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Abstract. We determine curvature properties of pseudosymmetry type of some class of minimal 2-quasi-
umbilical hypersurfaces in Euclidean spaces En+1, n ≥ 4. We present examples of such hypersurfaces. The
obtained results are used to determine curvature properties of biharmonic hypersurfaces with three distinct
principal curvatures in E5. Those hypersurfaces were recently investigated by Y. Fu in [38].

1. Introduction

Let M be a hypersurface isometrically immersed in a semi-Riemannian space of constant curvature
Nn+1

s (c) with signature (s,n + 1 − s), n ≥ 4, where c = κ̃
n(n+1) and κ̃ are the sectional curvature and the scalar

curvature of the ambient space, respectively. LetUH ⊂ M be the set of all points at which the (0, 2)-tensor
H2 is not expressed by a linear combination of the second fundamental tensor H and the metric tensor 1 of
M. For precise definitions of the symbols used here, we refer to Section 2 of this paper (see also [19], [20]
and [22]).

Curvature properties of pseudosymmetry type of hypersurfaces in semi-Riemannian spaces of constant
curvature were investigated in several papers. In particular, hypersurfaces M in Nn+1

s (c), n ≥ 4, with the
tensor H satisfying onUH

H3 = φH2 + ψH + ρ 1, (1)
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for some functions φ, ψ and ρ, were investigated in the following papers: [9]–[13], [17]–[18], [21]–[23], [25],
[28]–[31], [33], [36], [40], [48]–[52].

The main results of Section 3 are presented in Proposition 3.1 and Theorem 3.2. In Proposition 3.1 we
present curvature properties of minimal hypersurfaces M in Nn+1

s (c), n ≥ 4, satisfying (1). In Theorem 3.2 we
present curvature properties of minimal hypersurfaces M in semi-Euclidean spaces En+1

s , n ≥ 4, satisfying
(1) with ρ = 0, i.e.

H3 = φH2 + ψH. (2)

We also present examples of hypersurfaces satisfying (1), see Example 3.1(iii) and Example 3.2(ii).
In Section 4 we consider hypersurfaces M in a Riemannian space of constant curvature Nn+1(c), n ≥ 4,

having at every point ofUH ⊂M exactly three distinct principal curvatures λ1, λ2 and λ3 such that

λ1 = 0, λ2 = −(n − 2)λ, λ3 = λ4 = . . . = λn = λ , 0, (3)

where λ is a function onUH. Evidently, we have onUH: tr(H) = 0 and

H3 = φH2 + ψH, φ = −(n − 3)λ, ψ = (n − 2)λ2, ρ = 0. (4)

In Proposition 4.1 we present curvature properties of hypersurfaces M in Nn+1(c), n ≥ 4, satisfying (3).
Using results of that proposition we obtain curvature properties of hypersurfaces M in Euclidean spaces
En+1, n ≥ 4, satisfying (3). We also present examples of hypersurfaces satisfying (3), see Example 4.1 and
Example 4.2(ii). We recall that a Riemannian manifold (M, 1), n = dim M, isometrically immersed in an m-
dimensional Euclidean spaceEm is said to be biharmonic submanifold ([6]) if its mean curvature vector field
~H satisfies ∆~H = 0, where ∆ is the Laplace operator of M. For recent survey on biharmonic submanifolds
we refer to the book of B.-Y. Chen [6]. It is clear that any minimal submanifold inEm is trivially biharmonic.
A biharmonic submanifold inEm is called proper biharmonic if it is not minimal. Very recently, biharmonic
hypersurfaces with three distinct principal curvatures in E5 were investigated in [38]. In Theorem 3.2 of
[38] it was stated that every biharmonic hypersurface M with three distinct principal curvatures in E5 is
minimal. The principal curvatures: λ1, λ2 and λ3 of M satisfy (3) with n = 4. In Theorem 4.3 we present
curvature properties of those hypersurfaces.

2. Preliminaries

Throughout the paper all manifolds are assumed to be connected paracompact manifolds of class C∞.
Let (M, 1) be an n-dimensional, n ≥ 3, semi-Riemannian manifold and let ∇ be its Levi-Civita connection
and Ξ(M) the Lie algebra of vector fields on M.

We define on M the endomorphisms X ∧A Y and R(X,Y) of Ξ(M), respectively, by

(X ∧A Y)Z = A(Y,Z)X − A(X,Z)Y,
R(X,Y)Z = ∇X∇YZ − ∇Y∇XZ − ∇[X,Y]Z,

where A is a symmetric (0, 2)-tensor on M and X,Y,Z ∈ Ξ(M). The Ricci tensor S, the Ricci operator S, the
tensors S2 and S3 and the scalar curvature κ of (M, 1) are defined by S(X,Y) = tr{Z→ R(Z,X)Y}, 1(SX,Y) =
S(X,Y), S2(X,Y) = S(SX,Y), S3(X,Y) = S2(SX,Y) and κ = trS, respectively. The endomorphisms C(X,Y)
and conh(R)(X,Y) are defined by

C(X,Y)Z = R(X,Y)Z −
1

n − 2
(X ∧1 SY + SX ∧1 Y −

κ
n − 1

X ∧1 Y)Z,

conh(R)(X,Y)Z = R(X,Y)Z −
1

n − 2
(X ∧1 SY + SX ∧1 Y),
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respectively. Now the (0, 4)-tensor G, the Riemann-Christoffel curvature tensor R, the Weyl conformal
curvature tensor C and the conharmonic tensor conh(R) of (M, 1) are defined by

G(X1,X2,X3,X4) = 1((X1 ∧1 X2)X3,X4),
R(X1,X2,X3,X4) = 1(R(X1,X2)X3,X4),
C(X1,X2,X3,X4) = 1(C(X1,X2)X3,X4),

conh(R)(X1,X2,X3,X4) = 1(conh(R)(X1,X2)X3,X4),

respectively, where X1,X2, . . . ∈ Ξ(M). We define the following subsets of M: UR = {x ∈ M |R − κ
(n−1)n G ,

0 at x},US = {x ∈M |S − κ
n 1 , 0 at x} andUC = {x ∈M |C , 0 at x}. We note thatUS ∪UC =UR.

Let B be a tensor field sending any X,Y ∈ Ξ(M) to a skew-symmetric endomorphism B(X,Y), and let B
be a (0, 4)-tensor associated with B by

B(X1,X2,X3,X4) = 1(B(X1,X2)X3,X4) . (5)

The tensor B is said to be a generalized curvature tensor if the following coditions are satisfied

B(X1,X2,X3,X4) = B(X3,X4,X1,X2) ,
B(X1,X2,X3,X4) + B(X3,X1,X2,X4) + B(X2,X3,X1,X4) = 0 .

ForB as above, let B be again defined by (5). We extend the endomorphismB(X,Y) to a derivationB(X,Y)·
of the algebra of tensor fields on M, assuming that it commutes with contractions and B(X,Y) · f = 0, for
any smooth function f on M. For a (0, k)-tensor field T, k ≥ 1, we can define the (0, k + 2)-tensor B · T by

(B · T)(X1, . . . ,Xk,X,Y) = (B(X,Y) · T)(X1, . . . ,Xk)
= −T(B(X,Y)X1,X2, . . . ,Xk) − · · · − T(X1, . . . ,Xk−1,B(X,Y)Xk) .

In addition, if A is a symmetric (0, 2)-tensor then we define the (0, k + 2)-tensor Q(A,T) by

Q(A,T)(X1, . . . ,Xk,X,Y) = (X ∧A Y · T)(X1, . . . ,Xk)
= −T((X ∧A Y)X1,X2, . . . ,Xk) − · · · − T(X1, . . . ,Xk−1, (X ∧A Y)Xk) .

The tensor Q(A,T) is called the Tachibana tensor of the tensors A and T, or shortly the Tachibana tensor
(see, e.g., [23]). We mention that in some papers the tensor Q(1,R) is called the Tachibana tensor ([41], [42],
[43], [47]).

For a symmetric (0, 2)-tensor E and a (0, k)-tensor T, k ≥ 2, we define their Kulkarni-Nomizu product
E ∧ T by ([18])

(E ∧ T)(X1,X2,X3,X4; Y3, . . . ,Yk)
= E(X1,X4)T(X2,X3,Y3, . . . ,Yk) + E(X2,X3)T(X1,X4,Y3, . . . ,Yk)
−E(X1,X3)T(X2,X4,Y3, . . . ,Yk) − E(X2,X4)T(X1,X3,Y3, . . . ,Yk).

For instance, the following tensors are generalized curvature tensors: R, C, G, conh(R) and E∧F, where E and
F are symmetric (0, 2)-tensors. For a symmetric (0, 2)-tensor E we define the (0, 4)-tensor E by E = 1

2 E ∧ E.
In particular, we have 1 = G = 1

2 1 ∧ 1 and

C = R −
1

n − 2
1 ∧ S +

κ
(n − 2)(n − 1)

G. (6)

From (6) and the identity Q(1,G) = 0 we get immediately

Q(1,C) = Q(1,R −
1

n − 2
1 ∧ S) = Q(1, conh(R)). (7)

We also have
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Lemma 2.1. (cf. [27], Proposition 1) For any semi-Riemannian manifold (M, 1), n ≥ 4, the following identities hold
good

conh(R) · S = C · S −
κ

(n − 2)(n − 1)
Q(1,S),

R · conh(R) = R · C,

conh(R) · R = C · R −
κ

(n − 2)(n − 1)
Q(1,R),

conh(R) · conh(R) = C · C −
κ

(n − 2)(n − 1)
Q(1,C). (8)

For a symmetric (0, 2)-tensor A we define the endomorphismA and the tensors A2 and A3 by 1(AX,Y) =
A(X,Y), A2(X,Y) = A(AX,Y) and A3(X,Y) = A2(AX,Y), respectively.

Lemma 2.2. Let E1, E2 and F be symmetric (0, 2)-tensors at a point x of a semi-Riemannian manifold (M, 1), n ≥ 3.
(i) ([17], [18]) At x we have

E1 ∧Q(E2,F) + E2 ∧Q(E1,F) + Q(F,E1 ∧ E2) = 0 .

In particular, if E = E1 = E2 then at x we have

E ∧Q(E,F) = −Q(F,E) .

Moreover (see, e.g., [21], Section 3)

Q(E,E ∧ F) = −Q(F,E) .

(ii) ([44], Lemma 3.2) At x we have

G · F = Q(1,F), (1 ∧ F) · F = Q(1,F2),
−(1 ∧ F) · (1 ∧ F) = Q(F2,G) .

Moreover, if A is a symmetric (0, 2)-tensor and B a generalized curvature tensor then

G · A = Q(1,A) , G · B = Q(1,B) .

(iii) (see, e.g., [37], Lemma 2.4 (iii)) At x we have

Q(E1,E2 ∧ F) + Q(E2,F ∧ E1) + Q(F,E1 ∧ E2) = 0 .

As an immediate consequence of (6) and Lemma 2.2(ii) we get (also see [28], p. 217)

Lemma 2.3. On any semi-Riemannian manifold (M, 1), n ≥ 4, we have the following identity

C · S = R · S −
1

n − 2
Q(1,S2

−
κ

n − 1
S) . (9)

Let Bhijk, Thijk, and Ai j be the local components of generalized curvature tensors B and T and a symmetric
(0, 2)-tensor A on M, respectively, where h, i, j, k, l,m, p, q ∈ {1, 2, . . . ,n}. The local components (B ·T)hijklm and
Q(A,T)hijklm of the tensors B · T, Q(A,T), B · A and Q(1,A) are the following

(B · T)hijklm = 1pq(TpijkBqhlm + ThpjkBqilm + ThipkBqjlm + ThijpBqklm),
Q(A,T)hijklm = AhlTmijk + AilThmjk + A jlThimk + AklThijm

−AhmTli jk − AimThljk − A jmThilk − AkmThijl,

(B · A)hklm = 1pq(ApkBqhlm + AphBqklm),
Q(1,A)hklm = 1hlAkm + 1klAhm − 1hmAkl − 1kmAhl.

The manifold (M, 1), n ≥ 3, is said to be an Einstein manifold [1] if S = κ
n 1 on M.
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Einstein manifolds form a subclass of the class of quasi-Einstein manifolds. The semi-Riemannian
manifold (M, 1), n ≥ 3, is called a quasi-Einstein manifold if rank (S − α 1) = 1 on US, where α is some
function on this set. Every warped product manifold M ×F Ñ of an 1-dimensional (M, 1) base manifold
and an 2-dimensional manifold (Ñ, 1̃) or an (n − 1)-dimensional Einstein manifold (Ñ, 1̃), n ≥ 4, with a
warping function F, is a quasi-Einstein manifold. Quasi-Einstein manifolds arose during the study of exact
solutions of the Einstein field equations and investigation of quasi-umbilical hypersurfaces of conformally
flat spaces. Quasi-Einstein hypersurfaces in semi-Riemannian spaces of constant curvature were studied
among others in: [17], [21], [25], [31] and [40], see also [20]. We refer to [8] and [27] for recent results on
quasi-Einstein manifolds.

The semi-Riemannian manifold (M, 1), n ≥ 3, is called a 2-quasi-Einstein manifold if rank (S−α 1) ≤ 2 on
US and rank (S−α 1) = 2 on some open non–empty subset of US, where α is some function on US. It is clear
that every warped product manifold M×F Ñ of an 2-dimensional (M, 1) base manifold and an 2-dimensional
manifold (Ñ, 1̃) or an (n2)dimensional Einstein manifold (Ñ, 1̃), n ≥ 5, with a warping function F, is a 2-
quasi-Einstein manifold. Therefore some exact solutions of the Einstein field equations are 2-quasi-Einstein
manifolds, e.g. the Reissner-Nordström-de Sitter type spacetimes are such manifolds (see, e.g., [44]). It
seems that the Reissner-Nordström spacetime is the ”oldest” example of a 2-quasi-Einstein warped product
manifold. It is easy to see that every 2-quasi-umbilical hypersurface in a space of constant curvature is a
2-quasi-Einstein manifold (see Remark 3.1). We refer to [24] for recent results on 2-quasi-Einstein warped
product manifolds.

3. Hypersurfaces in spaces of constant curvature

Let M be a connected hypersurface isometrically immersed in a semi-Riemannian manifold (N, 1̃) of
dimension n + 1, n ≥ 3. Let 1 be the metric tensor induced on M from 1̃. Let ∇ and ∇̃ be the Levi-Civita
connections corresponding to the metric tensors 1 and 1̃, respectively. We denote by ξ a local unit normal
vector field on M in N and let ε = 1̃(ξ, ξ) = ±1. We can write the Gauss formula and the Weingarten formula
of (M, 1) in (N, 1̃) in the form: ∇̃XY = ∇XY + εH(X,Y) ξ and ∇Xξ = −AX, respectively, where X,Y are vector
fields tangent to M. H is the second fundamental tensor and A the shape operator of (M, 1) in (N, 1̃). We
have H(X,Y) = 1(AX,Y), for any vectors fields X,Y tangent to M. Further, we set Hp(X,Y) = 1(ApX,Y),
p = 1, 2, . . ., H1 = H andA1 = A. We denote by Hp

hk the local components of the tensor Hp.
According to [4], [5], [7], [46], [53], a hypersurface M in an (n + 1)-dimensional Riemannian manifold N

is said to be quasi-umbilical, resp., 2-quasi-umbilical, at a point x ∈ M if it has a principal curvature with
multiplicity n−1, resp., n−2, i.e. when the principal curvatures of M at x are given by λ1, λ2 = λ3 = . . . = λn,
resp., λ1, λ2, λ3 = λ4 = . . . = λn. If M is a hypersurface in an (n + 1)-dimensional semi-Riemannian manifold
N then M is called quasi-umbilical (see, e.g., [34], [40]), resp., 2-quasi-umbilical (see, e.g., [36], [40]), at a
point x ∈M when rank (H − α 1) = 1, resp., rank (H − α 1) = 2, holds at x, for some α ∈ R.

We recall that a hypersurface M in a semi-Riemannian conformally flat manifold N is quasi-umbilical
at a point x ∈ M if and only if its Weyl conformal curvature tensor C vanishes at this point ([34], Theorem
4.1). Thus a point x ∈ M is a non-quasi-umbilical point of M if and only if the tensor C is non-zero at x, i.e.
x ∈ UC ⊂M.

We denote by R and R̃ the Riemann-Christoffel curvature tensors of (M, 1) and (N, 1̃), respectively. Let
xr = xr(yk) be the local parametric expression of (M, 1) in (N, 1̃), where yk and xr are local coordinates of M
and N, respectively, h, i, j, k ∈ {1, 2, . . . ,n} and p, r, t,u ∈ {1, 2, . . . ,n + 1}. The Gauss equation of (M, 1) in (N, 1̃)
reads

Rhijk = R̃prtuB p
h B r

i B t
j B u

k + ε (HhkHi j −HhjHik), B r
k =

∂xr

∂yk
, (10)

where R̃prtu, Rhijk and Hhk are the local components of the tensors R̃, R and H, respectively.
Let M be a hypersurface isometrically immersed in a semi-Riemannian space of constant curvature

Nn+1
s (c) with signature (s,n + 1 − s), n ≥ 4, where c = κ̃

n(n+1) and κ̃ are the sectional curvature and the scalar
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curvature of the ambient space, respectively. Now (10) turns into

Rhijk = ε (HhkHi j −HhjHik) +
κ̃

n(n + 1)
Ghijk, ε = ±1. (11)

Contracting (11) with 1i j and 1kh we obtain

Shk = ε (tr(H) Hhk −H2
hk) +

(n − 1)κ̃
n(n + 1)

1hk, (12)

κ = ε ((tr(H))2
− tr(H2)) +

(n − 1)κ̃
n + 1

, (13)

respectively, where tr(H2) = 1hkH2
hk and Shk are the local components of the Ricci tensor S of M. It is known

that on M we have ([34])

R · R −Q(S,R) = −
(n − 2)κ̃
n(n + 1)

Q(1,C). (14)

In particular, if the ambient space is a semi-Euclidean space En+1
s then (14) reduces to

R · R = Q(S,R). (15)

Let M be a hypersurface in Nn+1
s (c), n ≥ 4, satisfying (1) onUH. We define onUH the following functions

([48], eq. (34)):

β1 = ε (φ − tr(H)),

β2 = −
ε

n − 2
(φ (2tr(H) − φ) − (tr(H))2

− ψ − (n − 2)εµ),

β3 = εµtr(H) +
1

n − 2
(ψ (2tr(H) − φ) + (n − 3)ρ),

β4 = β3 − εβ2tr(H) +
(n − 1)κ̃β1

n(n + 1)
, (16)

where the functions: φ, ψ, ρ µ are defined by (1) and

µ =
1

n − 2

(
κ

n − 1
−

κ̃
n + 1

)
, (17)

respectively. We also have onUH ([48], eqs. (43), (52), (45), (46)):

R · S =
κ̃

n(n + 1)
Q(1,S) + ρQ(1,H) − εβ1 Q(H,H2), (18)

C · S = β1 Q(H,S) + β2 Q(1,S) + β4 Q(1,H), (19)
(n − 2) R · C = (n − 2) Q(S,R)

−
(n − 2)2κ̃

n(n + 1)
Q(1,R) −

(n − 3)κ̃
n(n + 1)

Q(S,G)

+ρQ(H,G) + (φ − tr(H)) 1 ∧Q(H,H2), (20)
(n − 2) C · R = (n − 3) Q(S,R)

+

(
κ

n − 1
+ εψ −

(n2
− 3n + 3)κ̃
n(n + 1)

)
Q(1,R)

−
(n − 3)κ̃
n(n + 1)

Q(S,G) + (φ − tr(H)) H ∧Q(1,H2), (21)

where β1, . . . , β4 are defined by (16).
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Example 3.1. (i) (Example 1.1, [54]) The Clifford hypersurfaces in Nn(c), c , 0, n ≥ 4. (a) For c > 0 we
set Nn(c) = Sn(c) = {x ∈ Rn+1 :< x, x >= 1

c }, where < · , · > is the standard inner product on Rn+1. For
1 ≤ m ≤ n− 2, t ∈ (0, π2 ), let Mm,n−m−1(c, t) = Sm( c

sin2 t
)× Sn−m−1( c

cos2 t ). We view x = (x1, x2) ∈Mm,n−m−1(c, t) as
a vector in Rn+1 = Rm+1

×Rn−m, then x ∈ Sn(c). This is the standard isometric embedding of Mm,n−m−1(c, t)
into Sn(c). In this situation, for suitably chosen unit normal vector field, Mm,n−m−1(c, t) has two distinct
principal curvatures ρ1 =

√
c cot t of the multiplicity m and ρ2 = −

√
c tan t of the multiplicity n −m − 1.

(b) For c < 0 we set Nn(c) = Hn(c) = {x ∈ Rn+1
1 :< x, x >1 = 1

c , x
n+1 > 0}. Here < x, y >1 = x1y1 + · · · +

xnyn
− xn+1yn+1 is the standard Lorentzian inner product on Rn+1

1 . For 1 ≤ m ≤ n − 2, t ∈ (0,+∞), let
Mm,n−m−1(c, t) = Sm( −c

sinh2 t
) ×Hn−m−1( c

cosh2 t
). Then Mm,n−m−1(c, t) is an embedded hypersurface in Hn(c), and

for suitably chosen unit normal vector field, it has two distinct principal curvatures ρ1 = −c coth t of the
multiplicity m and ρ2 = −c tanh t of the multiplicity n −m − 1.
(ii) (a) If 2 ≤ m ≤ n − 3 and (m − 1) c1 , (n − m − 2) c2, where c1 = c

sin2 t
, c2 = c

cos2 t , t ∈ (0, π2 ) then in view
of Proposition 3.4 of [39] the Riemann-Christoffel curvature tensor R of Mm,n−m−1(c, t) is expressed at every
point by a linear combination of the tensors 1∧1, 1∧S and S∧S, i.e. Mm,nm1(c, t) is a Roter type hypersurface.
(b) If 2 ≤ m ≤ n − 3 and (m − 1) c1 , (n − m − 2) c2, where c1 = −c

sinh2 t
, c2 = c

cosh2 t
, t ∈ (0,+∞), then in view

of Proposition 3.4 of [39] the Riemann-Christoffel curvature tensor R of Mm,n−m−1(c, t) is expressed at every
point by a linear combination of the tensors 1 ∧ 1, 1 ∧ S and and S ∧ S, i.e. Mm,n−m−1(c, t) is a Roter type
hypersurface. (c) The Roter type manifolds (and in particular, hypersurfaces in space forms) were studied
among others in the papers: [19], [20], [22], [25], [26], [32], [39] and [44].
(iii) Let M be a n-dimensional hypersurface in the Euclidean space En+1, n ≥ 4. Precisely, let M the cone
over the Clifford hypersurface Mm,n−m−1(c, t) defined in (i). We refer to Section 3 of [45] for precise definition
and properties of cones. In particular, from Section 3 of [45] it follows immediately that M has at every
point three distinct principal curvatures λ1 = 0, λ2 = 1

t ρ1 and λ3 = 1
t ρ2, t ∈ R+, of the multiplicity 1, m and

n − m − 1, respectively. Thus we see that the cone over the Clifford hypersurface Mm,n−m−1(c, t), presented
in (i) is a hypersurface in En+1, n ≥ 4, having exactly three distinct principal curvatures and satisfying at
every pointUH = M the equation (1) with ρ = 0, i.e. (2).
(iv) We mention that an example of a hypersurface M inEn+1, n ≥ 4, satisfying (1) onUH ⊂M, with non-zero
function ρ and φ = tr(H), is presented in [52].
(v) The Cartan hypersurfaces of dimension 6, 12 or 24 satisfy (2), with φ = tr(H) = 0. Curvature properties
of these hypersurfaces are presented in [18] (Theorem 4.3).

Proposition 3.1. If M is a minimal hypersurface in a semi-Riemannian space of constant curvature Nn+1
s (c), n ≥ 4,
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satisfying (1) onUH ⊂M then the folowing conditions are satisfied on this set: (14) and

β1 = εφ, β2 =
ε

n − 2
(φ2 + ψ + (n − 2)εµ),

β3 =
1

n − 2
((n − 3)ρ − ψφ), β4 = β3 +

(n − 1)κ̃ε φ
n(n + 1)

, (22)

R · S =
κ̃

n(n + 1)
Q(1,S) + ρQ(1,H) − φQ(H,H2), (23)

C · S = εφQ(H,S) + β2 Q(1,S) + β4 Q(1,H), (24)
(n − 2) R · C = (n − 2) Q(S,R)

−
(n − 2)2κ̃

n(n + 1)
Q(1,R) −

(n − 3)κ̃
n(n + 1)

Q(S,G)

+ρQ(H,G) + φ 1 ∧Q(H,H2), (25)
(n − 2) C · R = (n − 3) Q(S,R)

+

(
κ

n − 1
+ εψ −

(n2
− 3n + 3)κ̃
n(n + 1)

)
Q(1,R)

−
(n − 3)κ̃
n(n + 1)

Q(S,G) + φH ∧Q(1,H2), (26)

(φψ + ρ) H = A2 + ε(φ2 + ψ) A − φρ 1, (27)
A3 = −ε(φ2 + 2ψ) A2 + (2φρ − ψ2) A − ερ2 1, (28)

(φψ + ρ)2 R =
ε
2

(A2 + ε(φ2 + ψ) A − φρ 1) ∧ (A2 + ε(φ2 + ψ) A − φρ 1)

+
(φψ + ρ)2κ̃

n(n + 1)
G, (29)

where β1, . . . , β4 are defined by (22) and

A = S −
(n − 1)κ̃
n(n + 1)

1. (30)

Proof. Since M is a minimal hypersurface, (16) and (18)-(21) turn into (22)-(26), respectively. From (1), (12)
and (30) we get easily

A = −εH2, A2 = H4, A3 = −εH6, (31)
H4 = (φ2 + ψ) H2 + (φψ + ρ) H + φρ 1, (32)
H6 = (φ2 + ψ) H4 + φ(φψ + 2ρ) H2 + ψ(φψ + ρ) H + ρ(φψ + ρ) 1. (33)

Now (27)-(29) are immediate consequences of (11) and (31)-(33). Our proposition is thus proved.

Remark 3.1. (i) Let M be a hypersurface in a Riemannian space of constant curvature Nn+1(c), n ≥ 4. If at
every point ofUH ⊂M we have exactly three distinct principal curvatures λ1, λ2 and λ3, then (18)-(21) hold
onUH with ε = 1 and

φ = λ1 + λ2 + λ3, ψ = −λ1λ2 − λ1λ3 − λ2λ3, ρ = λ1λ2λ3. (34)

(ii) Let M be a hypersurface in a Riemannian space of constant curvature Nn+1(c), n ≥ 4. If at every point of
UH ⊂ M we have exactly three distinct principal curvatures λ1, λ2 and λ3 = λ4 = . . . = λn = λ, then from
(12) it follows that

rank
(
S −

(
(n − 1)κ̃
n(n + 1)

+ λ (tr(H) − λ)
)
1

)
= 2 (35)
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onUH. Moreover, the following condition holds onUH (see [36], p. 53)

C · C = −
(n − 3)λ1λ2

(n − 1)(n − 2)
Q(1,C). (36)

We refer to [13], [35], [19], [27] and [32] for results on semi-Riemannian manifolds (M, 1), dim M ≥ 4, and in
particular, on hypersurfaces M in Nn+1

s (c), n ≥ 4, satisfying onUC ⊂M

C · C = L Q(1,C), (37)

where L is some function on this set. We mention that the warped product manifold M ×F Ñ, of manifolds
(M, 1), dim M = 2, and (Ñ, 1̃), dim Ñ = 2, and the warping function F satisfies (37) on UC ⊂ M ×F Ñ (see,
e.g., [20]). We also mention that the warped product manifold M×F Ñ, of manifolds (M, 1), dim M = 1, and
(Ñ, 1̃), dim Ñ = 3, and the warping function F satisfies onUC ⊂M ×F Ñ

R · R −Q(S,R) = L Q(1,C),

where L is some function on this set ([11]).

Proposition 3.1 leads to the following

Theorem 3.2. If M is a minimal hypersurface in a semi-Euclidean space En+1
s , n ≥ 4, satisfying (2) on UH ⊂ M

then the following conditions are satisfied on this set: (15) and

φψH = S2 + ε(φ2 + ψ) S,
S3 = −ε(φ2 + 2ψ) S2

− ψ2 S,

(φψ)2 R =
ε
2

(S2 + ε(φ2 + ψ) S) ∧ (S2 + ε(φ2 + ψ) S),

R · S = εφQ(H,S),

C · S = εφQ(H,S) −
ψφ

n − 2
Q(1,H) +

ε
n − 2

(φ2 + ψ +
εκ

n − 1
) Q(1,S),

(n − 2) R · C = (n − 2) Q(S,R) − εφ 1 ∧Q(H,S),

(n − 2) C · R = (n − 3) Q(S,R) + (εψ +
κ

n − 1
) Q(1,R) − εφH ∧Q(1,S).

Example 3.2. (i) LetM be a (n−1)-dimensional hypersurface in n-dimensional standard unit sphere Sn(1) in
the Euclidean space En+1, n ≥ 4. Precisely, letM be the Clifford torus Sp(c1) × Sn−p−1(c2), c1 = r−1

1 , c2 = r−1
2 ,

r1 =
√

p
n−1 , r2 =

√
n−p−1

n−1 , 1 ≤ p ≤ n − 2. It is well-known thatM is a minimal hypersurface of Sn(1) having
at every point exactly two principal curvatures ρ1 and ρ2 of the multiplicity p and n − p − 1, respectively,
satisfying

ρ1ρ2 + 1 = 0, ρ2
i = r−2

i − 1, i = 1, 2. (38)

(ii) Let M be a n-dimensional hypersurface in the Euclidean space En+1, n ≥ 4. Precisely, let M be the
cone overM. We refer to Section 3 of [45] for precise definition and properties of such hypersurfaces. In
particular, from Section 3 of [45] it follows immediately that M has at every point three distinct principal
curvatures λ1 = 0, λ2 = 1

t ρ1 and λ3 = 1
t ρ2, t ∈ R+, of the multiplicity 1, p and n − p − 1, respectively.

Thus we see that the cone M over the Clifford torus Sp(c1) × Sn−p−1(c2) is a hypersurface in En+1, n ≥ 4,
having exactly three distinct principal curvatures satisfying at every point (2). Using (38) we can check that
ψ = −λ2λ3 = t−2 and

φ2 = (λ2 + λ3)2 =
1
t2 (ρ1 + ρ2)2 =

1
t2 (ρ2

1 + ρ2
2 − 2) =

1
t2

 1
r2

1

+
1
r2

2

− 4


=

1
t2

(
(n − 1)2

p(n − p − 1)
− 4

)
=

((n − p − 1) + p)2
− 4p(n − p − 1)

p(n − p − 1)t2 =
(n − 2p − 1)2

p(n − p − 1)t2 .
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If p , n − p − 1 then in view of Theorem 3.2 the Riemann-Christoffel curvature tensor R of the cone M is
expressed at every point by a linear combination of the tensors 1 ∧ 1, 1 ∧ S and S ∧ S, 1 ∧ S2, S ∧ S2 and
S2
∧ S2. We refer to [50] and [52] for further results on hypersurfaces with the curvature tensor having the

above presented property.

Remark 3.2. (i) Let M be a hypersurface in Nn+1
s (c), n ≥ 4, and let the condition

H3 = tr(H) H2 + ψH + ρ 1,

be satisfied onUH ⊂M, where ψ and ρ are some functions on this set. Using the identity (9), and (3.6) and
(3.7) of [23] we get onUH

C · S =

(
εψ +

κ
(n − 2)(n − 1)

−
(2n − 3)κ̃
n(n + 1)

)
Q(1,S) +

n − 3
n − 2

Q(1,S2). (39)

(ii) (cf., [29], Lemma 4.2) Let M is a hypersurface in a semi-Euclidean space En+1
s , n ≥ 4, satisfying on

UH ⊂M the relation

H3 = tr(H) H2
−

εκ
n − 1

H.

Now (39), by (3.9) of [23], and the conditions κ̃ = 0 and ψ = − εκ
n−1 , reduces onUH to

C · S = 0. (40)

Hypersurfaces satisfying (40) were investigated among others in: [2], [9]–[12], [21], [28]–[30].
(iii) Let (M, 1), n ≥ 4, be a non-Riemannian semi-Riemannian manifolds with parallel Weyl tensor (∇C = 0),
which are in addition non-locally symmetric (∇R , 0) and non-conformally flat (C , 0). Such manifolds
are called essentially conformally symmetric manifolds, e.c.s. manifolds, in short (see, e.g., [14]). Certain
e.c.s. metrics are realized on compact manifolds ([15], [16]). As it was stated in [14], e.c.s. manifolds
are semisymmetric manifolds (R · R = 0) satisfying: κ = 0 , S2 = 0 and C(S̃X1,X2,X3,X4) = 0, for any
X1, . . . ,X4 ∈ Ξ(M). Thus, in view of Lemma 2.3, we see that (40) holds on every e.c.s. manifold.

4. Some special minimal 2-quasi-umbilical hypersurfaces

In this section we consider hypersurfaces M in a Riemannian space of constant curvature Nn+1(c), n ≥ 4,
having at every point ofUH ⊂M exactly three distinct principal curvatures λ1, λ2 and λ3 = λ such that (3)
is satisfied. Thus at every point ofUH we have: λ , 0, tr(H) = 0 and

rank (H − λ 1) = 2, (41)

rank
(
S −

(
(n − 1)κ̃
n(n + 1)

− λ2

)
1

)
= 2. (42)

The last condition follows immediately from (35). ThereforeUH is a minimal, 2-quasi-umbilical and 2-quasi
Einstein open submanifold of M. Evidently, (36) reduces to

C · C = 0. (43)

This, together with (7) and (8), yields

conh(R) · conh(R) = −
κ

(n − 2)(n − 1)
Q(1, conh(R)). (44)



R. Deszcz et al. / Filomat 29:3 (2015), 479–492 489

Furthermore (1), (12), (13), (16) and (18)-(34) give (4) and

S = −H2 +
(n − 1)κ̃
n(n + 1)

1 , κ = −tr(H2) +
(n − 1)κ̃

n + 1
, (45)

β1 = φ, β2 =
1

n − 2
(φ2 + ψ + (n − 2)µ),

β3 = −
ψφ

n − 2
, β4 =

(
(n − 1)κ̃
n(n + 1)

−
ψ

n − 2

)
φ, (46)

R · S =
κ̃

n(n + 1)
Q(1,S) − φQ(H,H2), (47)

C · S = φQ(H,S) +
1

n − 2
(φ2 + ψ + (n − 2)µ) Q(1,S)

+(
(n − 1)κ̃φ
n(n + 1)

−
1

n − 2
ψφ) Q(1,H), (48)

(n − 2) R · C = (n − 2) Q(S,R) + φ 1 ∧Q(H,H2)

−
(n − 2)2κ̃

n(n + 1)
Q(1,R) −

(n − 3)κ̃
n(n + 1)

Q(S,G), (49)

(n − 2) C · R = (n − 3) Q(S,R)

+(
κ

n − 1
+ ψ −

(n2
− 3n + 3)κ̃
n(n + 1)

) Q(1,R)

−
(n − 3)κ̃
n(n + 1)

Q(S,G) + φH ∧Q(1,H2). (50)

Next, using (4) and (12), we find

H2 = −S +
(n − 1)κ̃
n(n + 1)

1, (51)

H4 = (φ2 + ψ) H2 + φψH, (52)

φψH = S2
−

(
2(n − 1)κ̃
n(n + 1)

− φ2
− ψ

)
S

+
(n − 1)κ̃
n(n + 1)

(
φ2 + ψ −

(n − 1)κ̃
n(n + 1)

)
1. (53)

Further, (28) turns into

S3 =

(
3(n − 1)κ̃
n(n + 1)

− φ2
− 2ψ

)
S2 +

ψ (
2(n − 1)κ̃
n(n + 1)

− ψ

)
−

(
(n − 1)κ̃
n(n + 1)

)2 S

+
(n − 1)κ̃
n(n + 1)

(
(n − 1)κ̃
n(n + 1)

(
φ2 + ψ −

(n − 1)κ̃
n(n + 1)

)
− ψ

(
2φ2 + ψ −

(n − 1)κ̃
n(n + 1)

))
1. (54)

We note that by the Gauss equation (11) and (53) we obtain onUH the following relation

2(φψ)2

(
R −

κ̃
n(n + 1)

G
)

=

(
S2
− (

2(n − 1)κ̃
n(n + 1)

− φ2
− ψ)S

)
∧

(
S2
− (

2(n − 1)κ̃
n(n + 1)

− φ2
− ψ)S

)
. (55)

It is obvious that if the hypersurface M in Nn+1(c), n ≥ 4, has at every point exactly three distinct principal
curvatures then M =UH. In this case we also have M =US =UC.

The above presented results lead immediately to the following proposition.
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Proposition 4.1. Let M be a hypersurface in a Riemannian space of constant curvature Nn+1(c), n ≥ 4, having
exactly three distinct principal curvatures λ1, λ2 and λ3 satisfying at every point of M: λ1 = 0, λ2 = −(n − 2)λ and
λ3 = λ4 = . . . = λn = λ , 0. Then M is a minimal, 2-quasi-umbilical and 2-quasi-Einstein hypersurface satisfying
(14) and (41)-(55).

From the last proposition, (14) and (17) we immediately get the following.

Proposition 4.2. Let M be a hypersurface in an Euclidean space En+1, n ≥ 4, having exactly three distinct principal
curvatures λ1, λ2 and λ3 satisfying at every point of M: λ1 = 0, λ2 = −(n − 2)λ and λ3 = λ4 = . . . = λn = λ , 0.
Then M is a minimal, 2-quasi-umbilical and 2-quasi-Einstein hypersurface satisfying (15), (43), (44) and

S = H2, κ = −tr(H2) = −(n − 2)(n − 1)λ2,

φψH = S2 + (φ2 + ψ) S,
S3 = −(φ2 + 2ψ) S2

− ψ2S,

φ = −(n − 3)λ, ψ = (n − 2)λ2, µ =
κ

(n − 2)(n − 1)
,

rank
(
S −

κ
(n − 2)(n − 1)

1

)
= 2,

R =
1

2(φψ)2

(
S2 + (φ2 + ψ)S

)
∧

(
S2 + (φ2 + ψ)S

)
,

R · S = φQ(H,S) =
n − 1
κ

Q(S,S2),

C · S = φQ(H,S) +
φ2

n − 2
Q(1,S) −

φψ

n − 2
Q(1,H)

=
n − 1
κ

Q(S −
κ

(n − 2)(n − 1)
1,S2

−
κ

n − 1
S),

(n − 2) R · C = (n − 2) Q(S,R) − φ 1 ∧Q(H,S),
(n − 2) C · R = (n − 3) Q(S,R) − φH ∧Q(1,S).

Theorem 4.3. Let M be a hypersurface in an Euclidean space E5 having exactly three distinct principal curvatures
λ1, λ2 and λ3 satisfying at every point of M: λ1 = 0, λ2 = −2λ and λ3 = λ4 = λ , 0. Then M is a minimal,
2-quasi-umbilical and 2-quasi-Einstein hypersurface satisfying: (15), (43), (44) and

λ2 = −
κ
6
, λH =

3
κ

S2
−

3
2

S, H2 = −S,

S3 =
5κ
6

S2
−
κ
9

S , rank (S −
κ
6
1) = 2,

R = −
27
κ3

(
S2
−
κ
2

S
)
∧

(
S2
−
κ
2

S
)
,

R · S =
3
κ

Q(S,S2),

C · S =
3
κ

Q(S −
κ
6
1,S2

−
κ
3

S),

R · C = Q(S,R) +
3

2κ
1 ∧Q(S2,S)

C · R =
1
2

Q(S,R) +
3

2κ
S2
∧Q(1,S) −

3
8

Q(1,S ∧ S).
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Example 4.1. If p = 1 then the hypersurface M defined in Example 3.2 (ii) has at every point three distinct
principal curvatures λ1 = 0, λ2 = 1

t ρ1 and λ3 = 1
t ρ2, of multiplicity 1, 1 and n − 2, respectively. Further, we

set λ = λ3 = 1
t ρ2 = 1

√
n−2 t

. This by (38) yields λ2 = −(n − 2)λ. Thus we see that the cone over the Clifford

torus S1(c1) × Sn−2(c2), c−1
1 = r1 =

√
1

n−1 , c−1
2 = r2 =

√
n−2
n−1 , is a hypersurface in En+1, n ≥ 4, having exactly

three distinct principal curvatures satisfying at every point (3).

Example 4.2. (i) Let M be a surface in En+1, n ≥ 4, given by the immersion f : M → En+1 and BM be
the tangent bundle of the unit normals toM. The hypersurface M defined by the map Φt : BM 7→ En+1,
Φt(x, ξ) = F(x, tξ) = f (x) + tξ, t > 0, is called the tube of radius t overM. If µ1 and µ2 are the principal
curvatures ofM then the principal curvatures of the tube M are the following ([3]): λ1 =

µ1

1−tµ1
, λ2 =

µ2

1−tµ2
,

λ3 = λ4 = . . . = λn = − 1
t . Clearly, (37) holds on M ([13], Example 2).

(ii) In addition, we assume that the principal curvatures µ1 and µ2 = µ ofM are constant, and µ1 = 0 and
µ > 0. Moreover, let t = n−2

(n−1)µ . Now the principal curvatures of M are the following: λ1 = 0, λ2 = (n−1)µ,

λ3 = −
(n−1)µ

n−2 with multiplicity 1, 1 and n−2, respectively. Finally, if we set λ = −
(n−1)µ

n−2 then λ2 = −(n−2)λ,
and λ3 = λ. Thus we see that (3) holds at every point of M.
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[11] F. Defever, R. Deszcz and M. Prvanović, On warped product manifolds satisfying some curvature condition of pseudosymmetry

type, Bull. Greek Math. Soc. 36 (1994), 43–67.
[12] J. Deprez, P. Verheyen and L. Verstraelen, Intrinsic characterizations for complex hypercylinders and complex hyperspheres,

Geom. Dedicata 16 (1984) 217–229.
[13] J. Deprez, R. Deszcz, L. Verstraelen and S. . Yaprak, Hypersurfaces satisfying a pseudosymmetry condition for their Weyl conformal

curvature tensor, Atti Accad. Peloritana Pericolanti, Cl. Sci. Fis. Mat. Nat. 73 (1995), 165–181.
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