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On the Existence of Isoperimetric Extremals of Rotation
and the Fundamental Equations of Rotary Diffeomorphisms

Josef Mikeša, Martin Sochora, Elena Stepanovaa

aPalacky University Olomouc, Dept. Algebra and Geometry

Abstract. In this paper we study the existence and the uniqueness of isoperimetric extremals of rotation
on two-dimensional (pseudo-) Riemannian manifolds and on surfaces on Euclidean space. We find the
new form of their equations which is easier than results by S. G. Leiko. He introduced the notion of rotary
diffeomorphisms. In this paper we propose a new proof of the fundamental equations of rotary mappings.

1. Introduction

A rotary diffeomorphism of surfaces S2 on a three-dimensional Euclidean space E3 and also of two-
dimensional Riemannian manifolds V2 is studied in papers of S. G. Leiko [10–18]. These results are local
and are based on the known fact that a two-dimensional Riemannian manifold V2 is implemented locally
as a surface S2 on E3. Therefore we will deal more with the study of V2, i. e. the inner geometry of S2. For
recent studies of the deformation of surfaces from a different point, see [3, 7, 20–23, 29–31].

In [10, 11, 14] the following notion of special mapping is introduced .

Definition 1.1. A diffeomorphism f : V2 → V2 is called rotary if any geodesic γ is mapped onto isoperi-
metric extremal of rotation.

In our paper we have new proof of the fundamental equations of the rotary mappings (Section 5).
The isoperimetric extremal of rotation is a special curve on V2 (resp. S2) which is extremal of a certain

variational problem of geodesic curvature (see [10–17] where the existence of these curves was shown for
the case V2 ∈ C4, resp. on S2 ∈ C5).

The above curves have a physical meaning as can be interpreted as trajectories of particles with a spin,
see [10, 12].

Our paper is devoted to the proof of the existence of isoperimetric extremal of rotation on V2 ∈ C3, resp.
on S2 ∈ C4. Besides we find the fundamental equations of these curves in a more simple form of ordinary
differential equation of Cauchy type. From the above the problem of a rotary diffeomorphism can be solved
for the surfaces with the lower smoothness class.
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Remark. A two-dimensional Riemannian manifold V2 belongs to the smoothness class Cr if its metric
1i j ∈ Cr. We suppose that the differentiability class r is equal to 0, 1, 2, . . . ,∞, ω, where 0,∞ and ω denote
continuous, infinitely differentiable, and real analytic functions respectively.

Surface S2: p = p(x1, x2) belongs to Cr+1 if the vector function p(x1, x2) ∈ Cr+1 and evidently inner two-
dimensional Riemannian manifold V2 belongs to Cr with induced metric 1i j(x) = pi ·p j ∈ Cr, where pi = ∂ip,
∂i = ∂/∂xi. There x = (x1, x2) are local coordinates of V2, resp. S2.

An immersion V2 in Euclidean space is studied in detail, for example, in [24, 27]. In the study of surfaces
S2 we use the notation that is used in the books [1, 6, 9, 25, 26].

2. Isoperimetric extremals of rotation

Let us consider a two-dimensional Riemannian space V2 ∈ C3 with a metric tensor 1. Let 1i j(x1, x2) ∈ C3

(i, j = 1, 2) be components of 1 in some local map.
For the curve `: (t0, t1) → V2 with the parametric equation xh = xh(t), we construct the tangent vector

λh = dxh/dt and vectors
λh

1 = ∇tλ
h and λh

2 = ∇tλ
h
1.

Here ∇t is an operator of covariant differentiation along ` with respect to the Levi-Civita connection ∇ of
metric 1, i.e.

λh
1 = ∇tλ

h
≡

dλh

dt
+ λαΓh

αβ (x(t))
dxb(t)

dt
and

λh
2 = ∇tλ

h
1 ≡

dλh
1

dt
+ λα1Γh

αβ (x(t))
dxb(t)

dt
,

where Γh
ij are the Christoffel symbols of V2, i. e. components of ∇.

It is known that the scalar product of vectors λ, ξ is defined by 〈λ, ξ〉 = 1i jλiξ j. We denote

s[`] =

∫ t1

t0

√
〈λ, λ〉 dt and θ[`] =

∫ t1

t0

k1(s) ds

functionals of length and rotation of the curve `; k1 is the Frenet curvature1) and s is the arc length. In the
case S2 ⊂ E3 the geodesic curvature of the curve is k1.

Using these functionals we introduce the following definition

Definition 2.1 (Leiko [11]). A curve ` is called the isoperimetric extremal of rotation if ` is extremal of θ[`] and
s[`] = const with fixed ends.

It was shown in [11] that in a (not plain) space V2 a curve is an isoperimetric extremal of rotation only
if its Frenet curvature k1 and Gaussian curvature K are proportional:

k1 = c · K, (1)

where c = const.
In [11] it is proved that for a canonical parameter t = a · s+b (a, b = const) the condition (1) can be written

in the following form

λ2 = −
〈λ1, λ1〉

〈λ, λ〉
· λ +

∇αK · λα

K
· λ1, (2)

where 〈λ, λ1〉 = 0 and ∇iK = ∂iK is a gradient vector of the Gaussian curvature (K , 0).
Using these equations for the case of V2 ∈ C4 the uniqueness of the existence of isoperimetric extremals

of rotation can be shown for the following initial conditions (see [14]):

x(0), λ(0), λ1(0) such that 〈λ(0), λ(0)〉 = 1 and 〈λ(0), λ1(0)〉 = 0.

1)In the original paper k1 is denoted as k. This fact can lead to confusion between k and the main curvature of the curve.
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3. On new equations of isoperimetric extremals of rotation

First we recall the basic knowledge of theory of surfaces S2 and (pseudo-) Riemannian manifolds,
see [1, 5, 6, 9, 20, 25, 26].

For simplicity we will consider that a two-dimensional Riemannian manifold V2 is a subspace of S2 ⊂ E3
which is given by the equation p = p(x1, x2). It is known that metric of S2 is given by the following functions
1i j(x) = pi · p j ∈ Cr, where pi = ∂ip.

The existence of the surface S2 with metric 1 on V2 results from the Bonnet Theorem; components 1i j of
the first fundamental form belong to the smoothness class C2 and components bi j of the second fundamental
form belong to the smoothness class C1 both of them satisfy Gauss and Peterson-Codazzi equations.

For the Gaussian curvature K it holds that

K =
b11b22 − b2

12

111122 − 1
2
12

,

where bi j = ∂i jp ·m and m =
p1 × p2

|p1 × p2|
is a unit normal vector of the surface S2. If S2 ∈ C3 then the

curvature K is differentiable.
Now we recall the geometry of a (pseudo-) Riemannian manifold V2 defined by the metric tensor 1i j.

The Christoffel symbols of the first and the second kind are given by

Γi jk =
1
2

(∂i1 jk + ∂ j1ik − ∂k1i j) and Γk
i j = Γi jα1

αk,

where 1i j are components of the matrix inverse to (1i j).
The Riemannian tensors of the first and the second type are given by

Rhijk = 1hαRαi jk and Rh
ijk = ∂ jΓ

h
ik − ∂kΓ

h
ij + ΓαikΓ

h
α j − Γi jαΓh

αk.

Then from Gauss’s Theorema Egregium for surfaces S2 ∈ C3 it follows that ([5, § 22.2], [9, p. 145]):

K =
R1212

111122 − 1
2
12

.

This formula defines the curvature K in a (pseudo-) Riemannian manifold V2.
Finally, we recall the Gauss equations

∂i jp = Γk
i j · pk + bi j ·m. (3)

Let a curve `: p = p(s) be an isoperimetric extremal of rotation on a surface S2 parametrized by
arclength s. On the other hand, because ` ⊂ S2: p = p(x1, x2) there exist inner equations `: xi = xi(s) such
that the following is valid

p(s) = p (x(s))

for all s ∈ I, where p on the left side is a vector function describing the curve ` and p on the right side is a
vector function describing the surface S. Let us denote d/ds by a dot. Then ṗ(s) is a unit tangent vector of `.

We compute the second order derivative for a vector p(s):

ṗ(s) = pi (x(s)) · ẋi(s)
p̈(s) = ∂i jp (x(s)) ẋi(s) · ẋ j(s) + pk · ẍk(s).

Now we apply the Gauss equation (3) and we obtain

p̈(s) =
(
ẍk(s) + Γk

i j · ẋ
i(s)ẋ j(s)

)
· pk + bi j ·m. (4)
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It is obvious that vector p̈(s) splits into two components: into a normal vector m and a unit vector n
which is orthogonal to a vector m and ṗ(s). This vector is tangent to a surface S2, therefore we can write
n = nk pk, where nk are components of the vector n.

Therefore from (4) it follows that

(ẍk(s) + Γk
i j(x(s)) · ẋi(s) ẋ j(s)) · pk + bi j ·m = k1 · nk

· pk + kn ·m,

where kn is a normal curvature of S2 in the direction of a tangent vector λ = ẋ.
Because vectors p1,p2,m are linearly independent, the following equation is true

ẍk(s) + Γk
i j(x(s)) ẋi(s) ẋ j(s) = k1 · nk.

We can write this equation in the form:
∇sλ = k1 · n. (5)

The formula above is an analogue of the Frenet formulas for the flat curves, see [5], [9, § 12], and for
the curves with non-isotropic tangent vector λ ( |λ| , 0) on (pseudo-) Riemannian manifolds V2, see [19,
pp. 22–26].

We show efficient construction of a unit vector n which is orthogonal to λ using a discriminant tensor ε
and a structure tensor F on V2 defined by relations

εi j =
√
|111122 − 1

2
12| ·

(
0 1
−1 0

)
and Fh

i = εi j · 1
jh.

The tensor ε is skew-symmetric and covariantly constant and tensor F defined on V2 is a structure, for
which it holds

F2 = e Id and ∇F = 0,

where e = −1 for a “properly” Riemannian V2 and e = +1 for a pseudo-Riemannian V2.
It can be easily proved that vector Fλ is also a unit vector orthogonal to a unit vector λ. Obviously, it

holds that n = ±Fλ. Therefore from (1) and (5) follows the theorem.

Theorem 3.1. The equation of isoperimetric extremal of rotation can be written in the form

∇sλ = c · K · Fλ, (6)

where c = const.

Remark. Further differentiation of the equation (6) gives the equation (2) by Leiko [10–17]. Note that the
equation (6) has more simple form than the equation (2). If c = 0 is satisfied then the curve is geodesic.

4. On the uniqueness of the existence of isoperimetric extremals of rotation

Analysis of the equation (6) convinces of the validity of the following theorem which generalizes and
refines the results of Leiko [10–17].

Theorem 4.1. Let V2 be a (non flat) Riemannian manifold of the smoothness class C3. Then there is precisely one
isoperimetric extremal of rotation going through a point x0 ∈ V2 in a given non-isotropic direction λ0 ∈ TV2 and
constant c.

Proof. Let xh
0 be coordinates of a point x0 at V2 ∈ C3 and λh

0 (, 0) be coordinates of a unit tangent vector λ0
in a given point x0.

We will find an isoperimetric extremal of rotation `: xh = xh(s), where s is the arc length, on a space V2
such that xh(0) = xh

0 and ẋh(0) = λh
0, i. e. this curve goes through a point x0 in the direction λ0.
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Let us write equation (6) as a system of ordinary differential equations:

ẋh(s) = λh(s)

λ̇h(s) = −Γh
ij(x(s)) · λi(s) · λ j(s) + c · K (x(s)) · Fh

i (x(s)) · λi(s).
(7)

From the theory of differential equations it is known (see [4, 8]) that given the initial conditions xh(0) = xh
0

and λh(0) = ẋh(0) = λh
0 the system (7) has only one solution when

Γh
ij ∈ C1,K ∈ C1 and Fh

i ∈ C1. (8)

These conditions (8) are met on a space V2 ∈ C3 (we consider that V2 is a metric of some surface S2 ⊂ E3 of
the smoothness class C4).

Correctness of the solution of (7) lies in the fact that the vector λ(s) is unit for all s. Evidently, 〈λ, λ〉 is
constant along `, i.e. ∇s〈λ, λ〉 = 2 · 〈λ,∇sλ〉 = 0, and from 〈λ0, λ0〉 = ±1 it follows 〈λ, λ〉 = ±1.

Remark. It is possible to substitute the condition (8) by the Lipschitz’s condition for these functions.
Continuity of these functions is guaranteed by the existence of a solution to (7). This is possible when

V2 ∈ C2, resp. S2 ∈ C3.

5. On the fundamental equations of rotary diffeomorphisms of V2

Assume to be given two-dimensional (pseudo-) Riemannian manifolds V2 = (M, 1) and V2 = (M, 1) with
metrics 1 and 1, Levi-Civita connections ∇ and ∇, complex structures F and F, respectively.

Assume a rotary diffeomorphism f : V2 → V2. Since f is a diffeomorphism, we can impose local
coordinate system on M and M, respectively, such that locally f : V2 → V2 maps points onto points with
the same coordinates x, and M = M.

From Definition 1.1 it follows that any geodesic γ on V2 is mapped onto an isoperimetric extremal of
rotation on V2.

Let γ : xh = xh(s) be a geodesic on V2 for which the following equation is valid

d2xh

ds 2 + Γ h
ij(x(s))

dxi

ds
dx j

ds
= 0 (9)

and let γ : xh = xh(s) be an isoperimetric extremal of rotation on V2 for which the following equation is valid

λh
1 ≡ dλh/ds + Γh

ij(x(s)) λiλ j = c · K(x(s)) · Fh
i (x(s)) · λi, (10)

where Γh
ij and Γ h

ij are components of ∇ and ∇, parameters s and s are arc lengthes on γ and γ, λh = dxh(s)/ds.
Suppose that s = s(s). In this case we modify equation (9):

dλh/ds + Γh
ij(x(s)) λiλ j = %(s) · λh, (11)

where %(s) is a certain function of parameter s, i.e. this equation is the equation of a geodesic with an
arbitrary parameter.

We denote Ph
ij(x) = Γ h

ij(x) − Γ
h
ij(x) the deformation tensor of connections ∇ and ∇ defined by the rotary

diffeomorphism.
As a consequence of (11), we have

λh
1 = % · λh + Ph, (12)

where Ph = Ph
ij · λ

iλ j, and from (12) it follows % = −〈λ,P〉.
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After differentiating (12) along the curve ` and substituting the corresponding values in (10), we obtain

Ph
1 − 〈λ,P1〉 · λ

h = (3 〈λ,P〉 + ∇αK · λα/K) · (〈λ,P〉 · λh
− Ph), (13)

where Ph
1 = (∇kPh

ij + 2Ph
iαPαjk)λiλ jλk.

Let us study the formula (13) in isothermal coordinates in the fixed point x′ in which 111 = 122 = 1,
112 = 0. As (λ2)2 = 1 − (λ1)2 the formula (13) is the function of value λ1. The coefficient of (λ1)6 is equal
A2 + B2, where A = P1

11 − P1
22 − 2P2

12 and B = P2
22 − P2

11 − 2P1
12. From this it follows A2 + B2 = 0, and evidently

A = B = 0, and hence we have in this coordinate system

P1
11 − P1

22 − 2P2
12 = 0 and P2

22 − P2
11 − 2P1

12 = 0.

In this coordinate system we denote ψ1 = P2
12, ψ2 = P1

12, θ1 = P1
22 and θ2 = P2

11. We can rewrite the above
formula equivalently to the following tensor equation

Ph
ij = δh

iψ j + δh
jψi + θh1i j, (14)

where ψi and θh are covector and vector fields.
On the other hand, from (14) it follows 4ψi = 2Pαiα − 1ihPh

αβ1
αβ and 4θi = 31ihPh

αβ1
αβ
− 2Pαiα.

As a consequence of (14), the formula (12) obtains following form

λh
1 = %̃ · λh + θh, (15)

and from (15) it follows %̃ = −〈λ, θ〉. After differentiating (15) along the curve ` and substituting the
corresponding values in (10), we obtain

∇αθ
hλα − θhθαλ

α
− θhKαλα/K = λh (∇βθαλαλβ − θαθβλαλβ − θαλα Kβλβ/K),

and by similar way we obtain the following formulas

∇ jθi = θi(θ j + K j/K) + ν 1i j, (16)

where ν is a function on V2.

The equations (14) and (16) are necessary and sufficient conditions of rotary diffeomorphism by V2
onto V̄2. Our proof is straightforward and more comprehensive than the one proposed in [11]. We notice
that the above considerations are possible when V2 ∈ C3 and V2 ∈ C3.

The vector field θi is torse-forming, see [20, 28, 33]. Under furher conditions on differentiability of
metrics it has been proved in [11] that θi is concircular. From this follows that V2 is isometric to surfaces of
revolution. Concircular vector fields were studied by many authors, such as [2, 20, 32].
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[31] L. S. Velimirović, M. D. Cvetković, M. S. Čirić, N. Velimirović, Analysis of Gaudi surfaces at small deformations. Appl. Math. Comput.

218:13 (2012), 6999–7004.
[32] K. Yano, Concircular Geometry, I-IV. Proc. Imp. Acad. Tokyo 16 (1940).
[33] K. Yano, On the torse-forming directions in Riemannian spaces. Proc. Imp. Acad. Tokyo 20 (1944), 340–345.


