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Psychology and Geometry
I. On the geometry of the human kind

Leopold Verstraelena

aKU Leuven, Section of Geometry, Belgium

Abstract. In this note an attempt is made to describe a personal look at some of the main steps in the history of
geometry from a psychological point of view, hereby basing on and sometimes merely formulating again parts
of some previous papers, like [1–11]. For general references on elementary differential geometry, pseudo
Riemannian geometry and geometry of submanifolds, see e.g. [12–22]. In reference [23], part II of some of
the author’s reflections on psychology and geometry, an attempt is made to describe relativistic spacetimes
in a way as kind of a supplement to the contents of the present part I.

1. In his “Philosophy of Mathematics and Natural Science” Weyl wrote that “science would perish without a
supporting transcendental faith in truth and reality, and without the continuous interplay between its facts and
constructions on the one hand and its imagery of ideas on the other”; (the hereafter following statements of Weyl
come from the same book). And, despite some actual decadent and perverse, or, put in a more positive way,
despite some actual extra–terrestrial attitudes towards mathematics, mathematics definitely is included in
the “science” of the foregoing citation. And, in any case, at least partially, the above could be rephrased as
follows: the geometry of submanifolds, that is, named more romantically, the geometry of the human kind, is a
basic and vital part of science.

From Bronowski’s “The Origins of Knowledge and Imagination” come the following two quotes:“The place
of sight in human evolution is cardinal” and “The world of science is wholly dominated by the sense of sight”, and
in “The Ascent of Man” the same author offers a discussion of the theorem of Pythagoras as a wonderful link
between the two which presents a most direct view on the fundamental role played by geometry in human
cognition. From this discussion, in Figure 1 is redrawn a proof of this principal theorem of Euclidean
geometry based on “the gravitational cross”.

Helmholtz stated in his “Physiologische Optik” that “the sensations are signs to our consciousness and it
is the task of our intelligence to learn to understand their meaning”. And Weyl gave the advice that “in the
ultimate description of the connection between appearance and reality one does better to ignore all intermediary
levels of constitution”. Somewhat accordingly, a straightforward adaptation of the classical scale space in
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the geometrical description of human visual sensation related to “the horizontal–vertical effect” (which too
essentially results from our kind’s experiences associated with the gravitational cross) and its consequential
relevance for the geometrical description of human visual perception may be found in [7,8], and the light
that this sheds on how in vision the functioning of various kinds of individual cells contributes to the
overall formation of images, or, put in a more negative way, on the manifest failure to explain images by
certain “theories” built upon the all in all not unwelcome information gotten by many experiments on this
functioning, may be seen in [9]. In this context, “it must be admitted that he who undertakes to deal with questions
of natural sciences without the help of geometry is attempting the unfeasable” as Galileo said in his “Dialogo”.
And, readily applicable to many busy people who have been busy in the recent times with what they do as
“researches” in vision, physics, chemistry, etc., are Weyl’s following comments in this respect:“Enemies of the
geometrical method are, on the one hand, the empiricists, because any aprioristic construction is a thorn in their
flesh; they fondly imagine it to be possible to grasp reality as a thing of one stratum, as it were, without aprioristic
ingredients, by a purely descriptive approach (...). On the other hand, out of hatred for the freedom, the open
field of geometrical construction, those metaphysicians oppose the method who build up a rigid dialectic world
of concepts as the true reality (...)”.

2. Euclid’s “Elements” (∼ -300) concerned the state of geometry at his time as science of our environment as
experienced by our visual and motoric senses. The presentation was done in the axiomatic–deductive mode
that had been developed in the Old Greek’s schools aiming for security of the mathematical activities
as protection against otherwise maybe too intuitive and loose proceedings; -the present note not being
mathematical, it might very well allow for too loose and intuitive wordings and speculations, eventually,
of course-. Descartes’ “Géométrie” (1637) presented his programme to base the whole Euclidean geometry
on the determination of the distances of all pairs of points by means of the theorem of Pythagoras properly expressed in
Cartesian co–ordinates; cfr. Figure 2 for the planar case. In this analytic geometry the axiomatic foundation of
the former synthetic geometry basically is replaced by a geometrical foundation of the real number system
and this programme works equally well in all dimensions. In particular Thales’ theorem on similarities
and Stevin’s “parallelogram rule” for the (de)composition of forces did play not unimportant roles in this
evolution. And, in this co–ordinate setting of Euclidean geometry the infinitesimal calculus could geometrically
be developed, and, in turn, this made possible to Newton (∼ 1670) to obtain the general analytic formula’s for the
curvature of the curves in a Euclidean plane at any of their points and to Euler (∼ 1760) to describe the curvature
behaviour of the surfaces M2 in a Euclidean space E3 at any of their points in terms of the curvatures there of the
planar normal sections in all tangent directions to M2.

In his “Disquisitiones generalis circa superficies curvas” (1827), Gauss carried over Descartes’ programme
to “the inner geometry” of surfaces M2 in E3. It is plausible that his interests in cartography and in geodesy
may hereby have been very inspirational indeed. The surfaces are described by curvilinear co–ordinates,
say (u, v), and “a geometrical structure” is defined on these surfaces M2 by their line element ds as expressed
by the infinitesimal distance function which is naturally induced on these surfaces M2 from the standard
theorem of Pythagoras’ Euclidean distance function of the ambient space E3, i.e. via a generalised theorem
of Pythagoras on M2, namely, ds2 is given by a general homogeneous quadratic polynomial in infinitesimal
changes of the curvilinear co–ordinates: ds2 = E du2 + 2F du dv + G dv2; cfr. Figure 3. And, Gauss’ main
motivation in his studies of geometry likely was to finally settle the Euclidean parallel postulate problem, which
could be reformulated as the problem to find out whether there exist valid geometrical spaces other than
the Euclidean space, this latter one being “the mathematical space corresponding to our direct visual experiences”.
The main curvature invariant of the intrinsic geometry of surfaces (M2, ds2) is the Gauss curvature K, which
in terms of the extremal external Euler curvatures k1 and k2 is given by their product, K = k1k2, while from
the same intrinsic point of view the most important curves on surfaces (M2, ds2) are their geodesics. And,
locally, the 2D Euclidean geometry and the classical 2D elliptical non–Euclidean geometry and the classical 2D
hyperbolical non–Euclidean geometry of Lobachevsky–Bolyai are realised on surfaces M2 in E3 with constant
Gauss curvatures K = o (i.e. on “developable surfaces”), K > o (like on spheres) and K < o (like on pseudo–
spheres or tractroids), respectively, the geodesics of these surfaces taking the place of the straight lines
in the Euclidean planes. The awareness of an intrinsic geometry on surfaces M2 in Euclidean space E3

demonstrated Gauss’ clear understanding of the eminent distinction of local surface isometries within the
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class of, in his words, “the maps which are similar in their smallest parts”, i.e. which are locally conformal.
The intrinsic geometry of surfaces (M2, ds2) in E3 was abstrahated -in the sense of being defined on “ab-

stract” nD spaces, i.e. nD “manifolds” which are not a priori assumed to be situated in a surrounding
standard space- and generalised to nD Riemann–Finsler geometries independently by Riemann and, respec-
tively Helmholtz, in their “Ueber die Hypothesen, respectively Tatsachen, welche der Geometrie zu Grunde liegen”
(1866 -Riemann’s lecture of which this was the printed version having been given in 1854-, respectively
1868). Hereby both started from analytically n–fold extended “Mannigfaltigkeiten”, i.e. both used systems
of local co–ordinates (x1, x2, . . . , xn), and, in the spirit of Descartes’ programme for Euclidean geometry
and as this had been further elaborated by Gauss for the intrinsic geometry of surfaces in 3D Euclidean
spaces, then Riemann by hypothesis set off with a quite arbitrary “Riemann–Finsler geometrical structure” as
line element ds and, to get more explicit and to go for most possible simplicity in his exposition, further
on specified his hypothesis to a positive definite metric tensor 1 given in classical notation by 1 = 1hkdxh dxk,
whereas Helmholtz right away came up with this same latter geometrical structure, i.e. at once set off with
a squared line element ds2 given by a generalised theorem of Pythagoras as a general quadratic homogeneous
polynomial in infinitesimal changes of the co–ordinates as variables, because he found this to be the only
factual possibility to allow for measurements of distances invariant under congruences; cfr. Figure 4. And
the motivations of Riemann and Helmholtz for their introductions and first developments of Riemannian
geometry came from their studies and reflections on problems in physics and human vision, respectively.
For a general nD Riemannian space (Mn, 1), the Gauss curvature K of surfaces (M2, ds2) in E3 by the theorema
egregium formula led to the notion of the sectional or Riemann curvatures K(p, π) for any 2D tangent plane
section π of Mn at any of its points p, as the Gauss curvature KG2 (p) at p of the 2D surface (G2, 1|G2 ) locally
formed around p by the geodesics of (Mn, 1) which are tangent to π at p. The abstract Riemannian spaces
(Mn, 1) which, in accordance with our natural expectation that the measurements of “beings” (à la Cartan)
living in such spaces should not depend on the actual location in these spaces nor on the actual positioning
of these beings at these places, or, put more academically, the Riemannian manifolds (Mn, 1) which satisfy
the axiom of free mobility, or, still, the perfectly homogeneous and isotropic spaces, (i.e. the spaces which behave
in the same way at all points and at all points behave in the same way in all directions), are the spaces
(Mn, 1) of constant sectional curvature K, say K = c (for possibly c = o, c > o and c < o), these “real space forms”
being denoted by Mn(c), (the CC–spaces, the spaces of constant curvature). By the theorem of Beltrami, the
real space forms Mn(c) are the Riemannian spaces (Mn, 1) which are projectively equivalent with the locally
Euclidean spaces, i.e. with the spaces Mn(o), of which the Euclidean spaces En are the prototypes, of course;
the nD classical elliptical and hyperbolical non–Euclidean spaces Sn andHn are the prototypes for the real space
forms Mn(c) for the cases c > o and c < o, respectively. And, these real space forms Mn(c), regardless c = o, c > o
or c < o, all equally well do geometrically model “the ambient space of our direct visual sense experiences”, since, as
for instance discussed in Klein’s “Elementarmathematik vom höheren Standpunkte aus”, in view of the threshold
of our sense perception and the fact that our space perception is adapted to a limited part of space only,
our space perception can be described as closely as desired by Euclidean and non–Euclidean space forms
alike. At this stage it could be worthwhile to look back at Gauss’ point of departure in his studies of curved
surfaces in order to see in how unforeseeable ways human knowledge and understanding may develop.

In the range of our kind’s sense experiences (besides like feeling warm or thirsty etc.) likely next to
our notion of space there is our notion of time, and, at least in our unsophisticated opinions of “where”
and “when”, we think of 3 space dimensions and we think of 1 time dimension. But, very naturally,
whereas our appreciations of the space dimensions and of the time dimension certainly are so much of
different natures indeed, already some of our kind’s first serious studies in physics, namely in astronomy,
were concerned with the very connection between these two fundamental notions, and this connection
has remained of interest in various ways ever since. And, till still at present, as far as I know, the most
straightforward and reasonable connection between physical space and time was described by Minkowski
in his “Raum und Zeit” (1908), which started as follows: “M. H. ! Die Anschauugen über Raum und Zeit die
ich Ihnen entwickeln möchte, sind auf experimentell–physikalischen Boden erwachsen. Darin liegt ihre Stärke. Ihre
Tendenz ist eine Radikale. Von Stund an sollen Raum für sich und Zeit für sich völlig zu Schatten herabsinken,
und nur noch eine Art Union der beiden soll Selbständigkeit bewahren”. In his physical spacetime R4 then, in
local co–ordinates (x, y, z; t) -whereby (x, y, z) denote the space co–ordinates and t the time co–ordinate-,
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Minkowski made the extension of our natural measure of distances in space to a corresponding natural
measure of distances in spacetime given by an indefinite version of the classical theorem of Pythagoras based
on the physical “Weltpostulat” and on our psychologically distinct appreciations of time and of location,
namely, to the indefinite 4D Minkowski metric of index 1: ds2 = dx2 + dy2 + dz2

− dt2; (likely hereby the three
letter combination “ict” showed up for the first and best time, and as Minkowski put it: “Man kann danach
das Wesen dieses Postulates mathematisch sehr prägnant in die magische Formel kleiden: 300000 km =
i sek”, while, when looking at the time direction in conjunction with any basic space direction, or, still,
at “the position of time with respect to space” -because, how else could we do than to mentally visualise
time similar enough with our “every day” view of space though basically distinct from this following
Minkowski’s “Anschauungen über Raum und Zeit”-, one could hardly miss to see a kind of gravitational
cross, once again). And, by generalisation of the 4D Minkowski space -which itself as briefly recalled before
originated in the beginning understanding of our physical experiences of space and time-, one came to the
general pseudo Euclidean spaces En

k of arbitrary dimensions n and of arbitrary signatures (n − k, k) or of arbitrary
indices k. And, then, still further, in analogy with the Riemannian spaces, general pseudo Riemannian spaces
or manifolds too were introduced, by means of the geometrical structures defined by generalised indefinite
theorema of Pythagoras of arbitrary indices. All in all, the development of pseudo, or also called semi Riemannian
geometry could be done in the same way as Riemannain geometry proper, of course now devoting extra
care to the special phenomena which present themselves for indefinite metrics (like: sectional curvatures
only being determined for non–degenerate planes, the existence of real curves of zero length, etc.). The
most well known application of pseudo Riemannian geometry may well be the general theory of relativity of
Einstein, with, in particular, the relativistic cosmology of Friedmann–Lemaı̂tre.

So as ambient geometrical environment corresponding to our kind’s experiences of space and time,
from the Euclidean 3D spaces (or, for that matter, from the 3D real space forms) when only taking into
account experiences of space, when moreover taking into account experiences of time arose the 4D spaces
of Minkowski in which we could get accustomed soon enough to feel there too pretty well at ease. And,
by formal extensions to arbitrary numbers of spacelike as well as of timelike dimensions, one arrived at
the general pseudo Euclidean spaces of arbitrary dimensions and signatures. Since the direct observations
of the manifold curves and surfaces in our most unsophisticated 3D Euclidean ambient world essentially
constitute our most elementary visual experiences, in mathematical form, the geometry of the curves and the
surfaces in E3, and in accordance with the above, in its most naturally generalised form, the geometry of the
submanifolds of pseudo Euclidean spaces may well be considered as “the geometry of the human kind”. On the
one hand, the relevance of the extrinsic geometry of submanifolds, i.e. of the study of the shapes that these
submanifolds assume in their ambient spaces, likely readily is pretty clear based on the obvious importance
of our plain experiences of shape in so many fundamental situations during our life throughout. On
the other hand, above was briefly recalled the emergence of abstract Riemannian geometry and of abstract
pseudo Riemannian geometry as generalisation and extension of the intrinsic geometry of surfaces M2 in E3; for
more about these geometries, one could a.o. consult Chern’s Preface to [12], Berger’s Panorama [19] and
references [16][17][20][21].

Concerning Riemannian geometry, as was anticipated already right away after the abstract Riemannain
manifolds (Mn, 1) had been born, starting with Schläfli, every such abstract space (Mn, 1) can be isometrically
embedded in Eucliden ambient spaces En+m with appropriate co–dimensions m, i.e. every Riemannian
manifold (Mn, 1) can be geometrically identified with an nD submanifold Mn of En+m, such that every
abstract Riemannian geometry essentially is nothing else than the (more) concrete intrinsic geometry of some
submanifolds in some Euclidean ambient spaces, by the embedding theorem of Nash (1956); and corresponding
embedding theorems for the pseudo Riemannian situation later were obtained by Clarke and Greene. In
conclusion: the general geometry of submanifolds in pseudo Euclidean spaces in its extrinsic part consists of
the most natural mathematical study of what corresponds to our kind’s most primitive visual experiences
of the shapes of “things in space” and in its intrinsic part, i.e. with the inner geometry of submanifolds, or,
still, with pseudo Riemannian geometry, consists of the most natural mathematical study of the geometrical
properties of these submanifolds considered “on themselves”, or, still, of the geometry which in a way
was forced upon these submanifolds, now however considered as entities existing on their own, by their
ambient geometrical worlds, in consequence of the shapes that they there assume, and, of course, the study
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of the relations between intrinsic and extrinsic properties is of great value in the geometry of submanifolds
as such. What in the course of time really has been considered to be geometry, certainly till not so long
ago, has been the part of mathematics that is essentially and very closely connected with our kind’s vision, static and
dynamic, and in the first place hereby comes the geometry of submanifolds. And, in view of the formerly
given references to Bronowski, at this stage certainly the following citation of Chern from [12] may well be
at its place here: “While algebra and analysis provide the foundations of mathematics, geometry is at the core”, and,
further e.g. taking into consideration from Steinhaus’ “Kaleidoskop der Mathematik” that “der Gegenstand der
Mathematik ist die Wirklichkeit, kein Hirngespinst”, the manifest importance of the geometry of submanifolds
for science and technology and medicine may not come as a surprise.

3. But, as Descartes stated in his “Géométrie”: “What is most important in the study of geometry is the way
it cultivates the mind”. And, at least at its very beginning, psychology was the science with as object of study
the workings of the mind. From Dombrowski’s “150 years after Gauss’� diquisitiones generales circa superficies
curvas �” comes the following: “Gauss saw clearly the ambivalence of the use of analytical calculations in
geometrical problems (i.e. their effectiveness on the one hand, and on the other hand their inherent tendency
to weaken the force of geometrical intuition), as is shown by the following excerpts from his review of the
“Géométrie descriptive” by G. Monge: ‘It is not to be denied that the advantages of an analytical treatment over
a geometrical treatment, its conciseness, simplicity, uniformity, and especially its generality, usually become
more and more decisive as the investigations become more difficult and more complicated. However, it
is always very important to continue to cultivate the geometrical method. (...) In particular we must praise
the work under consideration for its great clarity (...), and therefore recommend its study as nourishing
intellectual substance, by which undoubtedly much can be contributed to the revival and conservation of the
genuine geometrical spirit, sometimes missing in the mathematics of these times’. The latter recommendation
is supplemented and rounded off in the review by the remark (which is also interesting didactically) that
the geometric method will ‘remain indispensable in the early study of young people, to prevent one–sidedness (...)
and to give to the understanding a lineliness and directness, which are much less developed and -occasionally- rather
jeopardized by the analytical method’ ”. Concerning “the revival and conservation of the geometrical spirit”
hereby mentioned, the subsequent history of mathematics and of pure and applied sciences alike may
show that these aspirations of Gauss have become well realised indeed, at least till some decades ago. Next
follows the opening part of Struik’s Preface to his 1953 MIT “Lectures on Analytic and Projective Geometry”:
“The extension of the mathematical curriculum in our colleges has not infrequently been at the expense of
some of the most valuable fields of more ‘old–fashioned’ mathematics. Among the victims we find elementary,
projective and algebraic geometry, fields which used to stir the enthusiasm of an older generation. This decline into
relative neglect not only means that mathematicians grow up poorly acquainted with one of the most attractive parts
of their science, elegant in form and in results, but also means a loss of more fundamental values. This ‘modern
geometry’ of the nineteenth century was to a considerable extent responsible for the whole revolution
in mathematical thinking typical of this period; out of it came the concepts of non–Euclidean geometry
and geometry of more than three dimensions, and it contributed substantially to the formation of such
topics as transformation, group, invariant, and oriented quantity. Moreover, it has profoundly influenced
axiomatics. Neglect of this part of mathematics therefore tends to stifle the understanding of some of the most
important notions of modern mathematics, physics and engineering. The task is set to find the legitimate place
for this field inside our present mathematical curriculum, and to stress those fundamentals which are most
vital for the understanding of our science as a whole”.

Yet as far as I can see, at present even at most universities around the globe, (universities which form
-as far as teaching is concerned- a dense global network of pretty identical expensive strange sort of youth
camps), no more teaching of geometry as such is done anymore. To make matters not better: before ever
starting with a chance of success any type of “higher studies” worthy for members of our kind, a delicate
initiation of the young children in intuitive geometry, including manifold observations of fascinating natural and
other forms, extremely simple ones as well as beautiful more complicated ones, and a constructive development
in them of a serious dose of common sense, both starting from in the kindergartens, are necessary processes they
should have enjoyed going through in order to attain the mental capability to really understand basic
geometry, and a proper education in geometry should then be offered to these pupils, continuously and
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patiently, during the last ten years or so of the primary and the secondary schools, and one could look around
to see how very very few young people do have the luck of being “brought up” more or less in this way
while all are entitled to this, and, apart from exceptions, are able to do well in this all along the way, and
this way moreover should be open for free.

Figure 1
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Figure 2

Figure 3
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Figure 4
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