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Abstract. As it is known, Einstein manifolds play an important role in geometry as well as in general
relativity. Einstein manifolds form a natural subclass of the class of quasi-Einstein manifolds. In this work,
we investigate conformal mappings of quasi-Einstein manifolds. Considering this mapping, we examine
some properties of these manifolds. After that, we also study some special vector fields under this mapping
of these manifolds and some theorems about them are proved.

1. Introduction

A non-flat n-dimensional Riemannian manifold (M, 1) (n > 2) is said to be an Einstein manifold if the
condition

S(X,Y) =
r
n
1(X,Y) (1)

holds on M, where S and r denote the Ricci tensor and the scalar curvature of (M, 1), respectively. Einstein
manifolds play an important role in Riemannian Geometry, as well as in general relativity. These manifolds
form a natural subclass of the class of quasi-Einstein manifolds. A non-flat n-dimensional Riemannian
manifold (M, 1) (n > 2) is defined to be a quasi-Einstein manifold if its Ricci tensor S of type (0, 2) is not
identically zero and satisfies the following condition

S(X,Y) = a1(X,Y) + bφ(X)φ(Y) (2)

where a and b are scalars of which b , 0 and φ is a non-zero 1-form such that

1(X,U) = φ(X), 1(U,U) = 1 (3)

for all vector fields X on M, U being a unit vector field. Then a and b are called the associated scalars,
φ is called the associated 1-form and U is called the generator of the manifold, [2]. This manifold is
denoted by (QE)n. The notion of quasi-Einstein manifold has been studied by many authors e.g. [3–5].
This manifold arose during the study of exact solutions of the Einstein field equations as well as during
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considerations of quasi-umbilical hypersurfaces. For instance, the Robertson-Walker space-times are quasi-
Einstein manifolds. Also quasi-Einstein manifold can be taken as a model of the perfect fluid space-time in
general relativity.

One of the important concepts of Riemannian Geometry is conformal mapping. Conformal mappings
of Riemannian manifolds (or semi-Riemannian manifolds) have been investigated by many authors. In
general relativity, conformal mappings are important since they preserve the causal structure up to time
orientation and light-like geodesics up to parametrization, [13]. The existence of conformal mappings of
Riemannian manifolds onto Einstein manifolds have been studied by Brinkmann [1], Mikeš, Gavrilchenko,
Gladysheva [14] and others. Also, conformal mappings between two Einstein manifolds have been exam-
ined by Brinkmann. Recently, Kiosak [12] investigated conformal mappings of quasi-Einstein manifolds
by considering the generator vector field U as a isotropic vector field, i.e., 1(U,U) = 0, which is different
from the definition of [2] and by taking the associated scalars as a = r

n , b = 1 in [2]. He also proved that
quasi-Einstein manifolds are closed with respect to concircular mappings and he obtained some properties
of them. Additionally, Fu, Yang and Zhao [7] studied a class of conformal mappings between two semi-
Riemannian manifolds and they found a conformal mapping which transforms a generalized quasi-Einstein
manifold into a generalized quasi-Einstein manifold.

In this work, we first examine some special vector fields on quasi-Einstein manifolds satisfying the con-
ditions (2), (3) and we find some properties of these manifolds. After that, considering a conformal mapping
between two quasi-Einstein manifolds, we study special vector fields under this conformal transformation
and we prove some theorems related to conformal transformation of these manifolds.

2. Special vector fields on quasi-Einstein manifolds

This section provides an investigation of some special vector fields on a (QE)n. Firstly, we mention about
the known properties of this manifold and the definitions of special vector fields are given. After that, we
examine some properties of (QE)n admitting special vector fields.

Let {ei : i = 1, 2, ..,n} be an orthonormal frame field at any point of (QE)n. Then putting X = Y = ei in (2)
and taking summation over i, we get

r = na + b (4)

where r is the scalar curvature of the manifold. Since U is an unit vector field, putting X = Y = U in (2), we
obtain

S(U,U) = a + b. (5)

Definition 2.1. A vector field ξ in a Riemannian manifold M is called torse-forming if it satisfies the condition

∇Xξ = ρX + λ(X)ξ (6)

where X ∈ TM, λ is a linear form and ρ is a function, [20]. In the local transcription, this reads

∇iξ
h = ρ δh

i + ξhλi (7)

where ξh and λi are the components of ξ and λ, and δh
i is the Kronecker symbol.

A torse-forming vector field ξ is called recurrent if ρ = 0; concircular if the form λi is a gradient covector,
i.e., there is a function υ(x) such that λ = dυ(x).

Thus, for a recurrent vector field, we have from (7)

∇iξ j = λiξ j. (8)

Also, for a concircular vector field ξ, we get

∇iξ j = ρ1i j. (9)
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A Riemannian manifold with a concircular vector field is called equidistant, [18, 19]. Recently, torse-
forming and concircular vector fields have been studied by many authors e.g. [15–17].

Now, we deal with ϕ(Ric)-vector fields introduced by Hinterleitner and Kiosak [9]. As it has been
mentioned before, Einstein manifolds are characterized by the proportionally of the Ricci tensor to the
metric tensor. So, in these manifolds, concircular vector fields could equally be defined by ∇ξ = %Ric. This
inspires us to a general investigation of vector fields satisfying the latter relation and the conditions for their
existence in general (i.e. non-Einstein) Riemannian manifolds, with the specialization % = µ = const, [9]. It
is also indicated in [10] that ϕ(Ric)-vector fields are closely related to Ricci flows introduced by Hamilton,
[8].

Definition 2.2. A ϕ(Ric)-vector field is a vector field on an n-dimensional Riemannian manifold (M, 1) and Levi-
Civita connection ∇, which satisfies the condition

∇ϕ = µRic (10)

where µ is a constant and Ric is the Ricci tensor, [9]. When (M, 1) is an Einstein manifold, the vector field ϕ is
concircular. If µ , 0, then we call that the vector field ϕ is proper ϕ(Ric)-vector field. Moreover, when µ = 0, the
vector field ϕ is covariantly constant.

In [9], it was shown that Riemannian manifolds with a ϕ(Ric)-vector field of constant length have
constant scalar curvature. Now, we show that the converse of this theorem is also true. Therefore, we can
state and prove the following theorem.

Theorem 2.3. Let Vn be a Riemannian manifold with constant scalar curvature. If Vn admits a ϕ(Ric)-vector field,
then the length of ϕ is constant.

Proof. Suppose that Vn is a Riemannian manifold with constant scalar curvature admitting a ϕ(Ric)-vector
field. Using the Ricci identity and the equation (10), we obtain

ϕαRαi jk = µ(∇kSi j − ∇ jSik) (11)

where ϕα, Rαi jk, Si j denote the components of the vector field ϕ, the curvature tensor, the Ricci tensor,
respectively and µ is a constant.

Considering the second Bianchi identity, (11) reduces to

ϕαRαi jk = µ ∇αRαi jk. (12)

From the contracted second Bianchi identity, we also have

ϕαSαk =
µ

2
∇kr (13)

where Sαk = 1iαSik (i = 1, 2, ...,n) and r is the scalar curvature of Vn.
Since the scalar curvature of Vn is constant, then we get from (13)

ϕαSαk = 0. (14)

On the other hand, taking the covariant derivative of the length of ϕ, using (10) and (14), it is obtained
that

∇k(1i jϕiϕ j) = 1i j(∇kϕi)ϕ j + 1i jϕi∇kϕ j

= µ(1i jSikϕ j + 1i jS jkϕi)

= 2µ ϕ jS
j
k

= 0. (15)

From (15), it can be seen that the length of the vector fieldϕ is constant. Thus, the proof is completed.
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Now, we consider a (QE)n admitting the generator vector field U as a φ(Ric)-vector field. Then we have
from (10)

∇ jφi = µSi j (16)

where µ is a constant. Then, we give the following theorem.

Theorem 2.4. In a (QE)n, if the vector field U corresponding to the 1-form φ is a φ(Ric)-vector field, then U is
covariantly constant.

Proof. We consider a (QE)n whose generator vector field is a φ(Ric)-vector field. Putting (2) in (16), we
obtain

∇ jφi = µ(a1i j + bφiφ j). (17)

Multiplying (17) by φi and using the condition 1(U,U) = 1, it can be seen that

µ(a + b)φ j = 0. (18)

Suppose that µ is a non-zero constant. Then, we get from (18)

a = −b. (19)

By the aid of (2) and (19), we obtain

Si j = a(1i j − φiφ j). (20)

Thus, we have from (20)

Si jφ
i = 0. (21)

Taking the covariant derivative of the condition (21) and using (16), we get

(∇kSi j)φi + µSi jSi
k = 0. (22)

Multiplying (22) by 1 jk, we obtain

(∇kSk
i )φi + µSi jSi j = 0 (23)

where Si j = 1 jkSi
k.

It was shown, [9], that Riemannian manifolds with a φ(Ric) vector field of constant length have constant
scalar curvature. Since the generator U is a unit vector field and it is also a φ(Ric) vector field, the scalar
curvature of the manifold is constant. In this case, using the contracted second Bianchi identity and
considering that the scalar curvature of the manifold is constant, it is obtained that

∇kSk
i =

1
2
∇ir = 0. (24)

Using (23), (24) and assuming that µ is a non-zero constant, we obtain

Si jSi j = 0. (25)

By the aid of (20) and (25) it follows that

(n − 1)a2 = 0. (26)

Since n > 2, from (26) it is obtained that a = 0. In this case, it is seen from (20) that the Ricci tensor
vanishes which is a contradiction. Therefore, the constant µ must be zero and so, the generator vector field
U is covariantly constant. This completes the proof.
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Theorem 2.5. If a (QE)n admits a ϕ(Ric)-vector field with constant length, then either φi and ϕi are collinear or the
Ricci tensor of the manifold reduces to the following form

Si j = b φiφ j.

Proof. We assume that (QE)n admits a ϕ(Ric)-vector field with constant length. Then, we have

ϕiϕ
i = c (27)

where c is a constant. Taking the covariant derivative of the condition (27), using the equation (10) and
considering µ as a non-zero constant (that is ϕ is proper ϕ(Ric) vector field), it follows that

Sikϕ
i = 0. (28)

By the aid of (2) and (28), we get

aϕk + b (ϕiφi)φk = 0. (29)

Multiplying (29) by φk and using (3), it is obtained that

(a + b)ϕkφ
k = 0. (30)

So either ϕkφk = 0 which gives from (29) that a = 0 and so, the Ricci tensor of the manifold reduces to
the form

Si j = bφiφ j (31)

or ϕkφk , 0 which gives from (30) that a = −b. Since b , 0 then a , 0 and from (29) we obtain that

ϕk = (ϕiφi)φk (32)

so, ϕk and φk are collinear. This completes the proof.

From the previous theorem we have the following corollary.

Corollary 2.6. If a (QE)n admits a ϕ(Ric)-vector field with constant length which is not orthogonal to the generator,
then the associated scalars of the manifold must be constants and the vector field ϕ is covariantly constant.

Proof. As it has been mentioned before, a Riemannian manifold admitting aϕ(Ric)-vector field with constant
length has constant scalar curvature. Moreover, under the assumptions and from Theorem 2.5., we obtain
that the associated scalars of (QE)n are related by a = −b, and from (4), we get

r = (n − 1)a. (33)

Since the scalar curvature of the manifold is constant, in this case, from (4) and (33), we see that the
associated scalars of the manifold are constants.

For the second part, multiplying (32) by ϕk and using (27), it can be seen that ϕiφi is a constant. So,
(32) shows that the generator vector field U is also a φ(Ric)-vector field. In this case, U must be covariantly
constant by Theorem 2.4., and due to the collinearity of ϕ and U, ϕ is also covariantly constant. Hence, the
proof is completed.



B. Kırık, F. Özen Zengin / Filomat 29:3 (2015), 525–534 530

3. An example of quasi-Einstein manifold

We define a Riemannian metric 1 on the 4-dimensional real number space R4 by the formula

ds2 = 1i jdxidx j = (1 + ex1
)[(dx1)2 + (dx2)2 + (dx3)2 + (dx4)2] (34)

where i, j = 1, 2, 3, 4 and x1, x2, x3, x4 are the standard coordinates of R4. Then the only non-vanishing
components of the Christoffel symbols, curvature tensor and the Ricci tensor are

Γ1
22 = Γ1

33 = Γ1
44 = −ex1

/2(1 + ex1
), Γ1

11 = Γ2
12 = Γ3

13 = Γ4
14 = ex1

/2(1 + ex1
),

R1221 = R1331 = R1441 = ex1
/2(1 + ex1

),

R2332 = R2442 = R3443 = e2x1
/4(1 + ex1

),

S11 = 3ex1
/2(1 + ex1

)2,

S22 = S33 = S44 = ex1
/2(1 + ex1

)

and the components which can be obtained from these by the symmetry properties.

Moreover, it can be shown that the scalar curvature of the manifold is r =
3ex1

(2+ex1
)

2(1+ex1 )3
which is non-

vanishing and non-constant. Therefore R4 with the considered metric is a Riemannian manifold (M4, 1) of
non-vanishing scalar curvature. We shall now show that M4 is a (QE)4. Let us now consider the associated
scalars and the components of the associated 1-form φ as follows:

a =
ex1

2(1 + ex1 )2
, b =

2ex1
− e2x1

2(1 + ex1 )3

φi(x) =


√

1 + ex1 , if i = 1
0, if i = 2, 3, 4

(35)

at any point x ∈M4. In our M4, it is seen that the following equations are satisfied:
(i) S11 = a111 + bφ1φ1,
(ii) S22 = a122 + bφ2φ2,
(iii) S33 = a133 + bφ3φ3,
(iv) S44 = a144 + bφ4φ4,
(v) 1i jφiφ j = 1
since for the cases other than (i) − (v) the components of each term of (2) vanishes identically and

the relation (2) holds trivially. Therefore, (M4, 1) endowed with the metric (34) is a (QE)4 satisfying the
conditions (2) and (3).

4. Conformal mappings of (QE)n admitting special vector fields

In this section, we consider a conformal mapping between two quasi-Einstein manifolds denoted by Vn
and V̄n with metrics 1 and 1̄, respectively, and we examine some special vector fields under this mapping.

Definition 4.1. A conformal mapping is a diffeomorphism of Vn onto V̄n such that

1̄ = e2σ1 (36)

where σ is a function on Vn. If σ is constant, then it is called homothetic mapping. In local coordinates, (36) is written
as

1̄i j(x) = e2σ(x)1i j(x) (37)



B. Kırık, F. Özen Zengin / Filomat 29:3 (2015), 525–534 531

From (37), we obtain

1̄i j = e−2σ1i j (38)

where 1i j and 1̄i j are the inverse matrices of the metric tensor on Vn and V̄n, respectively.

Besides those equations, under this conformal mapping, the Christoffel symbols, the components of the
curvature tensor, the Ricci tensor and the scalar curvature are, respectively, [6]

Γ̄h
ij = Γh

ij + δh
i σ j + δh

jσi − σ
h1i j, (39)

R̄h
ijk = Rh

ijk + δh
kσi j − δ

h
jσik + 1hα(σαk1i j − σα j1ik)

+ ∆1σ(δh
k1i j − δ

h
j1ik), (40)

S̄i j = Si j + (n − 2)σi j + (∆2σ + (n − 2)∆1σ)1i j, (41)

r̄ = e−2σ(r + 2(n − 1)∆2σ + (n − 1)(n − 2)∆1σ), (42)

where Si j = Rαi jα, r = Sαβ1αβ, σi = ∂σ
∂xi = ∇iσ, σh = σα1αh and

σi j = ∇ j∇iσ − ∇iσ∇ jσ, (43)

∆1σ and ∆2σ are the first and the second Beltrami’s symbols which are determined by

∆1σ = 1αβ∇ασ∇βσ, ∆2σ = 1αβ∇β∇ασ (44)

where ∇ is the covariant derivative according to the Riemannian connection in Vn. We denote the objects
of space conformally corresponding to Vn by bar, i.e., V̄n.

Taking the covariant derivative of S̄i j and using (41), it can be obtained that

∇̄kS̄i j = ∇kSi j + (n − 2)∇kσi j + ∂k(∆2σ + (n − 2)∆1σ)1i j − 2σkSi j

− σiS jk − σ jSik − 2(∆2σ + (n − 2)∆1σ)1i jσk + σh(Sih1 jk + Shj1ik) (45)

+ (n − 2)(σhσhj1ik + σhσih1 jk − 2σkσi j − σiσkj − σ jσik)

where ∇̄ and ∇ denote the Levi-Civita connections and ∂k is the partial derivative with respect xk.

Definition 4.2. A symmetric tensor field T of type (0,2) on a Riemannian manifold (M, 1) is said to be a Codazzi
tensor if it satisfies the following condition

(∇XT)(Y,Z) = (∇YT)(X,Z) (46)

for arbitrary vector fields X,Y and Z.

Now, we assume that the Ricci tensors S̄ and S of the quasi-Einstein manifolds are Codazzi tensors
with respect to the Levi-Civita connections ∇̄ and ∇, respectively. Then, from (46), we have the following
relations

∇̄kS̄i j = ∇̄ jS̄ik, (47)

and

∇kSi j = ∇ jSik. (48)

On the other hand, if the Ricci tensor of the manifold is a Codazzi tensor, then from the second Bianchi
identity, it can be seen that the scalar curvature is constant. According to our assumptions, the scalar
curvatures r̄ and r of the quasi-Einstein manifolds are constants. So, we state and prove the following
theorems.



B. Kırık, F. Özen Zengin / Filomat 29:3 (2015), 525–534 532

Theorem 4.3. Let us consider a conformal mapping 1̄ = e2σ1 of quasi-Einstein manifolds whose Ricci tensors are
Codazzi type. If the vector field generated by the 1-form σ is a σ(Ric)-vector field, then either this conformal mapping
is homothetic or the relation

µ =
(2 − n)(n − 1)c − r

2(n − 1)r
(49)

is satisfied where c is the square of the length of σi = ∂σ
∂xi = ∂iσ and µ denotes the constant corresponding to the

σ(Ric)-vector field and r , 0.

Proof. Suppose that the Ricci tensors of Vn and V̄n are Codazzi tensors and suppose that 1̄ = e2σ1 is a
conformal mapping with a σ(Ric)-vector field. By using the second Bianchi identity, it can be seen that the
scalar curvatures r and r̄ are constants. Since r is constant, then the length of σi is constant by Theorem 2.3.,
(and r , 0 which can be seen from Theorem 2.5. and Corollary 2.6.) and so we have the condition

σiσ
i = c (50)

where c is a constant. If we assume that the vector field generated by the 1-form σ in the conformal mapping
(36) is a σ(Ric)-vector field, we get

∇ jσi = µSi j (51)

where µ is a constant. Using (44), (50) and (51), we have the following relations

∆2σ = µr, ∆1σ = c (52)

and so, ∆1σ and ∆2σ are constants.
Using the relations (52) in (42), we find

r̄ = e−2σB (53)

where r, r̄ and B = [r+2(n−1)µr+ (n−1)(n−2)c] are constants . In this case, if r̄ is non-zero then we get from
(53) that B is non-zero and so, e−2σ is constant. Thus, σ is constant. Therefore, this mapping is homothetic.
If r̄ is zero then B must be zero. So we obtain

µ =
(2 − n)(n − 1)c − r

2(n − 1)r
(54)

where r , 0. From (54), it can be seen that if r , (2 − n)(n − 1)c, that is, µ , 0 then this conformal mapping
admits a proper σ(Ric)-vector field. In case of r = (2 − n)(n − 1)c, then σi is covariantly constant. This
completes the proof.

Next we consider a conformal mapping between two quasi-Einstein manifolds admitting a concircular
vector field σi.

Theorem 4.4. Let us consider a conformal mapping 1̄ = e2σ1 of quasi-Einstein manifolds whose Ricci tensors are
Codazzi type. If σi is a concircular vector field, then either

i. φi and σi are orthogonal or
ii. the function ρ is found as

ρ =
b − (n − 2)∆1σ

n + 2

where φi denote the components of the vector field associated 1-form φ, σi = ∂σ
∂xi = ∂iσ, b is the associated scalar of Vn

and ρ denotes the function corresponding to the concircular vector field.
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Proof. Let the Ricci tensors of Vn and V̄n be Codazzi tensors and σi be a concircular vector field. In this case,
we have from (9)

∇ jσi = ρ1i j (55)

where ρ is a function.
Changing the indices j and k in (45) and subtracting the last equation from (45) and using (43), (47), (48)

and (55), it can be seen that

2(n − 1)(ρk1i j − ρ j1ik) + [(n − 2)∆1σ + (n + 2)ρ](σ j1ik − σk1i j) + σ jSik − σkSi j

+ σhShj1ik − σ
hShk1i j = 0 (56)

where ρk = ∂kρ and ∆1σ = σhσh.
Multiplying (56) by 1i j, it is obtained that

2(n − 1)2ρk + [(n − 2)(1 − n)∆1σ + (n + 2)(1 − n)ρ − r]σk

+ (2 − n)σhShk = 0. (57)

On the other hand, we have from the Ricci identity and the equation (55)

σαRαi jk = ρk1i j − ρ j1ik (58)

where Rαi jk denote the components of the curvature tensor.

Multiplying (58) by 1i j, we get

σαSαk = (n − 1)ρk. (59)

Substituting ρk obtained from (59) in (57), it can be obtained that

nσhShk + [(n − 2)(1 − n)∆1σ + (n + 2)(1 − n)ρ − r]σk = 0. (60)

Considering (2) in (60) and using (4), we get

nbσhφhφk + [(n − 2)(1 − n)∆1σ + (n + 2)(1 − n)ρ − b]σk = 0. (61)

Multiplying (61) by φk and using (3), we obtain

[(n − 1)b + (n − 2)(1 − n)∆1σ + (n + 2)(1 − n)ρ]σkφk = 0. (62)

From (62), we see that either
σkφk = 0

or
(n − 1)b + (n − 2)(1 − n)∆1σ + (n + 2)(1 − n)ρ = 0.

Thus, we obtain that either σk is orthogonal to φk or the function ρ is found as

ρ =
b − (n − 2)∆1σ

n + 2
. (63)

Hence, the proof is completed.

Now, we consider a conharmonic transformation between two quasi-Einstein manifolds Vn and V̄n.
A harmonic function is not transformed into a harmonic function by this conformal transformation in
general. The conharmonic transformation is a conformal transformation preserving the harmonicity of a
certain function. If the conformal mapping is also conharmonic, then we have, [11]

∇iσ
i +

1
2

(n − 2)σiσi = 0. (64)

Using the above relation, we can state and prove the following theorem.
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Theorem 4.5. Let us consider the conformal mapping of two quasi-Einstein manifolds Vn and V̄n. A necessary and
sufficient condition for this conformal mapping to be conharmonic is that the associated scalars ā and b̄ be transformed
by ā = e−2σa and b̄ = e−2σb.

Proof. We consider a conformal mapping of quasi-Einstein manifolds Vn and V̄n. Then, we have from (2)
and (41)

ā1̄i j + b̄φ̄iφ̄ j = a1i j + bφiφ j + (n − 2)σi j + (∆2σ + (n − 2)∆1σ)1i j. (65)

Multiplying (65) by 1̄i j and using (3), (38), (43) and (44), it can be seen that the following relation is
satisfied

nā + b̄ = e−2σ[na + b + 2(n − 1)∆2σ + (n − 1)(n − 2)∆1σ]. (66)

If the conformal mapping is also conharmonic, then we have from (44) and (64)

2∆2σ + (n − 2)∆1σ = 0. (67)

Considering (67) in (66), it is found that

nā + b̄ = nae−2σ + be−2σ. (68)

From the equation (68), it can be seen that the associated scalars are transformed by

ā = e−2σa and b̄ = e−2σb. (69)

Conversely, if the associated scalars of the manifolds are transformed by (69), then we have from (66)

2(n − 1)∆2σ + (n − 1)(n − 2)∆1σ = 0 (70)

and so, we get the relation (64). Thus, the conformal mapping is also conharmonic. This completes the
proof.
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