the following form

$$
\begin{equation*}
r=a n+b \tag{6}
\end{equation*}
$$

In view of the equations (4) and (5), in a generalized quasi Einstein manifold, we have

$$
\begin{equation*}
S(Y, U)=(a+b) A(Y)+c B(Y) \text { and } S(Y, V)=a B(Y)+c A(Y) \tag{7}
\end{equation*}
$$

A non flat n-dimensional $(n>2)$ Riemannian manifold is called nearly quasi Einstein manifold if its Ricci tensor $S(X, Y)$ of type $(0,2)$ is of the form

$$
\begin{equation*}
S(X, Y)=a g(X, Y)+b E(X, Y) \tag{8}
\end{equation*}
$$

where a, b are non zero scalar functions and E is a non zero tensor of type $(0,2),[3]$.
Remark 1.1. Since the multiplication of two covariant vectors is a covariant tensor of type (0,2), every quasi Einstein manifold is a nearly quasi Einstein manifold. But converse is not true.

Let R denote the Riemannian curvature tensor of M. The k-nullity distribution $N(k)$ [4] of a Riemannian manifold M is defined by

$$
\begin{equation*}
N(k): p \rightarrow N_{p}(k)=\left\{Z \in T_{p}(M): R(X, Y) Z=k[g(Y, Z) X-g(X, Z) Y]\right\} \tag{9}
\end{equation*}
$$

for all $X, Y \in T M$, where k is some smooth function. In a quasi Einstein manifold M, if the generator U belongs to some k-nullity distribution $N(k)$, then M said to be an $N(k)$-quasi Einstein manifold [5]. Özgür and Triphati [6] proved that in an n-dimensional $N(k)$-quasi Einstein manifold, $k=\frac{a+b}{n-1}$.

2. Ricci-pseudosymmetric $G(Q E)_{n}$

An n-dimensional Riemannian manifold $\left(M^{n}, g\right)$ is called Ricci-pseudosymmetric [7], if the tensors $R \cdot S$ and $Q(g, S)$ are linearly dependent where

$$
\begin{align*}
& (R(X, Y) \cdot S)(Z, W)=-S(R(X, Y) Z, W)-S(Z, R(X, Y) W) \tag{10}\\
& Q(g, S)(Z, W ; X, Y)=-S\left(\left(X \wedge_{g} Y\right) Z, W\right)-S\left(Z,\left(X \wedge_{g} Y\right) W\right) \tag{11}
\end{align*}
$$

and

$$
\begin{equation*}
\left(X \wedge_{g} Y\right) Z=g(Y, Z) X-g(X, Z) Y \tag{12}
\end{equation*}
$$

for all X, Y, Z, W on M. Then $\left(M^{n}, g\right)$ is Ricci-pseudosymmetric if and only if

$$
\begin{equation*}
(R(X, Y) \cdot S)(Z, W)=L_{S} Q(g, S)(Z, W ; X, Y) \tag{13}
\end{equation*}
$$

holds on U_{S} where $U_{S}=\left\{x \in M: S \neq \frac{r}{n} g\right.$ at $\left.x\right\}$ and L_{S} is a certain function on U_{S}. Then, by using (10)-(13), we can write $\left(M^{n}, g\right)$ is Ricci-pseudosymmetric if and only if the equation

$$
\begin{equation*}
S(R(X, Y) Z, W)+S(Z, R(X, Y) W)=L_{S}[g(Y, Z) S(X, W)-g(X, Z) S(Y, W)+g(Y, W) S(Z, X)-g(X, W) S(Y, Z)] \tag{14}
\end{equation*}
$$

holds.
In this section, we consider Ricci-pseudosymmetric generalized quasi Einstein manifold. Then, by using (4) and (14), we obtain

$$
\begin{align*}
& b[A(R(X, Y) Z) A(W)+A(Z) A(R(X, Y) W)]+c[A(R(X, Y) Z) B(W) \tag{15}\\
&+A(W) B(R(X, Y) Z)+A(Z) B(R(X, Y) W)+A(R(X, Y) W) B(Z)] \\
&=L_{S}[bb g(Y, Z) A(X) A(W)-g(X, Z) A(Y) A(W)+g(Y, W) A(Z) A(X)-g(X, W) A(Y) A(Z)\} \\
&+c\{g(Y, Z)[A(X) B(W)+A(W) B(X)]-g(X, Z)[A(Y) B(W)+A(W) B(Y)] \\
&+g(Y, W)[A(Z) B(X)+A(X) B(Z)]-g(X, W)[A(Y) B(Z)+A(Z) B(Y)]\}]
\end{align*}
$$

Putting $Z=U$ and $W=V$ in (15), we get

$$
\begin{equation*}
b A(R(X, Y) V)=L_{S}\{b[A(X) B(Y)-A(Y) B(X)]\} \tag{16}
\end{equation*}
$$

Since $A(R(X, Y, V))=g(R(X, Y) V, U)=R(X, Y, V, U)$ and $b \neq 0$, we get

$$
\begin{equation*}
R(X, Y, U, V)=L_{S}[A(Y) B(X)-A(X) B(Y)] \tag{17}
\end{equation*}
$$

Thus we obtain the following result:
Theorem 2.1. In a Ricci-pseudosymmetric generalized quasi Einstein manifold, the curvature tensor R of the manifold satisfies the relation (17).

Now, contracting (15) over X and W, we obtain

$$
\begin{gather*}
b[A(R(U, Y) Z)-A(Z) S(Y, U)]+c[A(R(V, Y) Z)+B(R(U, Y) Z)-A(Z) S(Y, V)-B(Z) S(Y, U)] \tag{18}\\
=L_{S}\{b[g(Y, Z)-n A(Y) A(Z)]-c n[A(Y) B(Z)+A(Z) B(Y)]\}
\end{gather*}
$$

Putting $Z=U$ in (18), we get

$$
\begin{equation*}
b S(Y, U)-c R(U, Y, U, V)+c S(Y, V)=L_{S}[b(n-1) A(Y)+c n B(Y)] \tag{19}
\end{equation*}
$$

In view of (7) and (17), (19) yields

$$
\begin{equation*}
\left[a b+b^{2}+c^{2}-b(n-1) L_{S}\right] A(Y)+\left[b c+a c+c(1-n) L_{S}\right] B(Y)=0 \tag{20}
\end{equation*}
$$

Putting $Y=U$ in (20), we get

$$
\begin{equation*}
L_{S}=\frac{a b+b^{2}+c^{2}}{b(n-1)} \tag{21}
\end{equation*}
$$

Putting $Y=V$ in (20), we get

$$
\begin{equation*}
c\left[a+b-L_{S}(n-1)\right]=0 \tag{22}
\end{equation*}
$$

Thus we have

$$
\begin{equation*}
c=0 \text { or } L_{S}=\frac{a+b}{n-1} \tag{23}
\end{equation*}
$$

If $c=0$, then by (21), we obtain $L_{S}=\frac{a+b}{n-1}$. If $c \neq 0$, then by (22), again we find $L_{S}=\frac{a+b}{n-1}$. Comparing this and the equation (21), we obtain $c=0$.

Thus in each case we have $c=0$ and $L_{S}=\frac{a+b}{n-1}$ which means that the manifold reduces to a quasi Einstein manifold. Also, from (17), we have

$$
\begin{equation*}
R(X, Y) U=\frac{a+b}{n-1}[A(Y) X-A(X) Y] \tag{24}
\end{equation*}
$$

which means that the generator U belongs to some k-nullity distribution. Hence we can state the following theorem:

Theorem 2.2. Every Ricci-pseudosymmetric non-Einstein generalized quasi Einstein manifold is an $N(k)$-quasi Einstein manifold with $k=\frac{a+b}{n-1}$.
Remark 2.3. Every Ricci semi symmetric manifold is Ricci-pseudosymmetric. But the converse is not true.
Using above theorem and remark, we can state that:
Theorem 2.4. Every Ricci-pseudosymmetric generalized quasi Einstein manifold is Ricci semi symmetric if and only if $a+b=0$.

3. $G(Q E)_{n}$ with the condition $R \cdot S=0$

In this section, we consider generalized quasi Einstein manifold satisfying the condition $R \cdot S=0$. Then

$$
\begin{equation*}
(R(X, Y) \cdot S)(Z, W)=-S(R(X, Y) Z, W)-S(Z, R(X, Y) W)=0 \tag{25}
\end{equation*}
$$

In view of (4), (25) yields

$$
\begin{align*}
& b[A(R(X, Y) Z) A(W)+A(Z) A(R(X, Y) W)]+c[A(R(X, Y) Z) B(W)+A(W) B(R(X, Y) Z) \tag{26}\\
& +A(Z) B(R(X, Y) W)+A(R(X, Y) W) B(Z)]=0
\end{align*}
$$

Putting $Z=U, W=V$ in (26), we get $b R(X, Y, U, V)=0$. Since $b \neq 0$, we have

$$
\begin{equation*}
R(X, Y, U, V)=0 \tag{27}
\end{equation*}
$$

Putting $W=U$ in (26) and using (27), we get

$$
\begin{equation*}
b R(X, Y, Z, U)+c R(X, Y, Z, V)=0 \tag{28}
\end{equation*}
$$

Contracting (28) over Y and Z, we get

$$
\begin{equation*}
b S(X, U)+c S(X, V)=0 \tag{29}
\end{equation*}
$$

In view of (7), (29) yields

$$
\begin{equation*}
a b A(X)+b^{2} A(X)+b c B(X)+a c B(X)+c^{2} A(X)=0 \tag{30}
\end{equation*}
$$

Putting $X=U$ in (30), we get

$$
\begin{equation*}
a b+b^{2}+c^{2}=0 \tag{31}
\end{equation*}
$$

In view of (31), (30) yields

$$
\begin{equation*}
c(a+b) B(X)=0 \tag{32}
\end{equation*}
$$

Putting $X=V$ in (32), we obtain $c(a+b)=0$. Then either $c=0$ or $a+b=0$. If $c=0$, then by $(31), b(a+b)=0$ so either $b=0$ or $a+b=0$. If $b=0$, then we also have $c=0$ and so the manifold reduces to an Einstein manifolds, which is a contradiction. Thus b is always different than zero and so $a+b=0$. On the other hand, if $c \neq 0$, then $a+b=0$ and by (31), again we obtain $c=0$. That is, in each case, $c=0$ and $a+b=0$. Thus the Ricci tensor becomes

$$
\begin{equation*}
S(X, Y)=a[g(X, Y)-A(X) A(Y)] \tag{33}
\end{equation*}
$$

Hence we can state that:
Theorem 3.1. Every generalized quasi Einstein manifold satisfying the condition $R \cdot S=0$ is a quasi Einstein manifold and the sum of the associated scalar functions is zero.

From Remark 1.1, we can state that:
Corollary 3.2. Every generalized quasi Einstein manifold satisfying the condition $R \cdot S=0$ is a nearly quasi Einstein manifold.

4. An Example of Nearly Quasi Einstein Manifolds

In this section, we show the existence of a nearly quasi Einstein manifolds with non-zero and nonconstant scalar curvature, by constructing a non trivial example. Since the multiplication of two 1 -forms is a covariant tensor of type $(0,2)$ so every generalized quasi Einstein manifold can be considered as a nearly quasi Einstein manifold.

Let us consider a Riemannian metric g on the 4 -dimensional real number space \mathbb{R}^{4} by

$$
\begin{equation*}
d s^{2}=g_{i j} d x^{i} d x^{j}=\left(x^{4}\right)^{4 / 3}\left[\left(d x^{1}\right)^{2}+\left(d x^{2}\right)^{2}+\left(d x^{3}\right)^{2}\right]+\left(d x^{4}\right)^{2} \tag{34}
\end{equation*}
$$

where $i, j=1,2,3,4$ and $x^{1}, x^{2}, x^{3}, x^{4}$ are the standard coordinates of \mathbb{R}^{4}. Then the only non vanishing components of the Christoffel symbols, the curvature tensor and the Ricci tensor are

$$
\begin{align*}
& \Gamma_{14}^{1}=\Gamma_{24}^{2}=\Gamma_{34}^{3}=\frac{2}{3\left(x^{4}\right)}, \quad \Gamma_{11}^{4}=\Gamma_{22}^{4}=\Gamma_{33}^{4}=-\frac{2}{3\left(x^{4}\right)^{1 / 3}} \tag{35}\\
& R_{1221}=R_{1331}=R_{2332}=\frac{4\left(x^{4}\right)^{2 / 3}}{9} \tag{36}\\
& R_{1441}=R_{2442}=R_{3443}=-\frac{2}{9\left(x^{4}\right)^{2 / 3}} \tag{37}\\
& R_{11}=R_{22}=R_{33}=\frac{2}{3\left(x^{4}\right)^{2 / 3}}, \quad R_{44}=-\frac{2}{3\left(x^{4}\right)^{2}} \tag{38}
\end{align*}
$$

and the components which can be obtained from these by symmetry properties. Also it can be shown that the scalar curvature is

$$
\begin{equation*}
r=\frac{4}{3\left(x^{4}\right)^{2}} \tag{39}
\end{equation*}
$$

is non zero and non constant.
Let us now define associated scalar functions as

$$
\begin{equation*}
a=\frac{2}{3\left(x^{4}\right)^{2}}, \quad b=-\frac{4}{3\left(x^{4}\right)^{2}} \tag{40}
\end{equation*}
$$

and associated tensor E of type $(0,2)$

$$
E_{i j}(x)= \begin{cases}1 & \text { if } i=j=4 \tag{41}\\ 0 & \text { if } i=j=1,2,3 \text { or } i \neq j\end{cases}
$$

Then we can easily show that for all $i, j=1,2,3,4$

$$
\begin{equation*}
R_{i j}=a g_{i j}+b E_{i j} \tag{42}
\end{equation*}
$$

Thus the manifold \mathbb{R}^{4} endowed with the above metric is a nearly quasi Einstein manifold.

5. $G(Q E)_{n}$ with the condition $P \cdot S=0$

The projective curvature tensor P [8] of type $(1,3)$ of an n-dimensional Riemannian manifold $\left(M^{n}, g\right)$; $(n>3)$ is defined by

$$
\begin{equation*}
P(X, Y) Z=R(X, Y) Z-\frac{1}{n-1}[S(Y, Z) X-S(X, Z) Y] \tag{43}
\end{equation*}
$$

Note that; the projective curvature tensor P satisfies the following symmetry properties:

- $P(X, Y, Z, W)=-P(Y, X, Z, W)$
- $P(X, Y, Z, W) \neq-P(X, Y, W, Z)$
for all $X, Y, Z, W \in T M$, where $P(X, Y, Z, W)=g(P(X, Y) Z, W)$ is the projective curvature tensor of type $(0,4)$.
Let $\left\{e_{i}\right\}$ be an orthonormal basis of the tangent space at each point of the manifold where $1 \leqslant i \leqslant n$. Now, from (43), we have

$$
\begin{equation*}
\sum_{i=1}^{n} P\left(e_{i}, Y, e_{i}, U\right)=-S(Y, U)+\frac{1}{n-1}[r A(Y)-S(Y, U)] \tag{44}
\end{equation*}
$$

In this section, we consider a generalized quasi Einstein manifold satisfying the condition $P \cdot S=0$. Then for all $X, Y, Z \in \mathfrak{X}\left(M^{n}\right)$;

$$
\begin{equation*}
(P(X, Y) \cdot S)(Z, W)=-S(P(X, Y) Z, W)-S(Z, P(X, Y) W)=0 \tag{45}
\end{equation*}
$$

Combining (4) and (45), we get

$$
\begin{align*}
& \frac{-a}{n-1}[S(Y, Z) g(X, W)-S(X, Z) g(Y, W)+S(Y, W) g(X, Z)-S(X, W) g(Y, Z)] \tag{46}\\
& +b[A(P(X, Y) Z) A(W)+A(Z) A(P(X, Y) W)]+c[A(P(X, Y) Z) B(W) \\
& +A(W) B(P(X, Y) Z)+A(Z) B(P(X, Y) W)+A(P(X, Y) W) B(Z)]=0
\end{align*}
$$

Putting $Z=U$ and $W=V$ in (46), we get

$$
\begin{align*}
& \frac{-a}{n-1}[S(Y, U) B(X)-S(X, U) B(Y)+S(Y, V) A(X)-S(X, V) A(Y)]+b P(X, Y, V, U) \tag{47}\\
& +c[P(X, Y, U, U)+P(X, Y, V, V)]=0
\end{align*}
$$

In view of (7) and (43), (47) yields

$$
\begin{equation*}
b R(X, Y, U, V)=0 \tag{48}
\end{equation*}
$$

Since $b \neq 0$, we obtain $R(X, Y, U, V)=0$.
Contracting (46) over X and W and using the equation (44), we get

$$
\begin{align*}
& \frac{-a}{n-1}[n S(Y, Z)-r g(Y, Z)]+b\left[P(U, Y, Z, U)+A(Z)\left\{-S(Y, U)+\frac{1}{n-1}[r A(Y)-S(Y, U)]\right\}\right] \tag{49}\\
& +c\left[P(V, Y, Z, U)+P(U, Y, Z, V)+A(Z)\left\{-S(Y, V)+\frac{1}{n-1}[r B(Y)-S(Y, V)]\right\}\right. \\
& \left.+B(Z)\left\{-S(Y, U)+\frac{1}{n-1}[r A(Y)-S(Y, U)]\right\}\right]=0
\end{align*}
$$

Putting $Z=U$ in (49), we get

$$
\begin{align*}
& \frac{-a}{n-1}[n S(Y, U)-r A(Y)]+b\left[P(U, Y, U, U)+A(Z)-S(Y, U)+\frac{1}{n-1}[r A(Y)-S(Y, U)]\right] \tag{50}\\
& +c\left[P(V, Y, U, U)+P(U, Y, U, V)+A(Z)-S(Y, V)+\frac{1}{n-1}[r B(Y)-S(Y, V)]\right]=0
\end{align*}
$$

In view of (7) and (43), (50) yields

$$
\begin{equation*}
\left[-b(a+b)-c^{2}\right] A(Y)-c(a+b) B(Y)=0 \tag{51}
\end{equation*}
$$

Putting $Y=U$ in (51), we get:

$$
\begin{equation*}
b(a+b)+c^{2}=0 \tag{52}
\end{equation*}
$$

Putting $Y=U$ in (51), we get:

$$
\begin{equation*}
c(a+b)=0 \tag{53}
\end{equation*}
$$

so $c=0$ or $a+b=0$. If $c=0$, then by (52), we obtain $b=0$ or $a+b=0$. If $b=0$, then we have $b=c=0$ which means that the manifold reduces to an Einstein manifold. But this is a contradiction. Thus b is always different that zero. Hence $a+b=0$.

On the other hand, if $a+b=0$, then by (52), again we obtain $c=0$. Hence in each case, $a+b=0$ and $c=0$ which means that the manifold becomes a quasi Einstein manifold.

Thus we can state the following theorems:
Theorem 5.1. Every generalized quasi Einstein manifold satisfying the condition $P \cdot S=0$ is a quasi Einstein manifold and sum of the associated scalar functions a and b is zero.

And also we obtain:
Theorem 5.2. In a generalized quasi Einstein manifold satisfying the condition $P \cdot S=0$, for all $X, Y, Z, W \in T M$

$$
P(X, Y, U, V)=0
$$

6. $G(Q E)_{n}$ with the condition $C \cdot S=0$

The conformal curvature tensor C [8] of type $(1,3)$ of an n-dimensional Riemannian manifold $\left(M^{n}, g\right)$; $(n>3)$ is defined by

$$
\begin{gather*}
C(X, Y) Z=R(X, Y) Z-\frac{1}{n-2}[S(Y, Z) X-S(X, Z) Y+g(Y, Z) Q X-g(X, Z) Q Y] \tag{54}\\
+\frac{r}{(n-1)(n-2)}[g(Y, Z) X-g(X, Z) Y]
\end{gather*}
$$

In this section, we consider a generalized quasi Einstein manifold satisfying the condition $C \cdot S=0$. Then for all $X, Y, Z \in \mathfrak{X}\left(M^{n}\right)$;

$$
\begin{equation*}
(C(X, Y) \cdot S)(Z, W)=-S(C(X, Y) Z, W)-S(Z, C(X, Y) W)=0 \tag{55}
\end{equation*}
$$

Combining (4) and (55), we get

$$
\begin{align*}
& b[A(C(X, Y) Z) A(W)+A(Z) A(C(X, Y) W)]+c[A(C(X, Y) Z) B(W) \tag{56}\\
& +A(W) B(C(X, Y) Z)+A(Z) B(C(X, Y) W)+A(C(X, Y) W) B(Z)]=0
\end{align*}
$$

Putting $Z=U$ and $W=V$ in (56), we get

$$
\begin{equation*}
b A(C(X, Y) V)=0 \tag{57}
\end{equation*}
$$

Since $A(C(X, Y) V)=g(C(X, Y) V, U)=C(X, Y, V, U)$ and $b \neq 0$,from (57) we obtain

$$
\begin{equation*}
C(X, Y, U, V)=0 \tag{58}
\end{equation*}
$$

In view of (54), (58) yields

$$
\begin{aligned}
R(X, Y, U, V) & =\frac{1}{n-2}[S(Y, U) g(X, V)-S(X, U) g(Y, V)+g(Y, U) S(X, V)-g(X, U) S(Y, V)] \\
& -\frac{r}{(n-1)(n-2)}[g(Y, U) g(X, V)-g(X, U) g(Y, V)]
\end{aligned}
$$

In view of (7), (59) yields

$$
\begin{equation*}
R(X, Y, U, V)=\frac{a+b}{n-1}[A(Y) B(X)-A(X) B(Y)] \tag{60}
\end{equation*}
$$

Hence we can state the following:
Theorem 6.1. In a generalized quasi Einstein manifold satisfying the condition $C \cdot S=0$, the curvature tensor R of the manifold satisfies the relation (60).
From (60), we have

$$
\begin{equation*}
R(X, Y) U=\frac{a+b}{n-1}[A(Y) X-A(X) Y] \tag{61}
\end{equation*}
$$

Contracting (61) over X, we get

$$
\begin{equation*}
S(Y, U)=(a+b) g(Y, U) \tag{62}
\end{equation*}
$$

i.e.; $Q Y=(a+b) Y$, for all $Y \in T M$. Thus we get the following result:

Theorem 6.2. In a generalized quasi Einstein manifold satisfying the condition $C \cdot S=0,(a+b)$ is an eigenvalue of the Ricci operator Q.

7. $G(Q E)_{n}$ with the condition $\tilde{C} \cdot S=0$

The concircular curvature tensor $\tilde{C}[8]$ of type $(1,3)$ of an n-dimensional Riemannian manifold $\left(M^{n}, g\right)$, $(n>3)$ is defined by

$$
\begin{equation*}
\tilde{C}(X, Y) Z=R(X, Y) Z-\frac{r}{n(n-1)}[g(Y, Z) X-g(X, Z) Y] \tag{63}
\end{equation*}
$$

for any $X, Y, Z \in \mathfrak{X}(M)$.
Note that; the concircular curvature tensor \tilde{C} satisfies the following symmetry properties:

- $\tilde{C}(X, Y, Z, W)=-\tilde{C}(Y, X, Z, W)=-\tilde{C}(X, Y, W, Z)$
for all $X, Y, Z, W \in T M$, where $\tilde{C}(X, Y, Z, W)=g(\tilde{C}(X, Y) Z, W)$ is the concircular curvature tensor of type $(0,4)$.
Let $\left\{e_{i}\right\}$ be an orthonormal basis of the tangent space at each point of the manifold where $1 \leqslant i \leqslant n$. Now, from (63), we have

$$
\begin{equation*}
\sum_{i=1}^{n} \tilde{C}\left(e_{i}, Y, e_{i}, U\right)=-S(Y, U)+\frac{r}{n} A(Y) \tag{64}
\end{equation*}
$$

In this section, we consider generalized quasi Einstein manifold satisfying the condition $\tilde{C} \cdot S=0$. Then we have

$$
\begin{equation*}
(\tilde{C} \cdot S)(Z, W)=-S(\tilde{C}(X, Y) Z, W)-S(Z, \tilde{C}(X, Y) W)=0 \tag{65}
\end{equation*}
$$

In view of (4), (65) yields

$$
\begin{align*}
& b[A(\tilde{C}(X, Y) Z) A(W)+A(Z) A(\tilde{C}(X, Y) W)]+c[A(\tilde{C}(X, Y) Z) B(W) \tag{66}\\
& +A(W) B(\tilde{C}(X, Y) Z)+A(Z) B(\tilde{C}(X, Y) W)+A(\tilde{C}(X, Y) W) B(Z)]=0
\end{align*}
$$

Putting $Z=U, W=V$ in (66), we get

$$
\begin{equation*}
b A(\tilde{C}(X, Y) V)=0 \tag{67}
\end{equation*}
$$

Since $A(\tilde{C}(X, Y) V)=g(\tilde{C}(X, Y) V, U)=\tilde{C}(X, Y, V, U)$ and $b \neq 0$,

$$
\begin{equation*}
\tilde{C}(X, Y, U, V)=0 \tag{68}
\end{equation*}
$$

Thus, in view of (63), (68) yields

$$
\begin{equation*}
R(X, Y, U, V)=\frac{r}{n(n-1)}[A(Y) B(X)-A(X) B(Y)] \tag{69}
\end{equation*}
$$

Now, contracting (66) over X and W and using (64), we get

$$
\begin{align*}
& b\left[A(\tilde{C}(U, Y) Z)-A(Z)\left[S(Y, U)-\frac{r}{n} g(Y, U)\right]\right] \tag{70}\\
& +c\left[A(\tilde{C}(V, Y) Z)+B(\tilde{C}(U, Y) Z)-A(Z)\left[S(Y, V)-\frac{r}{n} g(Y, V)\right]-B(Z)\left[S(Y, U)-\frac{r}{n} g(Y, U)\right]\right]=0
\end{align*}
$$

Putting $Z=U$ in (70), we get

$$
\begin{equation*}
b\left[-S(Y, U)+\frac{r}{n} g(Y, U)\right]+c\left[\tilde{C}(U, Y, U, V)-S(Y, V)+\frac{r}{n} g(Y, V)\right]=0 \tag{71}
\end{equation*}
$$

In view of (7) and (68), (71) yields

$$
\begin{equation*}
\left[-a b-b^{2}+\frac{r b}{n}-c^{2}\right] A(Y)+\left[-a c-b c+\frac{c r}{n}\right] B(Y)=0 \tag{72}
\end{equation*}
$$

Putting $Y=U$ in (72), we get

$$
\begin{equation*}
-a b-b^{2}+\frac{r b}{n}-c^{2}=0 \tag{73}
\end{equation*}
$$

Putting $Y=V$ in (72), we get

$$
\begin{equation*}
c\left(-a-b+\frac{r}{n}\right)=0 \tag{74}
\end{equation*}
$$

so $c=0$ or $a+b=\frac{r}{n}$.
If $c=0$, then by (73), we get $b=0$ or $a+b=\frac{r}{n}$. If $b=0$, then as both of b and c are zero, the manifold reduces to an Einstein manifold. If $a+b=\frac{r}{n}$, then by (6), again we obtain $b=0$ and using this in (73), we get $c=0$. Thus, in each case, $b=c=0$, which means that the manifold reduces to an Einstein manifold. But this contradicts with our assumption. Hence we can state that:

Theorem 7.1. There exists no non-Einstein generalized quasi Einstein manifold satisfying the condition $\tilde{\mathrm{C}} \cdot \mathrm{S}=0$.

8. $G(Q E)_{n}$ with the condition $\tilde{W} \cdot S=0$

In 1968, Yano and Sawaki introduced the notion of quasi conformal curvature tensor $\tilde{W}[9]$ of type $(1,3)$ which icludes both the conformal curvature tensor C and the concircular curvature tensor \tilde{C}. The quasi conformal curvature tensor \tilde{W} of type $(1,3)$ is defined by

$$
\begin{equation*}
\tilde{W}(X, Y) Z=-(n-2) \beta C(X, Y) Z+[\alpha+(n-2) \beta] \tilde{C}(X, Y) Z \tag{75}
\end{equation*}
$$

where α and β are arbitrary non-zero constants. In particular, if $\alpha=1, \beta=0$, then \tilde{W} reduces to the concircular curvature tensor and if $\alpha=1, \beta=\frac{-1}{n-2}$, then \tilde{W} reduces to the conformal curvature tensor.

Note that; the quasi conformal curvature tensor \tilde{W} satisfies the following symmetry properties:

- $\tilde{W}(X, Y, Z, W)=-\tilde{W}(Y, X, Z, W)=-\tilde{W}(X, Y, W, Z)$
for all $X, Y, Z, W \in T M$, where $\tilde{W}(X, Y, Z, W)=g(\tilde{W}(X, Y) Z, W)$ is the quasi conformal curvature tensor of type (0,4).

In view of (54) and (63), (75) can be written as

$$
\begin{align*}
\tilde{W}(X, Y) Z= & \alpha R(X, Y) Z+\beta[S(Y, Z) X-S(X, Z) Y+g(Y, Z) Q X-g(X, Z) Q Y] \tag{76}\\
& -\frac{r}{n}\left(\frac{\alpha}{n-1}+2 \beta\right)[g(Y, Z) X-g(X, Z) Y]
\end{align*}
$$

Let $\left\{e_{i}\right\}$ be an orthonormal basis of the tangent space at each point of the manifold where $1 \leqslant i \leqslant n$. Now, from (76), we have

$$
\begin{equation*}
\sum_{i=1}^{n} \tilde{W}\left(Y, e_{i}, e_{i}, U\right)=\alpha S(Y, U)+\beta[r A(Y)+(n-2) S(Y, U)]-\frac{r}{n}\left(\frac{\alpha}{n-1}+2 \beta\right)(n-1) A(Y) \tag{77}
\end{equation*}
$$

In this section, we consider generalized quasi Einstein manifold satisfying the condition $\tilde{W} \cdot S=0$. Then we have

$$
\begin{equation*}
(\tilde{W}(X, Y) \cdot S)(Z, W)=-S(\tilde{W}(X, Y) Z, W)-S(Z, \tilde{W}(X, Y) W)=0 \tag{78}
\end{equation*}
$$

In view of (4), (78) yields

$$
\begin{align*}
& b[A(\tilde{W}(X, Y) Z) A(W)+A(Z) A(\tilde{W}(X, Y) W)]+c[A(\tilde{W}(X, Y) Z) B(W) \tag{79}\\
& +A(W) B(\tilde{W}(X, Y) Z)+A(Z) B(\tilde{W}(X, Y) W)+A(\tilde{W}(X, Y) W) B(Z)]=0
\end{align*}
$$

Putting $Z=U, W=V$ in (79), we get

$$
\begin{equation*}
b A(\tilde{W}(X, Y) V)=0 \tag{80}
\end{equation*}
$$

Since $A(\tilde{W}(X, Y) V)=g(\tilde{W}(X, Y) V, U)=\tilde{W}(X, Y, V, U)$ and $b \neq 0$,

$$
\begin{equation*}
\tilde{W}(X, Y, U, V)=0 \tag{81}
\end{equation*}
$$

In view of (81), (76) yields

$$
\begin{align*}
\alpha R(X, Y, U, V)= & \beta[S(X, U) B(Y)-S(Y, U) B(X)+S(Y, V) A(X)-S(X, V) A(Y)] \tag{82}\\
& +\frac{r}{n}\left(\frac{\alpha}{n-1}+2 \beta\right)[A(Y) B(X)-A(X) B(Y)]
\end{align*}
$$

By virtue (7), (82) yields

$$
\begin{equation*}
R(X, Y, U, V)=\gamma[A(Y) B(X)-A(X) B(Y)] \tag{83}
\end{equation*}
$$

where $\gamma=\frac{1}{\alpha}\left\{-(2 a+b) \beta+\frac{r}{n}\left(\frac{\alpha}{n-1}+2 \beta\right)\right\}$. Now, contracting (79) over X and W and using (77), we get

$$
\begin{align*}
& b\left\{A(\tilde{W}(U, Y) Z)-A(Z)\left[\alpha S(Y, U)+\beta\{r A(Y)+(n-2) S(Y, U)\}-\frac{r}{n}\left(\frac{\alpha}{n-1}+2 \beta\right)(n-1) A(Y)\right]\right\} \tag{84}\\
+ & c\left\{A(\tilde{W}(V, Y) Z)+B(\tilde{W}(U, Y) Z)-A(Z)\left[\alpha S(Y, V)+\beta\{r B(Y)+(n-2) S(Y, V)\}-\frac{r}{n}\left(\frac{\alpha}{n-1}+2 \beta\right)(n-1) B(Y)\right]\right. \\
& \left.-B(Z)\left[\alpha S(Y, U)+\beta\{r A(Y)+(n-2) S(Y, U)\}-\frac{r}{n}\left(\frac{\alpha}{n-1}+2 \beta\right)(n-1) A(Y)\right]\right\}=0
\end{align*}
$$

Putting $Z=U$ in (84), we get

$$
\begin{align*}
& -b\left[\alpha S(Y, U)+\beta\{r A(Y)+(n-2) S(Y, U)\}-\frac{r}{n}\left(\frac{\alpha}{n-1}+2 \beta\right)(n-1) A(Y)\right] \tag{85}\\
& +c \tilde{W}(U, Y, U, V)-c\left[\alpha S(Y, V)+\beta\{r B(Y)+(n-2) S(Y, V)\}-\frac{r}{n}\left(\frac{\alpha}{n-1}+2 \beta\right)(n-1) B(Y)\right]=0
\end{align*}
$$

In view of (7) and (81), (85) yields,

$$
\begin{align*}
& {\left[a b \alpha+b^{2} \alpha+c^{2} \alpha+\beta(n-1)\left(b^{2}+c^{2}+2 a b\right)-\beta c^{2}-\frac{b r}{n}(\alpha+2(n-1) \beta)\right] A(Y)} \tag{86}\\
& +\left[c \alpha(a+b)+c \beta(n-2)(a+b)+c \beta r-\frac{c r}{n}(\alpha+2(n-1) \beta)\right] B(Y)=0
\end{align*}
$$

Putting $Y=U$ in (86), we get

$$
\begin{equation*}
a b \alpha+b^{2} \alpha+c^{2} \alpha+\beta(n-1)\left(b^{2}+c^{2}+2 a b\right)-\beta c^{2}-\frac{b r}{n}(\alpha+2(n-1) \beta)=0 \tag{87}
\end{equation*}
$$

Putting $Y=V$ in (86) and by (6), we get

$$
\begin{equation*}
c\left[\alpha(a+b)+\beta(n-1)(2 a+b)-\frac{r}{n}(\alpha+2(n-1) \beta)\right]=0 \tag{88}
\end{equation*}
$$

From the equation (88), we have either $c=0$ or $\alpha(a+b)+\beta(n-1)(2 a+b)-\frac{r}{n}(\alpha+2(n-1) \beta)=0$.

If $c=0$, then by (87), we get $b\left[\alpha(a+b)+\beta(n-1)(2 a+b)-\frac{r}{n}(\alpha+2(n-1) \beta)\right]=0$ which implies $b=0$ or $\alpha(a+b)+\beta(n-1)(2 a+b)-\frac{r}{n}(\alpha+2(n-1) \beta)=0$.

If $b=0$, then the manifold reduces to an Einstein manifold. Thus $b \neq 0$. But in this case, we have $\alpha(a+b)+\beta(n-1)(2 a+b)-\frac{r}{n}(\alpha+2(n-1) \beta)=0$ which means that $b=0$ or $\alpha+(n-2) \beta=0$. From the definition of quasi-conformal curvature tensor, it is known that $\alpha+(n-2) \beta \neq 0$. Thus, again we obtain $b=0$. Therefore, in each case, both of b and c are zero and so the manifold reduces to an Einstein manifold. But this contradicts with our assumption.

On the other hand, if $c \neq 0$, then we have $\alpha(a+b)+\beta(n-1)(2 a+b)-\frac{r}{n}(\alpha+2(n-1) \beta)=0$. From similar calculations with above, we obtain $b=0$ and using this in (87), we have $c=0$ which means that the manifold reduces to an Einstein manifold. But this contradicts with our assumption. Hence we can state that:

Theorem 8.1. There exists no non-Einstein generalized quasi Einstein manifold satisfying the condition $\tilde{W} \cdot S=0$.

9. $G(Q E)_{n}$ with the condition $W_{2} \cdot S=0$

In 1970, Pokhariyal and Mishra [10] have introduced a W-curvature tensor or W_{2}-curvature tensor and studied its properties and this tensor is defined as

$$
\begin{equation*}
W_{2}(X, Y) Z=R(X, Y) Z-\frac{1}{n-1}[g(Y, Z) Q X-g(X, Z) Q Y] \tag{89}
\end{equation*}
$$

Note that; the W_{2} curvature tensor satisfies the following symmetry properties:

- $W_{2}(X, Y, Z, W)=-W_{2}(Y, X, Z, W)$
- $W_{2}(X, Y, Z, W) \neq-W_{2}(X, Y, W, Z)$
for all $X, Y, Z, W \in T M$.
Let $\left\{e_{i}\right\}$ be an orthonormal basis of the tangent space at each point of the manifold where $1 \leqslant i \leqslant n$. Now, from (89), we have

$$
\begin{equation*}
\sum_{i=1}^{n} W_{2}\left(Y, e_{i}, e_{i}, U\right)=0 \tag{90}
\end{equation*}
$$

In this section, we consider a generalized quasi Einstein manifold satisfying the condition $W_{2} \cdot S=0$. Then for all $X, Y, Z \in \mathfrak{X}\left(M^{n}\right)$;

$$
\begin{equation*}
\left(W_{2}(X, Y) \cdot S\right)(Z, W)=-S\left(W_{2}(X, Y) Z, W\right)-S\left(Z, W_{2}(X, Y) W\right)=0 \tag{91}
\end{equation*}
$$

Combining (4) and (91), we get

$$
\begin{align*}
& \frac{-a}{n-1}[g(Y, Z) S(X, W)-g(X, Z) S(Y, W)+g(Y, W) S(X, Z)-g(X, W) S(Y, Z)] \tag{92}\\
& +b\left[A\left(W_{2}(X, Y) Z\right) A(W)+A(Z) A\left(W_{2}(X, Y) W\right)\right]+c\left[A\left(W_{2}(X, Y) Z\right) B(W)\right. \\
& \left.+A(W) B\left(W_{2}(X, Y) Z\right)+A(Z) B\left(W_{2}(X, Y) W\right)+A\left(W_{2}(X, Y) W\right) B(Z)\right]=0
\end{align*}
$$

Putting $Z=U$ and $W=V$ in (92), we get

$$
\begin{align*}
& \frac{-a}{n-1}[A(Y) S(X, V)-A(X) S(Y, V)+B(Y) S(X, U)-B(X) S(Y, U)]+b W_{2}(X, Y, V, U) \tag{93}\\
& +c\left[W_{2}(X, Y, U, U)+W_{2}(X, Y, V, V)\right]=0
\end{align*}
$$

In view of (7) and (89), (93) yields

$$
\begin{equation*}
b R(X, Y, U, V)=\frac{b(2 a+b)}{n-1}[A(Y) B(X)-A(X) B(Y)] \tag{94}
\end{equation*}
$$

Since $b \neq 0$, we obtain

$$
\begin{equation*}
R(X, Y, U, V)=\frac{2 a+b}{n-1}[A(Y) B(X)-A(X) B(Y)] \tag{95}
\end{equation*}
$$

Hence we state the following theorem:
Theorem 9.1. In a generalized quasi Einstein manifold satisfying the condition $W_{2} \cdot S=0$, the curvature tensor R satisfies the relation (95).

Contracting (92) over X and W and using the equation (90), we get

$$
\begin{equation*}
\frac{-a}{n-1}[r g(Y, Z)-n S(Y, Z)]+b W_{2}(U, Y, Z, U)+c\left[W_{2}(V, Y, Z, U)+W_{2}(U, Y, Z, V)\right]=0 \tag{96}
\end{equation*}
$$

Putting $Z=U$ in (49), we get

$$
\begin{equation*}
\frac{-a}{n-1}[r A(Y)-n S(Y, U)]+b W_{2}(U, Y, U, U)+c\left[W_{2}(V, Y, U, U)+W_{2}(U, Y, U, V)\right]=0 \tag{97}
\end{equation*}
$$

In view of (7) and (89), (97) yields

$$
\begin{equation*}
\left[\frac{-a r}{n-1}+\frac{a n(a+b)}{n-1}-\frac{c^{2}}{n-1}\right] A(Y)-\left[\frac{a c n}{n-1}+\frac{b c}{n-1}-\frac{c(2 a+b)}{n-1}+\frac{a c}{n-1}\right] B(Y)=0 \tag{98}
\end{equation*}
$$

Putting $Y=U$ in (98), we get:

$$
\begin{equation*}
a b=\frac{c^{2}}{n-1} \tag{99}
\end{equation*}
$$

Putting $Y=V$ in (98), we get:

$$
\begin{equation*}
a c=0 \tag{100}
\end{equation*}
$$

Then, $a=0$ or $c=0$. If $a=0$, then by (99), $c=0$.
On the other hand, if $a \neq 0$, then $c=0$. Then by (99), $a b=0$. Since $a \neq 0$, we get $b=0$. But in this case, $b=c=0$ which means that the manifold reduces to an Einstein manifold. This is a contradiction. Thus again a must be zero.

Hence, in each case the Ricci tensor can be written as

$$
\begin{equation*}
S(X, Y)=b A(X) A(Y) \tag{101}
\end{equation*}
$$

Also, contracting (101) over X and Y, we obtain $r=b$. Thus we can state the following theorem:
Theorem 9.2. In a non-Einstein generalized quasi Einstein manifold satisfying the condition $W_{2} \cdot S=0$, the Ricci tensor is of the form

$$
S(X, Y)=r A(X) A(Y)
$$

where r is the scalar curvature of the manifold.

References

[1] M.C. Chaki, and R.K.Maity, On Quasi-Einstein Manifolds, Publ. Math. Debrecen, 57 (2000) 297-306.
[2] M.C. Chaki, On Generalized quasi-Einstein manifolds, Publ. Math. Debrecen, 58 (2001), 638-691.
[3] A.K.Gazi, and U.C.De, On the Existence of Nearly Quasi-Einstein Manifolds, Navi Sad J. Math. 39 (2), (2009), 111-117.
[4] S. Tanno, Ricci Curvatures of Contact Riemannian Manifolds, Tohoku Math. J, 40 (1988) 441-8.
[5] M.M. Triphati, and J.S. Kim, On N(k)-Einstein Manifolds, Commun. Korean Math. Soc., 22(3) (2007) 411-7.
[6] C. Özgür, and M.M. Triphati, On the Concircular Curvature Tensor of an N(k)-Einstein Manifolds, Math. Pannon, 18(1) (2007) 95-100.
[7] R. Deszcz, On Pseudo Symmetric Spaces, Bull.Soc. Math. Belg. Ser. A, 44,1 (1992) 1-34.
[8] U.C. De, and A.A. Shaikh, Differential Geometry of Manifolds, Narosa Publishing House Pvt. Ltd., New Delhi, (2007).
[9] K. Yano, and S. Sawaki, Riemannian manifolds admitting a conformal transformation group, J. Diff. Geom., 2 (1968) 161-184.
[10] G.P. Pokhariyal, and R.S. Mishra, Curvature Tensors and Their Relativistic Significance, Yokohama Math. Journal, 18, (1970) 105-108.

[^0]: 2010 Mathematics Subject Classification. 53C15, 53C25, 53B15, 53B20
 Keywords. Generalized quasi Einstein manifold, Ricci semi symmetric manifold, Ricci-pseudosymmetric manifold, conformal curvature tensor, concircular curvature tensor, quasi conformal curvature tensor, W_{2}-curvature tensor

 Received: 18 August 2014; Accepted: 29 September 2014
 Communicated by Ljubica Velimirović and Mića Stanković
 Email addresses: singuler@itu.edu.tr (Sinem Güler), saltay@itu. edu.tr (Sezgin Altay Demirbağ)

