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Abstract. This paper discusses the relationships between the metric, the connection and the curvature
tensor of 4-dimensional, Ricci flat manifolds which admit a metric. It is shown that these metric and
curvature objects are essentially equivalent conditions for such manifolds if one excludes certain very
special cases and which occur when the signature is indefinite. In a similar vein, some relevant remarks are
made regarding the Weyl conformal tensor.

1. Introduction

In this paper, (M, 1) denotes a 4-dimensional, smooth, connected manifold with metric 1 of signature
(+,+,+,+), (+,+,+,−) or (+,+,−,−), referred to, respectively, as positive definite, Lorentz or neutral. The
tangent space to M at m ∈ M is denoted by TmM. The Levi-Civita connection arising from 1 is denoted
by ∇, the corresponding type (1, 3) curvature tensor by Riem with components Ra

bcd, the Ricci tensor by
Ricc, with components Rab ≡ Rc

acb, and the Ricci scalar by R ≡ 1abRab. Since ∇ is assumed to be a metric
connection, one also has the type (0, 4) curvature tensor with components Rabcd ≡ 1aeRe

bcd. The pair (M, 1) is
called non-flat if Riem does not vanish over any non-empty open subset of M and not flat is the negation of
flat. Thus in the non-flat case the subset of M on which Riem does not vanish is open and dense in M. In the
analytic case, the terms non-flat and not-flat are equivalent but analyticity will not be assumed here. The
type (1, 3) Weyl conformal tensor is labelled C with components Ca

bcd

If p, q ∈ TmM, 1(m)(p, q) is denoted by p · q and a non-zero p ∈ TmM is called spacelike, timelike or null if
p ·p > 0, p ·p < 0 or p ·p = 0, respectively. If 1 is positive definite one may choose a basis x, y, z,w of mutually
orthogonal, unit vectors in TmM whereas if 1 has Lorentz signature one may choose a basis x, y, z, t for TmM
which is mutually orthogonal and x · x = y · y = z · z = −t · t = 1 and an associated null basis l,n, x, y where
√

2l = z+ t and
√

2n = z− t so that the null vectors l and n satisfy l.n = 1. If 1 has neutral signature (+,+,−,−)
one may choose a basis of mutually orthogonal vectors x, y, s, t for TmM such that x.x = y.y = −s.s = −t.t = 1
and an associated null basis l,n,L,N where

√
2l = x + t,

√
2n = x − t,

√
2L = y + s and

√
2N = y − s so that

l,n,L,N are each null and l.n = L.N = 1.
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2. Bivectors

Let ΛmM denote the 6-dimensional space of 2-forms (bivectors) at m, disregarding their tensor type
(position of tensor indices) due to the existence of a metric. Let [ ] denote the product on ΛmM given by
matrix commutation and <> the inner product on ΛmM given by < F,G >≡ FabGab. Thus ΛmM is a Lie
algebra under [ ]. If 0 , F ∈ ΛmM with components Fab, F has even (matrix) rank and hence has rank 2 or
4. If F has rank 2, it is called simple and otherwise, non-simple. If F is simple it may be written as F = p ∧ q
for p, q ∈ TmM (in components, Fab = paqb

− qapb) and the span of p and q, denoted by < p, q >, is uniquely
determined by p and q and called the blade of F. Sometimes it is convenient to denote either F or its blade
by p ∧ q. A simple bivector is called spacelike, timelike, null or totally null if its blade is a spacelike (that is,
spanned by two orthogonal non-null vectors of the same sign), a timelike (spanned by two non-orthogonal
null vectors), a null (spanned by two orthogonal vectors one of which is null and the other non-null) or
a totally null (spanned by two orthogonal null vectors) 2−dimensional subspace (2−space) of TmM. Only
the first of these can occur for positive definite, the first three for Lorentz (with the vectors spanning the
spacelike case being both spacelike and, in the null case, the non-null vector is necessarily spacelike), and
all four in the case of neutral, signature (with either sign being possible in the spacelike case and, in the
null case, the non-null vector may also be of either sign). If the signature is positive definite, any simple
bivector F may be written in some orthonormal basis as a multiple of x ∧ y and any non-simple one as
α(x∧ y) +β(z∧w) for α, β ∈ Rwith α , 0 , β. For signature (+,+,+,−) appropriate orthogonal or null bases
may be chosen so that a spacelike bivector may be written as a multiple of x ∧ y, a timelike one as some
multiple of z ∧ t (or of l ∧ n), a null one as a multiple of l ∧ x and a non-simple one as F = α(x ∧ y) + β(l ∧ n)
for α , 0 , β. In this latter non-simple case the 2-spaces x ∧ y and l ∧ n are uniquely determined by F [2].
Also for this signature, a simple bivector is null if and only if < F,F >= 0. For signature (+,+,−,−) bases
may be chosen so that a null bivector F may be written as a multiple of l ∧ y or of l ∧ s and a totally null
one as F = l ∧ L (and then a simple F is null or totally null if and only if < F,F >= 0). For this signature
non-simple bivectors are a little more complicated [1, 5, 11] but this is not important in what is to follow.

Let ∗ denote the usual Hodge “duality” operator as the linear map on ΛmM given by F→
∗

F. For positive

definite and neutral signatures,
∗∗

F = F whereas for Lorentz signature,
∗∗

F = −F. In all cases, F is simple if and

only if
∗

F is. Define the subspaces
+

Sm = {F :
∗

F = F},
−

Sm = {F :
∗

F = −F} and S̃m ≡
+

Sm ∪
−

Sm of ΛmM. If one has

Lorentz signature,
+

Sm,
−

Sm and S̃m are trivial subspaces and so F and
∗

F are independent members of ΛmM

for any F ∈ ΛmM. For the other two signatures each bivector F may be written uniquely as F =
+

F +
−

F where
+

F ∈
+

Sm and
−

F ∈
−

Sm and so ΛmM =
+

Sm ⊕
−

Sm. Further, for
+

F ∈
+

Sm and
−

F ∈
−

Sm, [
+

F,
−

F] = 0 and <
+

F,
−

F >= 0. One

thus sees that the Lie algebra ΛmM with product [ ] is the sum of the Lie algebras
+

Sm and
−

Sm. For positive
definite signature these latter two Lie algebras are isomorphic to o(3) and for neutral signature, to o(1, 2).

For positive definite signature, any member F of S̃m is non-simple and may be written as F = α(x ∧ y) +

β(z ∧ w) with α = ±β whereas any non-simple member of ΛmM \ S̃m can be written in this form but with
α , ±β. In the latter case F uniquely determines the two 2−spaces x ∧ y and z ∧ w but this is not true if

F ∈ S̃m [11]. For the basis choice (x ∧ y)∗ = z ∧ w,
+

Sm is spanned by (x ∧ y) + (z ∧ w), (x ∧ z) + (w ∧ y) and

(x ∧w) + (y ∧ z) and a similar basis is easily constructed for
−

Sm. For neutral signature and F ∈ S̃m F is either

totally null or non-simple and with the basis choice (x∧ y)∗ = s∧ t, a spanning set for
+

Sm is (l∧ n)− (L∧N),

l∧N and n∧ L with a similar one for
−

Sm. The first two members of this spanning set span a 2−dimensional

subalgebra of
+

Sm denoted by
+

Bm (and similarly in
−

Sm). Of course, there are no 2−dimensional subalgebras

of
+

Sm or
−

Sm in the positive definite case. Further details on such matters may be found in [1, 5, 11] whilst
the Lorentz case is discussed in [4].
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3. The Ricci flat condition

If one imposes the Ricci-flat condition on (M, 1), so that Ricc ≡ 0 on M, then Riem = C on M and so the
Hodge dual condition shows (see, e.g. [6]) that the left and right duals ∗Riem and Riem∗ of Riem are equal
which, in components, gives ∗Rabcd = R∗abcd. Now define the curvature map f from tensor type (2, 0) members
of ΛmM to tensor type (1, 1) members of it as the (linear) map given in components by; f : Fab

→ Ra
bcdFcd.

Because of the (Ricci-flat) dual condition on Riem, this map is easily checked to satisfy the condition that

F ∈
+

Sm (respectively F ∈
−

Sm) implies that f (F) ∈
+

Sm (respectively f (F) ∈
−

Sm) and so
+

Sm and
−

Sm are invariant
subspaces of f . (In fact, this invariance property is equivalent to (M, 1) being an Einstein space [12].) One
advantage of this is that one may choose a basis for the range space, rg f , of f which is composed of members

of S̃m. Thus if F1, F2, and F3 constitute a basis for
+

Sm and G1, G2, and G3 a basis for
−

Sm then for signatures
(+,+,+,+) and (+,+,−,−) one may express the curvature, in an obvious notation, as

Riem(m) =

3∑
i, j=1

(αi jFiF j + βi jGiG j) (1)

for symmetric arrays of real numbers αi j and βi j. From the Ricci-flat condition it also follows from the dual
condition on Riem that, for Lorentz signature, rg f has even dimension (see [4], chapter 9). Such a result
applies also to the analogous map constructed from the Weyl tensor on any 4−dimensional manifold (not
necessarily Ricci-flat) because of the trace free condition Cc

acb = 0 on the Weyl tensor and is important in
the Petrov classification of gravitational fields in general relativity theory [3] (see also [4, 7]).

4. Some useful lemmas

In this section a few technical results will be gathered together for later use. More details and proofs
may be found in [1, 4, 5, 11].

Let F ∈ ΛmM and consider the vector space of solutions for a second order symmetric tensor h at m of
the equation

hacFc
b + hbcFc

a = 0. (2)

(Clearly h = 1 is always a solution.) Then

Lemma 4.1. For any signature of 1, if F is simple, h satisfies (2) if and only if the blade of F is an eigenspace of h with
respect to 1, that is, habpb = λ1abpb for each p in the blade of F and for λ ∈ R.

Lemma 4.2. If 1 has Lorentz signature and F is non-simple then h satisfies (2) if and only if the two, uniquely
determined, orthogonal 2-spaces l ∧ n and x ∧ y given in section 2 are each eigenspaces of h with respect to 1.

Lemma 4.3. Suppose 1 has positive definite signature and F is non-simple and of the form F = α(x ∧ y) + β(z ∧ w)
with α , 0 , β. Then if α , ±β, F < S̃m and h satisfies (2) if and only if the uniquely determined, orthogonal 2-spaces
x ∧ y and z ∧ w (section 2), are eigenspaces of h with respect to 1. If α = ±β then F ∈ S̃m and there exist two

orthogonal 2-spaces which are eigenspaces of h with respect to 1. If F1,F2 ∈
+

Sm determine the same pair of eigenspaces

as in the previous sentence (for fixed h), F1 and F2 are proportional, and similarly for
−

Sm

Lemma 4.4. Suppose 1 has neutral signature. If F is non-simple and of the form F = λ(l ∧ n) + ν(L ∧ N) with λ
and ν non-zero then, if λ , ±ν, F < S̃m and h satisfies (2) if and only if the two 2-spaces l ∧ n and L ∧ N are each

eigenspaces of h with respect to 1 whereas if λ = −ν, (F ∈
+

Sm), h satisfies (2) if and only if the two 2-spaces l∧N and

n ∧ L are each invariant 2-spaces of h with respect to 1 (with a similar result holding if λ = ν and F ∈
−

Sm).
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5. Holonomy theory and holonomy algebras

In what is to follow, much use will be made of holonomy theory and full details may be found in
[4, 13]. The holonomy group of (M, 1) is a Lie group denoted by Φ with Lie algebra φ and there is a bivector
representation of this holonomy algebra. Associated with these constructions is the infinitesimal holonomy
algebra φ′m at m ∈M which is a subalgebra of φ containing rg f (m) as a subspace. Thus Riem may always be
expressed, at any point, as (symmetrised) products of bivectors drawn from the (bivector representation of
the) appropriate holonomy algebra. An important link between φ, φm and rg f is provided by the Ambrose-
Singer theorem [14] (see also, [12, 13]). This theorem states that if one chooses a fixed m ∈ M and then, for
any m′ ∈ M, parallel transports rg f along a smooth curve c from m′ to m (since M is connected and hence
path connected) and does this for all m′ ∈ M and all such curves c, one accumulates, at m, a spanning set
of bivectors for φ. The holonomy algebra of (M, 1) is a subalgebra of the appropriate orthogonal algebra of
1, that is, of o(4), o(1, 3) and o(2, 2), for signatures (+,+,+,+), (+,+,+,−) and (+,+,−,−), respectively. In the
positive definite case the subalgebras are, up to isomorphism, (cf [5]) {x∧ y} (labelled S1), {x∧ y, z∧w} (S2),

{x ∧ y, x ∧ z, y ∧ z} (S3), {
+

S} (
+

S3), {
+

S,G} with G ∈
−

Sm (
+

S4) and o(4) (S6), where
+

S denotes o(3) and {} denotes a
spanning set. For the Lorentz case the holonomy subalgebras have been tabulated in [4, 8, 9]. For neutral
signature they are given in table 1 ([1], see also [10]) in which α, β ∈ R and α , 0 , β hold in case 2( j), α , ±β

holds in cases 2(h) and 3(d),
+

S is the algebra o(1, 2) and
+

B is the 2-dimensional algebra given earlier in the
paper. For each signature the trivial holonomy algebra (⇒ Riem = 0 on M) is omitted as is the case when
the holonomy algebra is 1-dimensional and spanned by a non-simple bivector F since this cannot occur for
a metric connection because of the algebraic identity Ra[bcd] = 0 which would force the spanning bivector to
satisfy Fa[bFcd] = 0 and hence to be simple. Here, square brackets denote the usual skew-symmetrisation of
the enclosed indices. Table 1 consists of 23 of the 32 cases listed in the table in [10] being those which apply
(or, in two cases, may apply) to metric connections.

It is remarked that if k ∈ TmM is an eigenvector of each member of the spanning set of bivectors, with
respect to 1, for a certain holonomy algebra, there exists a local recurrent vector field X on some coordinate
neighbourhood U of m and such that X(m) = k (that is, X satisfies Xa;b = XaPb on U for some smooth 1-form
field P on U, where a semi-colon denotes a covariant derivative with respect to the Levi-Civita connection
from 1). Further, if such a k exists and if each of the above mentioned eigenvalues is zero, then X may be
chosen to be covariantly constant. In fact, any non-null recurrent vector field may be rescaled so that it is
covariantly constant, this result following from the fact that such a rescaling is equivalent to the 1-form P
being locally a gradient and also equivalent to the condition Ra

bcdXd = 0, on U.

6. Main results

Suppose now that M is a 4−dimensional smooth manifold with metric 1 of arbitrary signature satisfying
the Ricci-flat condition. If the holonomy algebra of (M, 1) is 1−dimensional and spanned by the bivector F
then since it is not flat, there exists m ∈ M such that Riem(m) , 0 and so, at m, Rabcd = αFabFcd for 0 , α ∈ R.
As above, the algebraic identity Ra[bcd] = 0 shows that F is simple and an easy substitution of the possibilities
for a simple bivector into this expression for the curvature and imposition of the Ricci-flat condition show
that the only possibility is that F is totally null and hence that 1 is of neutral signature. Thus the holonomy
algebra is of type 1(d) in table 1. The following theorems can now be proved (more details being available
in [12]).

Theorem 6.1. Suppose dimM = 4 and 1 is of positive definite signature. Then

(i) If the holonomy type of (M, 1) is
+

S3,
+

S4 or S6 the Levi-Civita connection ∇ associated with 1 determines 1 up
to a constant conformal factor.

(ii) If (M, 1) is Ricci-flat and not flat, ∇ determines 1 up to a constant conformal factor.
(iii) If (M, 1) is Ricci-flat and non-flat, Riem determines 1 up to a constant conformal factor and hence determines

∇ uniquely.
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Table 1: Holonomy algebras for (+,+,−,−)

Type Dimension Basis
1(a) 1 l ∧ n
1(b) 1 x ∧ y
1(c) 1 l ∧ y or l ∧ s
1(d) 1 l ∧ L

2(a) 2 l ∧ n − L ∧N, l ∧N(=
+

B)
2(b) 2 l ∧ n, L ∧N
2(c) 2 l ∧ n − L ∧N, x ∧ y − s ∧ t
2(d) 2 l ∧ n − L ∧N, l ∧ L
2(e) 2 x ∧ y, s ∧ t
2( f ) 2 x ∧ y + s ∧ t, l ∧ L
2(1) 2 l ∧N, l ∧ L
2(h) 2 l ∧N, α(l ∧ n) + β(L ∧N)
2( j) 2 l ∧N, α(l ∧ n − L ∧N) + β(l ∧ L)
2(k) 2 l ∧ y, l ∧ n or l ∧ s, l ∧ n
3(a) 3 l ∧ n, l ∧N, L ∧N
3(b) 3 l ∧ n − L ∧N, l ∧N, l ∧ L
3(c) 3 x ∧ y, x ∧ t, y ∧ t or x ∧ s, x ∧ t, s ∧ t
3(d) 3 l ∧N, l ∧ L, α(l ∧ n) + β(L ∧N)

4(a) 4
+

S, l ∧ n + L ∧N

4(b) 4
+

S, x ∧ y − s ∧ t

4(c) 4
+

B,
−

B =< l ∧ L, l ∧N, l ∧ n, L ∧N >

5 5
+

S,
−

B
6 6 o(2, 2)
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Proof. (i) Suppose that 1′ is another metric on M whose Levi-Civita connection ∇′ is the same as that of 1,
∇ = ∇′. Then their holonomy algebras are the same and each member F of this latter algebra satisfies (2)

with h = 1 and h = 1′. If this holonomy algebra is
+

S3, lemma 4.3 shows that two (in fact three) distinct
pairs of orthogonal 2−spaces are eigenspaces for 1′ with respect 1 and hence that TmM is an eigenspace of
1′ with respect to 1. Thus 1′ and 1 are conformally related. The conditions ∇1 = 0 and ∇′1 = 0 and the

connectedness of M then show that the conformal factor is constant. If the holonomy algebra is
+

S4 or S6 the

same follows since each contains
+

S3 as a subalgebra.
(ii) It is sufficient to show that the holonomy algebras S1, S2 and S3 cannot occur in the Ricci-flat case.

To see this one notes that a remark at the beginning of this section shows that the 1−dimensional case S1
cannot occur. If the holonomy algebra is S2 there exists m ∈ M where Riem , 0 and so the range of the
curvature map f at m is spanned by bivectors F = x ∧ y and G = z ∧ w. Then one gets

Rabcd = αFabFcd + βGabGcd + γ(FabGcd + GabFcd) (3)

for real numbers α, β and γ. The Ricci-flat condition Rc
acb = 0 shows that α = β = 0 and a contraction of the

identity Ra[bcd] = 0 with zawb gives the contradiction γ = 0. For the holonomy algebra S3, the argument is
similar.

(iii) If 1 and 1′ are metrics on M such that, in an obvious notation, Riem′ = Riem, then the Ricci-flat
condition on 1 imposes the Ricci-flat condition on 1′ and so the Weyl tensors of 1 and 1′ are equal (say to
C) and the non-flat condition implies that C does not vanish over any non-empty open subset of M. It thus
follows [11] that 1 and 1′ are conformally related, 1′ = ψ1, for some smooth real-valued function ψ on M.
The Bianchi identities for (M, 1) and (M, 1′) are

Ra
bcd;a = 0 Ra

bcd|a = 0 (4)

where a stroke denotes a covariant derivative with respect to 1′. Since 1′ = ψ1, the Christoffel symbols in
this coordinate system associated with ∇ and ∇′ are related, in an obvious notation, in the following way

Pa
bc ≡ Γ′abc − Γa

bc =
1
2
ψ−1(ψ,cδa

b + ψ,bδ
a
c − ψ

a1bc) (5)

where a comma denotes a partial derivative and ψa = 1abψ,b. A subtraction of the two expressions in (4)
yields

Re
bcdPa

ea − Ra
ecdPe

ba − Ra
bedPe

ca − Ra
bcePe

da = 0 (6)

A substitution of (5) into (6) using the algebraic Bianchi identity Ra
[bcd] = 0 gives, after some calculation,

Ra
bcdψd = 0. From the definition of the curvature map f it follows from this last relation that for m in the

open dense subset of M where Riem does not vanish, if ψ,a(m) , 0 the range of the curvature map r1 f at
m contains only simple bivectors and this is a contradiction to the fact that, for this signature, the range
of f admits a basis consisting of members of S̃m each of which is non-simple. It follows that ψ,a vanishes
over this open dense subset and hence on M. Since M is connected, ψ is constant on M. It is noted that the
Ricci-flat condition is not used in part (i) of this theorem.

Before the Lorentz case is considered, a few words should be said about the Petrov classification of
gravitational fields in general relativity theory [3] (see also [4, 7]). The details of this classification are not
needed here except to say that it is a pointwise algebraic classification of the Weyl tensor C into a number
of exhaustive and mutually exclusive (Petrov) types and that one of these types, labelled N, is equivalent
to the condition that, at the point m ∈ M in question, C is not zero and satisfies Ca

bcdkd = 0 for some
0 , k ∈ TmM (and the direction spanned by k is necessarily unique and null). The Petrov type is labelled
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O at m if C(m) = 0. If the Ricci-flat condition is assumed, Riem = C and the Petrov classification applies to
Riem (This is the important vacuum case in Einstein’s general theory of relativity.) It can then be checked
from the actual Petrov algebraic types themselves (see e.g. [4]) that the rank of the curvature map f , that
is, dim(rg f ), exceeds 2 if and only if the Petrov type is not N or O. Quite generally, for any signature of 1 but
still with the Ricci-flat assumption, let V denote the subset of M consisting of those points m ∈ M at which
the equation Ra

bcdkd = 0 has a nontrivial solution for 0 , k ∈ TmM (so that V includes those points at which
Riem vanishes). In the positive definite case, V consists of precisely those points at which Riem vanishes
otherwise any member F ∈rg f would satisfy Fabkb = 0 and hence would be simple, contradicting the fact
that a basis for rg f can be chosen from members of S̃m, each of which is non-simple. In the Lorentz case,
V consists of precisely those points where the Petrov type is O or N. If 1 has neutral signature, again rg f
consists entirely of simple bivectors and again a basis for rg f can be chosen from members of S̃m. For this
signature, however, there exist simple members of S̃m and they are necessarily totally null (section 2). If

rg f contains two or more members of
+

Sm (or of
−

Sm) it is easily checked that non-simple members will result
in rg f . Thus, if m ∈ V either Riem(m) = 0, or rg f is spanned by a totally null bivector which, in some null
basis, may be chosen, up to isomorphism, as l ∧ N (and in which case l and N are the (only independent)

solutions for k above) or rg f is spanned by two totally null bivectors one from each of
+

Sm and
−

Sm. In this
last case it is straightforward to show that a null basis exists in which they are l∧N and l∧ L and so l is the
(only independent) solution for k [1]. It is not hard to check that, in the Ricci-flat case and for any signature,
the set V is precisely the set of all points of M at which each member F in rg f satisfies < F,F >= 0 and so V
is closed in M.

Theorem 6.2. [4] Suppose dimM = 4 and 1 is of Lorentz signature.
(i) If the holonomy type of (M, 1) is R9, R12, R14 or R15 the Levi-Civita connection ∇ of 1 uniquely determines 1

up to a constant conformal factor.
(ii) If (M, 1) is Ricci-flat but not flat, the holonomy type is R8, R14 or R15.
(iii) If (M, 1) is Ricci-flat and is such that there exists m ∈ M at which the Petrov type is not N or O, (that is,

M , V) ∇ determines 1 up to a constant conformal factor.
(iv) If (M, 1) is Ricci-flat and the subset V has empty interior in (the manifold topology of) M, Riem determines 1

up to a constant conformal factor (and hence determines ∇ uniquely).

It is noted that the Ricci-flat conditon is not used in part (i) of this theorem.

Theorem 6.3. Suppose dimM = 4 and 1 is of neutral signature.
(i) If the holonomy type of (M, 1) is 2(a), 2(h) (with α , 0 , β), 3(a), 3(b), 3(d) (with α , 0), 4(a), 4(b), 4(c), 5 or

6, the Levi-Civita connection associated with 1 determines 1 up to a constant conformal factor.
(ii) If (M, 1) is Ricci-flat but not flat, its holonomy type cannot be any of the types 1(a), 1(b), 1(c), 2(b), 2(c), 2(d),

2(e), 2( f ), 2(h), 2( j), 2(k), 3(c) or 3(d) (α = 0), (at least).
(iii) If (M, 1) is Ricci-flat but not flat and if its holonomy type is not 1(d) or 2(1), its associated Levi-Civita

connection uniquely determines 1 up to a constant conformal factor.
(iv) If (M, 1) is Ricci-flat and suppose that the set V has empty interior in M. Then Riem determines 1 up to a

constant conformal factor (and hence determines ∇ uniquely).

Proof. (i) The proof of this part consists of checking the various holonomy types in table 3 and proceeding
in much the same way as in theorem 6.1(i). For example, if the holonomy type is 2(a) in table 3 and 1 and
1′ are compatible metrics for ∇, the bivectors in the representation for this holonomy are, in some suitable
null basis, F = l ∧ n − L ∧N and G = l ∧N. Then (2) holds for F and G for each of 1 and 1′ and an appeal to
lemma 4.1 for G and lemma 4.4 for F shows that l∧N is an eigenspace of 1′ with respect 1 and that l∧N and
n ∧ L are invariant 2−spaces of 1′ with respect 1. This reveals that TmM is an eigenspace of 1′ with respect
to 1 and so 1 is conformally related to 1′ at each m ∈ M. Again, since each is compatible with ∇ and M
is connected, the result is achieved. The other cases are dealt with in a (more or less) similar manner, and
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noting that in each of the 4−, 5− and 6−dimensional cases the holonomy algebra contains
+

B (that is, 2(a)) as
a subalgebra and the result follows from the 2(a) case.

(ii) The general idea here is to write down an expression for Rabcd at m ∈M in terms of the basis members

of the holonomy algebra, remembering (1), and using the conditions Ricc = 0, Ra[bcd] = 0, the facts that
+

Sm

and
−

Sm are invariant under f and, occasionally, that recurrent vector fields exist and the Ambrose-Singer
theorem. It is unfortunately a little lengthy and more details will be published elsewhere [12]. Thus
subalgebras 1(a), 1(b) and 1(c) are easily ruled out. For type 2(b) it follows that, at each m ∈ M, (3) holds
with F = l∧n and G = L∧N. The Ricci-flat condition then gives α = β = 0 and Ra[bcd] = 0, after a contraction
with la, gives either γ = 0 or l[aGbc] = 0. The first contradicts the fact that (M, 1) is not flat and the second
gives the contradiction that G is simple with l in its blade. So this type is not possible.

(iii) This now follows from the previous two parts.
(iv) If 1 and 1′ have the same tensor Riem, 1′ is also Ricci-flat and 1 and 1′ have the same tensor C. Then

it follows from the conditions of the theorem [15] that 1 and 1′ are conformally related and the result now
follows from a similar calculation to that performed in the proof of theorem 6.1(iii).

Again, the Ricci-flat condition is not used in part (i) of this theorem.

In conclusion one can state the following theorem which covers all signatures in the 4−dimensional
case.

Theorem 6.4. Suppose dimM = 4 with 1 of arbitrary signature and with (M, 1) Ricci-flat. Suppose also that the
closed set V has empty interior. Then ∇ determines 1 up to a constant conformal factor and Riem determines 1 up to
a constant conformal factor and hence determines ∇ uniquely.

Thus under the stated conditions, the metric, its Levi-Civita connection and the latter’s curvature tensor
are “equivalent”. It is also interesting to remark that, from a slight reworking of this proof, it follows that if
the (closed) set V′, defined as the subset of all points of M at which the equation Ca

bcdkd = 0 has non-trivial
solutions for k ∈ TmM, has empty interior, the Weyl conformal tensor C uniquely determines the conformal
class of 1 [4, 11, 15]. Here one uses the (identity) tracefree condition on C as a replacement for the Ricci-flat
condition and the obvious analogy for C of the curvature map f . It is remarked that theorem 6.4 fails if the
Ricci-flat condition is replaced by the Einstein space condition [12].
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