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Abstract. In the present paper, we investigate generalized quasi Einstein manifolds satisfying some special
curvature conditions R ·S = 0, R ·S = LSQ(1,S), C ·S = 0, C̃ ·S = 0, W̃ ·S = 0 and W2 ·S = 0 where R,S,C, C̃, W̃
and W2 respectively denote the Riemannian curvature tensor, Ricci tensor, conformal curvature tensor,
concircular curvature tensor, quasi conformal curvature tensor and W2-curvature tensor. Later, we find
some sufficient conditions for a generalized quasi Einstein manifold to be a quasi Einstein manifold and
we show the existence of a nearly quasi Einstein manifolds, by constructing a non trivial example.

1. Introduction

A Riemannian manifold (Mn, 1), (n > 2) is said to be an Einstein manifold if the Ricci tensor S of type
(0, 2) is non-zero and satisfies the condition

S(X,Y) =
r
n
1(X,Y) (1)

where r is the scalar curvature of (Mn, 1).
In 2000, M.C. Chaki and R.K. Maity introduced the notion of quasi-Einstein manifolds as generalization

of the Einstein manifolds. According to them, a Riemannian manifold (Mn, 1) (n > 2) is said to be a quasi
Einstein manifold [1] if its Ricci tensor of type (0, 2) is non-zero and satisfies the condition

S(X,Y) = a1(X,Y) + bA(X)A(Y) (2)

where a and b are real valued, non-zero scalar functions on (Mn, 1), X,Y ∈ X(Mn) and A is a non-zero 1-form,
equivalent to the unit vector field U, that is,

1(X,U) = A(X) , 1(U,U) = 1 (3)

A is called an associated 1-form and U is called a generator of (Mn, 1). If b = 0, then the manifold reduces
to an Einstein manifold.

The notion of generalized quasi Einstein manifold has been first introduced by M.C. Chaki in 2001 [2].
A Riemannian manifold (Mn, 1) (n > 2) is called a generalized quasi Einstein manifold if its Ricci tensor of
type (0, 2) is non-zero and satisfies the following condition [2]

S(X,Y) = a1(X,Y) + bA(X)A(Y) + c[A(X)B(Y) + A(Y)B(X)] (4)
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where a, b, c are real valued, non-zero scalar functions on (Mn, 1) of which b , 0, c , 0, A and B are two
non-zero 1-forms such that

1(X,U) = A(X) , 1(X,V) = B(X) , 1(U,V) = 0 1(U,U) = 1(V,V) = 1 (5)

That is, U and V are orthonormal vector fields corresponding to the 1-forms A and B, respectively. Similarly,
a, b and c are called associated scalars, A and B are called associated 1-forms and U and V are generators
of manifold. Such an n-dimensional manifold has been denoted by G(QE)n. If c = 0, then the manifold
reduces to a quasi Einstein manifolds and if b = c = 0, then the manifold reduces to an Einstein manifold.
Also, the operator Q defined by 1(QX,Y) = S(X,Y) is called the Ricci operator.

Contracting (4) over X and Y, we get the scalar curvature function of the following form

r = an + b (6)

In view of the equations (4) and (5), in a generalized quasi Einstein manifold, we have

S(Y,U) = (a + b)A(Y) + cB(Y) and S(Y,V) = aB(Y) + cA(Y) (7)

A non flat n-dimensional (n > 2) Riemannian manifold is called nearly quasi Einstein manifold if its
Ricci tensor S(X,Y) of type (0, 2) is of the form

S(X,Y) = a1(X,Y) + bE(X,Y) (8)

where a, b are non zero scalar functions and E is a non zero tensor of type (0, 2), [3].

Remark 1.1. Since the multiplication of two covariant vectors is a covariant tensor of type (0, 2), every quasi Einstein
manifold is a nearly quasi Einstein manifold. But converse is not true.

Let R denote the Riemannian curvature tensor of M. The k-nullity distribution N(k) [4] of a Riemannian
manifold M is defined by

N(k) : p→ Np(k) =
{
Z ∈ Tp(M) : R(X,Y)Z = k[1(Y,Z)X − 1(X,Z)Y]

}
(9)

for all X,Y ∈ TM, where k is some smooth function. In a quasi Einstein manifold M, if the generator U
belongs to some k-nullity distribution N(k), then M said to be an N(k)-quasi Einstein manifold [5]. Özgür
and Triphati [6] proved that in an n-dimensional N(k)-quasi Einstein manifold, k = a+b

n−1 .

2. Ricci-pseudosymmetric G(QE)n

An n-dimensional Riemannian manifold (Mn, 1) is called Ricci-pseudosymmetric [7], if the tensors R · S
and Q(1,S) are linearly dependent where

(R(X,Y) · S)(Z,W) = −S(R(X,Y)Z,W) − S(Z,R(X,Y)W) (10)

Q(1,S)(Z,W; X,Y) = −S((X ∧1 Y)Z,W) − S(Z, (X ∧1 Y)W) (11)

and

(X ∧1 Y)Z = 1(Y,Z)X − 1(X,Z)Y (12)

for all X,Y,Z,W on M. Then (Mn, 1) is Ricci-pseudosymmetric if and only if

(R(X,Y) · S)(Z,W) = LSQ(1,S)(Z,W; X,Y) (13)
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holds on US where US = {x ∈ M : S , r
n1 at x} and LS is a certain function on US. Then, by using (10)-(13),

we can write (Mn, 1) is Ricci-pseudosymmetric if and only if the equation

S(R(X,Y)Z,W) + S(Z,R(X,Y)W) = LS[1(Y,Z)S(X,W) − 1(X,Z)S(Y,W) + 1(Y,W)S(Z,X) − 1(X,W)S(Y,Z)]
(14)

holds.
In this section, we consider Ricci-pseudosymmetric generalized quasi Einstein manifold. Then, by using

(4) and (14), we obtain

b[A(R(X,Y)Z)A(W) + A(Z)A(R(X,Y)W)] + c[A(R(X,Y)Z)B(W) (15)
+ A(W)B(R(X,Y)Z) + A(Z)B(R(X,Y)W) + A(R(X,Y)W)B(Z)]

= LS

[
b
{
1(Y,Z)A(X)A(W) − 1(X,Z)A(Y)A(W) + 1(Y,W)A(Z)A(X) − 1(X,W)A(Y)A(Z)

}
+c

{
1(Y,Z)[A(X)B(W) + A(W)B(X)] − 1(X,Z)[A(Y)B(W) + A(W)B(Y)]

+ 1(Y,W)[A(Z)B(X) + A(X)B(Z)] − 1(X,W)[A(Y)B(Z) + A(Z)B(Y)]
}]

Putting Z = U and W = V in (15), we get

bA(R(X,Y)V) = LS{b[A(X)B(Y) − A(Y)B(X)]} (16)

Since A(R(X,Y,V)) = 1(R(X,Y)V,U) = R(X,Y,V,U) and b , 0, we get

R(X,Y,U,V) = LS[A(Y)B(X) − A(X)B(Y)] (17)

Thus we obtain the following result:

Theorem 2.1. In a Ricci-pseudosymmetric generalized quasi Einstein manifold, the curvature tensor R of the manifold
satisfies the relation (17).

Now, contracting (15) over X and W, we obtain

b[A(R(U,Y)Z)−A(Z)S(Y,U)] + c[A(R(V,Y)Z) + B(R(U,Y)Z) − A(Z)S(Y,V) − B(Z)S(Y,U)] (18)

= LS

{
b[1(Y,Z) − nA(Y)A(Z)] − cn[A(Y)B(Z) + A(Z)B(Y)]

}

Putting Z = U in (18), we get

bS(Y,U) − cR(U,Y,U,V) + cS(Y,V) = LS[b(n − 1)A(Y) + cnB(Y)] (19)

In view of (7) and (17), (19) yields

[ab + b2 + c2
− b(n − 1)LS]A(Y) + [bc + ac + c(1 − n)LS]B(Y) = 0 (20)

Putting Y = U in (20), we get

LS =
ab + b2 + c2

b(n − 1)
(21)

Putting Y = V in (20), we get

c[a + b − LS(n − 1)] = 0 (22)
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Thus we have

c = 0 or LS =
a + b
n − 1

(23)

If c = 0, then by (21), we obtain LS = a+b
n−1 . If c , 0, then by (22), again we find LS = a+b

n−1 . Comparing this and
the equation (21), we obtain c = 0.

Thus in each case we have c = 0 and LS = a+b
n−1 which means that the manifold reduces to a quasi Einstein

manifold. Also, from (17), we have

R(X,Y)U =
a + b
n − 1

[A(Y)X − A(X)Y] (24)

which means that the generator U belongs to some k-nullity distribution. Hence we can state the following
theorem:

Theorem 2.2. Every Ricci-pseudosymmetric non-Einstein generalized quasi Einstein manifold is an N(k)-quasi
Einstein manifold with k = a+b

n−1 .

Remark 2.3. Every Ricci semi symmetric manifold is Ricci-pseudosymmetric. But the converse is not true.

Using above theorem and remark, we can state that:

Theorem 2.4. Every Ricci-pseudosymmetric generalized quasi Einstein manifold is Ricci semi symmetric if and only
if a + b = 0.

3. G(QE)n with the condition R · S = 0

In this section, we consider generalized quasi Einstein manifold satisfying the condition R · S = 0. Then

(R(X,Y) · S)(Z,W) = −S(R(X,Y)Z,W) − S(Z,R(X,Y)W) = 0 (25)

In view of (4), (25) yields

b[A(R(X,Y)Z)A(W) + A(Z)A(R(X,Y)W)] + c[A(R(X,Y)Z)B(W) + A(W)B(R(X,Y)Z) (26)
+ A(Z)B(R(X,Y)W) + A(R(X,Y)W)B(Z)] = 0

Putting Z = U, W = V in (26), we get bR(X,Y,U,V) = 0. Since b , 0, we have

R(X,Y,U,V) = 0 (27)

Putting W = U in (26) and using (27), we get

bR(X,Y,Z,U) + cR(X,Y,Z,V) = 0 (28)

Contracting (28) over Y and Z, we get

bS(X,U) + cS(X,V) = 0 (29)

In view of (7), (29) yields

abA(X) + b2A(X) + bcB(X) + acB(X) + c2A(X) = 0 (30)

Putting X = U in (30), we get

ab + b2 + c2 = 0 (31)
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In view of (31), (30) yields

c(a + b)B(X) = 0 (32)

Putting X = V in (32), we obtain c(a + b) = 0. Then either c = 0 or a + b = 0. If c = 0, then by (31), b(a + b) = 0
so either b = 0 or a + b = 0. If b = 0, then we also have c = 0 and so the manifold reduces to an Einstein
manifolds, which is a contradiction. Thus b is always different than zero and so a + b = 0. On the other
hand, if c , 0, then a + b = 0 and by (31), again we obtain c = 0. That is, in each case, c = 0 and a + b = 0.
Thus the Ricci tensor becomes

S(X,Y) = a[1(X,Y) − A(X)A(Y)] (33)

Hence we can state that:

Theorem 3.1. Every generalized quasi Einstein manifold satisfying the condition R · S = 0 is a quasi Einstein
manifold and the sum of the associated scalar functions is zero.

From Remark 1.1, we can state that:

Corollary 3.2. Every generalized quasi Einstein manifold satisfying the condition R ·S = 0 is a nearly quasi Einstein
manifold.

4. An Example of Nearly Quasi Einstein Manifolds

In this section, we show the existence of a nearly quasi Einstein manifolds with non-zero and non-
constant scalar curvature, by constructing a non trivial example. Since the multiplication of two 1-forms is
a covariant tensor of type (0, 2) so every generalized quasi Einstein manifold can be considered as a nearly
quasi Einstein manifold.

Let us consider a Riemannian metric 1 on the 4-dimensional real number space R4 by

ds2 = 1i jdxidx j = (x4)4/3[(dx1)2 + (dx2)2 + (dx3)2] + (dx4)2 (34)

where i, j = 1, 2, 3, 4 and x1, x2, x3, x4 are the standard coordinates of R4. Then the only non vanishing
components of the Christoffel symbols, the curvature tensor and the Ricci tensor are

Γ1
14 = Γ2

24 = Γ3
34 =

2
3(x4)

, Γ4
11 = Γ4

22 = Γ4
33 = −

2
3(x4)1/3

(35)

R1221 = R1331 = R2332 =
4(x4)2/3

9
(36)

R1441 = R2442 = R3443 = −
2

9(x4)2/3
(37)

R11 = R22 = R33 =
2

3(x4)2/3
, R44 = −

2
3(x4)2 (38)

and the components which can be obtained from these by symmetry properties. Also it can be shown that
the scalar curvature is

r =
4

3(x4)2 (39)

is non zero and non constant.
Let us now define associated scalar functions as

a =
2

3(x4)2 , b = −
4

3(x4)2 (40)
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and associated tensor E of type (0, 2)

Ei j(x) =

{
1 if i = j = 4
0 if i = j = 1, 2, 3 or i , j (41)

Then we can easily show that for all i, j = 1, 2, 3, 4

Ri j = a1i j + bEi j (42)

Thus the manifold R4 endowed with the above metric is a nearly quasi Einstein manifold.

5. G(QE)n with the condition P · S = 0

The projective curvature tensor P [8] of type (1, 3) of an n-dimensional Riemannian manifold (Mn, 1);
(n > 3) is defined by

P(X,Y)Z = R(X,Y)Z −
1

n − 1
[S(Y,Z)X − S(X,Z)Y] (43)

Note that; the projective curvature tensor P satisfies the following symmetry properties:

• P(X,Y,Z,W) = −P(Y,X,Z,W)

• P(X,Y,Z,W) , −P(X,Y,W,Z)

for all X,Y,Z,W ∈ TM, where P(X,Y,Z,W) = 1(P(X,Y)Z,W) is the projective curvature tensor of type (0, 4).
Let {ei} be an orthonormal basis of the tangent space at each point of the manifold where 1 6 i 6 n. Now,

from (43), we have

n∑
i=1

P(ei,Y, ei,U) = −S(Y,U) +
1

n − 1
[rA(Y) − S(Y,U)] (44)

In this section, we consider a generalized quasi Einstein manifold satisfying the condition P · S = 0.
Then for all X,Y,Z ∈ X(Mn);

(P(X,Y) · S)(Z,W) = −S(P(X,Y)Z,W) − S(Z,P(X,Y)W) = 0 (45)

Combining (4) and (45), we get

−a
n − 1

[S(Y,Z)1(X,W) − S(X,Z)1(Y,W) + S(Y,W)1(X,Z) − S(X,W)1(Y,Z)] (46)

+ b[A(P(X,Y)Z)A(W) + A(Z)A(P(X,Y)W)] + c[A(P(X,Y)Z)B(W)
+ A(W)B(P(X,Y)Z) + A(Z)B(P(X,Y)W) + A(P(X,Y)W)B(Z)] = 0

Putting Z = U and W = V in (46), we get

−a
n − 1

[S(Y,U)B(X) − S(X,U)B(Y) + S(Y,V)A(X) − S(X,V)A(Y)] + bP(X,Y,V,U) (47)

+ c[P(X,Y,U,U) + P(X,Y,V,V)] = 0

In view of (7) and (43), (47) yields

bR(X,Y,U,V) = 0 (48)
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Since b , 0, we obtain R(X,Y,U,V) = 0.
Contracting (46) over X and W and using the equation (44), we get

−a
n − 1

[nS(Y,Z) − r1(Y,Z)] + b[P(U,Y,Z,U) + A(Z){−S(Y,U) +
1

n − 1
[rA(Y) − S(Y,U)]}] (49)

+ c
[
P(V,Y,Z,U) + P(U,Y,Z,V) + A(Z){−S(Y,V) +

1
n − 1

[rB(Y) − S(Y,V)]}

+ B(Z){−S(Y,U) +
1

n − 1
[rA(Y) − S(Y,U)]}

]
= 0

Putting Z = U in (49), we get

−a
n − 1

[nS(Y,U) − rA(Y)] + b[P(U,Y,U,U) + A(Z) − S(Y,U) +
1

n − 1
[rA(Y) − S(Y,U)]] (50)

+ c
[
P(V,Y,U,U) + P(U,Y,U,V) + A(Z) − S(Y,V) +

1
n − 1

[rB(Y) − S(Y,V)]
]

= 0

In view of (7) and (43), (50) yields

[−b(a + b) − c2]A(Y) − c(a + b)B(Y) = 0 (51)

Putting Y = U in (51), we get:

b(a + b) + c2 = 0 (52)

Putting Y = U in (51), we get:

c(a + b) = 0 (53)

so c = 0 or a + b = 0. If c = 0, then by (52), we obtain b = 0 or a + b = 0. If b = 0, then we have b = c = 0 which
means that the manifold reduces to an Einstein manifold. But this is a contradiction. Thus b is always
different that zero. Hence a + b = 0.

On the other hand, if a + b = 0, then by (52), again we obtain c = 0. Hence in each case, a + b = 0 and
c = 0 which means that the manifold becomes a quasi Einstein manifold.

Thus we can state the following theorems:

Theorem 5.1. Every generalized quasi Einstein manifold satisfying the condition P · S = 0 is a quasi Einstein
manifold and sum of the associated scalar functions a and b is zero.

And also we obtain:

Theorem 5.2. In a generalized quasi Einstein manifold satisfying the condition P · S = 0, for all X,Y,Z,W ∈ TM

P(X,Y,U,V) = 0

6. G(QE)n with the condition C · S = 0

The conformal curvature tensor C [8] of type (1, 3) of an n-dimensional Riemannian manifold (Mn, 1);
(n > 3) is defined by

C(X,Y)Z = R(X,Y)Z−
1

n − 2
[S(Y,Z)X − S(X,Z)Y + 1(Y,Z)QX − 1(X,Z)QY] (54)

+
r

(n − 1)(n − 2)
[1(Y,Z)X − 1(X,Z)Y]
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In this section, we consider a generalized quasi Einstein manifold satisfying the condition C · S = 0. Then
for all X,Y,Z ∈ X(Mn);

(C(X,Y) · S)(Z,W) = −S(C(X,Y)Z,W) − S(Z,C(X,Y)W) = 0 (55)

Combining (4) and (55), we get

b[A(C(X,Y)Z)A(W) + A(Z)A(C(X,Y)W)] + c[A(C(X,Y)Z)B(W) (56)
+ A(W)B(C(X,Y)Z) + A(Z)B(C(X,Y)W) + A(C(X,Y)W)B(Z)] = 0

Putting Z = U and W = V in (56), we get

bA(C(X,Y)V) = 0 (57)

Since A(C(X,Y)V) = 1(C(X,Y)V,U) = C(X,Y,V,U) and b , 0,from (57) we obtain

C(X,Y,U,V) = 0 (58)

In view of (54), (58) yields

R(X,Y,U,V) =
1

n − 2
[S(Y,U)1(X,V) − S(X,U)1(Y,V) + 1(Y,U)S(X,V) − 1(X,U)S(Y,V)] (59)

−
r

(n − 1)(n − 2)
[1(Y,U)1(X,V) − 1(X,U)1(Y,V)]

In view of (7), (59) yields

R(X,Y,U,V) =
a + b
n − 1

[A(Y)B(X) − A(X)B(Y)] (60)

Hence we can state the following:

Theorem 6.1. In a generalized quasi Einstein manifold satisfying the condition C · S = 0, the curvature tensor R of
the manifold satisfies the relation (60).

From (60), we have

R(X,Y)U =
a + b
n − 1

[A(Y)X − A(X)Y] (61)

Contracting (61) over X, we get

S(Y,U) = (a + b)1(Y,U) (62)

i.e.; QY = (a + b)Y, for all Y ∈ TM. Thus we get the following result:

Theorem 6.2. In a generalized quasi Einstein manifold satisfying the condition C · S = 0, (a + b) is an eigenvalue of
the Ricci operator Q.

7. G(QE)n with the condition C̃ · S = 0

The concircular curvature tensor C̃ [8] of type (1, 3) of an n-dimensional Riemannian manifold (Mn, 1),
(n > 3) is defined by

C̃(X,Y)Z = R(X,Y)Z −
r

n(n − 1)
[1(Y,Z)X − 1(X,Z)Y] (63)

for any X,Y,Z ∈ X(M).
Note that; the concircular curvature tensor C̃ satisfies the following symmetry properties:
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• C̃(X,Y,Z,W) = −C̃(Y,X,Z,W) = −C̃(X,Y,W,Z)

for all X,Y,Z,W ∈ TM, where C̃(X,Y,Z,W) = 1(C̃(X,Y)Z,W) is the concircular curvature tensor of type (0, 4).
Let {ei} be an orthonormal basis of the tangent space at each point of the manifold where 1 6 i 6 n. Now,

from (63), we have

n∑
i=1

C̃(ei,Y, ei,U) = −S(Y,U) +
r
n

A(Y) (64)

In this section, we consider generalized quasi Einstein manifold satisfying the condition C̃ · S = 0. Then
we have

(C̃ · S)(Z,W) = −S(C̃(X,Y)Z,W) − S(Z, C̃(X,Y)W) = 0 (65)

In view of (4), (65) yields

b[A(C̃(X,Y)Z)A(W) + A(Z)A(C̃(X,Y)W)] + c[A(C̃(X,Y)Z)B(W) (66)

+ A(W)B(C̃(X,Y)Z) + A(Z)B(C̃(X,Y)W) + A(C̃(X,Y)W)B(Z)] = 0

Putting Z = U, W = V in (66), we get

bA(C̃(X,Y)V) = 0 (67)

Since A(C̃(X,Y)V) = 1(C̃(X,Y)V,U) = C̃(X,Y,V,U) and b , 0,

C̃(X,Y,U,V) = 0 (68)

Thus, in view of (63), (68) yields

R(X,Y,U,V) =
r

n(n − 1)
[A(Y)B(X) − A(X)B(Y)] (69)

Now, contracting (66) over X and W and using (64), we get

b
[
A(C̃(U,Y)Z) − A(Z)[S(Y,U) −

r
n
1(Y,U)]

]
(70)

+c
[
A(C̃(V,Y)Z) + B(C̃(U,Y)Z) − A(Z)[S(Y,V) −

r
n
1(Y,V)] − B(Z)[S(Y,U) −

r
n
1(Y,U)]

]
= 0

Putting Z = U in (70), we get

b[−S(Y,U) +
r
n
1(Y,U)] + c[C̃(U,Y,U,V) − S(Y,V) +

r
n
1(Y,V)] = 0 (71)

In view of (7) and (68), (71) yields

[−ab − b2 +
rb
n
− c2]A(Y) + [−ac − bc +

cr
n

]B(Y) = 0 (72)

Putting Y = U in (72), we get

−ab − b2 +
rb
n
− c2 = 0 (73)
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Putting Y = V in (72), we get

c(−a − b +
r
n

) = 0 (74)

so c = 0 or a + b = r
n .

If c = 0, then by (73), we get b = 0 or a + b = r
n . If b = 0, then as both of b and c are zero, the manifold

reduces to an Einstein manifold. If a + b = r
n , then by (6), again we obtain b = 0 and using this in (73), we

get c = 0. Thus, in each case, b = c = 0, which means that the manifold reduces to an Einstein manifold.
But this contradicts with our assumption. Hence we can state that:

Theorem 7.1. There exists no non-Einstein generalized quasi Einstein manifold satisfying the condition C̃ · S = 0.

8. G(QE)n with the condition W̃ · S = 0

In 1968, Yano and Sawaki introduced the notion of quasi conformal curvature tensor W̃ [9] of type (1, 3)
which icludes both the conformal curvature tensor C and the concircular curvature tensor C̃. The quasi
conformal curvature tensor W̃ of type (1, 3) is defined by

W̃(X,Y)Z = −(n − 2)βC(X,Y)Z + [α + (n − 2)β]C̃(X,Y)Z (75)

where α and β are arbitrary non-zero constants. In particular, if α = 1, β = 0, then W̃ reduces to the
concircular curvature tensor and if α = 1, β = −1

n−2 , then W̃ reduces to the conformal curvature tensor.
Note that; the quasi conformal curvature tensor W̃ satisfies the following symmetry properties:

• W̃(X,Y,Z,W) = −W̃(Y,X,Z,W) = −W̃(X,Y,W,Z)

for all X,Y,Z,W ∈ TM, where W̃(X,Y,Z,W) = 1(W̃(X,Y)Z,W) is the quasi conformal curvature tensor of
type (0, 4).

In view of (54) and (63), (75) can be written as

W̃(X,Y)Z =αR(X,Y)Z + β[S(Y,Z)X − S(X,Z)Y + 1(Y,Z)QX − 1(X,Z)QY] (76)

−
r
n

( α
n − 1

+ 2β
)
[1(Y,Z)X − 1(X,Z)Y]

Let {ei} be an orthonormal basis of the tangent space at each point of the manifold where 1 6 i 6 n. Now,
from (76), we have

n∑
i=1

W̃(Y, ei, ei,U) = αS(Y,U) + β[rA(Y) + (n − 2)S(Y,U)] −
r
n

( α
n − 1

+ 2β
)
(n − 1)A(Y) (77)

In this section, we consider generalized quasi Einstein manifold satisfying the condition W̃ ·S = 0. Then
we have

(W̃(X,Y) · S)(Z,W) = −S(W̃(X,Y)Z,W) − S(Z, W̃(X,Y)W) = 0 (78)

In view of (4), (78) yields

b[A(W̃(X,Y)Z)A(W) + A(Z)A(W̃(X,Y)W)] + c[A(W̃(X,Y)Z)B(W) (79)

+ A(W)B(W̃(X,Y)Z) + A(Z)B(W̃(X,Y)W) + A(W̃(X,Y)W)B(Z)] = 0
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Putting Z = U, W = V in (79), we get

bA(W̃(X,Y)V) = 0 (80)

Since A(W̃(X,Y)V) = 1(W̃(X,Y)V,U) = W̃(X,Y,V,U) and b , 0,

W̃(X,Y,U,V) = 0 (81)

In view of (81), (76) yields

αR(X,Y,U,V) =β[S(X,U)B(Y) − S(Y,U)B(X) + S(Y,V)A(X) − S(X,V)A(Y)] (82)

+
r
n

( α
n − 1

+ 2β
)
[A(Y)B(X) − A(X)B(Y)]

By virtue (7), (82) yields

R(X,Y,U,V) = γ[A(Y)B(X) − A(X)B(Y)] (83)

where γ = 1
α {−(2a + b)β + r

n

(
α

n−1 + 2β
)
}. Now, contracting (79) over X and W and using (77), we get

b
{
A(W̃(U,Y)Z) − A(Z)

[
αS(Y,U) + β{rA(Y) + (n − 2)S(Y,U)} −

r
n

( α
n − 1

+ 2β
)
(n − 1)A(Y)

]}
(84)

+c
{
A(W̃(V,Y)Z) + B(W̃(U,Y)Z) − A(Z)

[
αS(Y,V) + β{rB(Y) + (n − 2)S(Y,V)} −

r
n

( α
n − 1

+ 2β
)
(n − 1)B(Y)

]
−B(Z)

[
αS(Y,U) + β{rA(Y) + (n − 2)S(Y,U)} −

r
n

( α
n − 1

+ 2β
)
(n − 1)A(Y)

]}
= 0

Putting Z = U in (84), we get

−b
[
αS(Y,U) + β{rA(Y) + (n − 2)S(Y,U)} −

r
n

( α
n − 1

+ 2β
)
(n − 1)A(Y)

]
(85)

+cW̃(U,Y,U,V) − c
[
αS(Y,V) + β{rB(Y) + (n − 2)S(Y,V)} −

r
n

( α
n − 1

+ 2β
)
(n − 1)B(Y)

]
= 0

In view of (7) and (81), (85) yields,[
abα + b2α + c2α + β(n − 1)(b2 + c2 + 2ab) − βc2

−
br
n

(
α + 2(n − 1)β

)]
A(Y) (86)

+
[
cα(a + b) + cβ(n − 2)(a + b) + cβr −

cr
n

(
α + 2(n − 1)β

)]
B(Y) = 0

Putting Y = U in (86), we get

abα + b2α + c2α + β(n − 1)(b2 + c2 + 2ab) − βc2
−

br
n

(
α + 2(n − 1)β

)
= 0 (87)

Putting Y = V in (86) and by (6), we get

c
[
α(a + b) + β(n − 1)(2a + b) −

r
n

(
α + 2(n − 1)β

)]
= 0 (88)

From the equation (88), we have either c = 0 or α(a + b) + β(n − 1)(2a + b) − r
n

(
α + 2(n − 1)β

)
= 0.
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If c = 0, then by (87), we get b
[
α(a + b) + β(n − 1)(2a + b) − r

n

(
α + 2(n − 1)β

)]
= 0 which implies b = 0 or

α(a + b) + β(n − 1)(2a + b) − r
n

(
α + 2(n − 1)β

)
= 0.

If b = 0, then the manifold reduces to an Einstein manifold. Thus b , 0. But in this case, we have
α(a + b) + β(n − 1)(2a + b) − r

n

(
α + 2(n − 1)β

)
= 0 which means that b = 0 or α + (n − 2)β = 0. From the

definition of quasi-conformal curvature tensor, it is known that α + (n − 2)β , 0. Thus, again we obtain
b = 0. Therefore, in each case, both of b and c are zero and so the manifold reduces to an Einstein manifold.
But this contradicts with our assumption.

On the other hand, if c , 0, then we have α(a + b) + β(n − 1)(2a + b) − r
n

(
α + 2(n − 1)β

)
= 0. From similar

calculations with above, we obtain b = 0 and using this in (87), we have c = 0 which means that the manifold
reduces to an Einstein manifold. But this contradicts with our assumption. Hence we can state that:

Theorem 8.1. There exists no non-Einstein generalized quasi Einstein manifold satisfying the condition W̃ · S = 0.

9. G(QE)n with the condition W2 · S = 0

In 1970, Pokhariyal and Mishra [10] have introduced a W-curvature tensor or W2-curvature tensor and
studied its properties and this tensor is defined as

W2(X,Y)Z = R(X,Y)Z −
1

n − 1
[1(Y,Z)QX − 1(X,Z)QY] (89)

Note that; the W2 curvature tensor satisfies the following symmetry properties:

• W2(X,Y,Z,W) = −W2(Y,X,Z,W)

• W2(X,Y,Z,W) , −W2(X,Y,W,Z)

for all X,Y,Z,W ∈ TM.
Let {ei} be an orthonormal basis of the tangent space at each point of the manifold where 1 6 i 6 n. Now,

from (89), we have

n∑
i=1

W2(Y, ei, ei,U) = 0 (90)

In this section, we consider a generalized quasi Einstein manifold satisfying the condition W2 · S = 0.
Then for all X,Y,Z ∈ X(Mn);

(W2(X,Y) · S)(Z,W) = −S(W2(X,Y)Z,W) − S(Z,W2(X,Y)W) = 0 (91)

Combining (4) and (91), we get

−a
n − 1

[1(Y,Z)S(X,W) − 1(X,Z)S(Y,W) + 1(Y,W)S(X,Z) − 1(X,W)S(Y,Z)] (92)

+ b[A(W2(X,Y)Z)A(W) + A(Z)A(W2(X,Y)W)] + c[A(W2(X,Y)Z)B(W)
+ A(W)B(W2(X,Y)Z) + A(Z)B(W2(X,Y)W) + A(W2(X,Y)W)B(Z)] = 0

Putting Z = U and W = V in (92), we get

−a
n − 1

[A(Y)S(X,V) − A(X)S(Y,V) + B(Y)S(X,U) − B(X)S(Y,U)] + bW2(X,Y,V,U) (93)

+ c[W2(X,Y,U,U) + W2(X,Y,V,V)] = 0
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In view of (7) and (89), (93) yields

bR(X,Y,U,V) =
b(2a + b)

n − 1
[A(Y)B(X) − A(X)B(Y)] (94)

Since b , 0, we obtain

R(X,Y,U,V) =
2a + b
n − 1

[A(Y)B(X) − A(X)B(Y)] (95)

Hence we state the following theorem:

Theorem 9.1. In a generalized quasi Einstein manifold satisfying the condition W2 · S = 0, the curvature tensor R
satisfies the relation (95).

Contracting (92) over X and W and using the equation (90), we get

−a
n − 1

[r1(Y,Z) − nS(Y,Z)] + bW2(U,Y,Z,U) + c[W2(V,Y,Z,U) + W2(U,Y,Z,V)] = 0 (96)

Putting Z = U in (49), we get

−a
n − 1

[rA(Y) − nS(Y,U)] + bW2(U,Y,U,U) + c[W2(V,Y,U,U) + W2(U,Y,U,V)] = 0 (97)

In view of (7) and (89), (97) yields

[ −ar
n − 1

+
an(a + b)

n − 1
−

c2

n − 1

]
A(Y) −

[ acn
n − 1

+
bc

n − 1
−

c(2a + b)
n − 1

+
ac

n − 1

]
B(Y) = 0 (98)

Putting Y = U in (98), we get:

ab =
c2

n − 1
(99)

Putting Y = V in (98), we get:

ac = 0 (100)

Then, a = 0 or c = 0. If a = 0, then by (99), c = 0.
On the other hand, if a , 0, then c = 0. Then by (99), ab = 0. Since a , 0, we get b = 0. But in this case,

b = c = 0 which means that the manifold reduces to an Einstein manifold. This is a contradiction. Thus
again a must be zero.

Hence, in each case the Ricci tensor can be written as

S(X,Y) = bA(X)A(Y) (101)

Also, contracting (101) over X and Y, we obtain r = b. Thus we can state the following theorem:

Theorem 9.2. In a non-Einstein generalized quasi Einstein manifold satisfying the condition W2 · S = 0, the Ricci
tensor is of the form

S(X,Y) = rA(X)A(Y)

where r is the scalar curvature of the manifold.
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