On Generalized Quasi-Einstein Manifolds Admitting Certain Vector Fields

Uday Chand De ${ }^{\text {a }}$, Sahanous Mallick ${ }^{\text {b }}$
${ }^{a}$ Department of Pure Mathematics, University of Calcutta, 35, B. C. Road, Kolkata-700019, West Bengal, India
${ }^{b}$ Department of Mathematics, Chakdaha College, P.O.- Chakdaha, Dist-Nadia, West Bengal, Pin-741222, India

Abstract

The object of the present paper is to study some geometric properties of a generalized quasiEinstein manifold. The existence of such a manifold have been proved by several non-trivial examples.

1. Introduction

A Riemannian or semi-Riemannian manifold $\left(M^{n}, g\right), n=\operatorname{dim} M \geq 2$, is said to be an Einstein manifold if the following condition

$$
\begin{equation*}
S=\frac{r}{n} g \tag{1}
\end{equation*}
$$

holds on M, where S and r denote the Ricci tensor and the scalar curvature of $\left(M^{n}, g\right)$ respectively. According to Besse([3], p. 432), (1) is called the Einstein metric condition. Einstein manifolds play an important role in Riemannian Geometry as well as in general theory of relativity. Also Einstein manifolds form a natural subclass of various classes of Riemannian or semi-Riemannian manifolds by a curvature condition impossed on their Ricci tensor([3],p.432-433). For instance, every Einstein manifold belongs to the class of Riemannian or semi-Riemannian manifolds $\left(M^{n}, g\right)$ realizing the following relation:

$$
\begin{equation*}
S(X, Y)=a g(X, Y)+b A(X) A(Y) \tag{2}
\end{equation*}
$$

where $a, b \in \mathbb{R}$ and A is a non-zero 1-form such that

$$
\begin{equation*}
g(X, U)=A(X) \tag{3}
\end{equation*}
$$

for all vector fields X. Moreover, different structures on Einstein manifolds have been studied by several authors. In 1993, Tamassy and Binh[29] studied weakly symmetric structures on Einstein manifolds.
A non-flat semi-Riemannian manifold $\left(M^{n}, g\right)(n>2)$ is defined to be a quasi-Einstein manifold if its Ricci tensor S of type $(0,2)$ is not identically zero and satisfies the condition (2).
It is to be noted that Chaki and Maity[6] also introduced the notoin of quasi-Einstein manifolds in a different

[^0]way. They have taken a, b as scalars and the vector field U metrically equivalent to the 1-form A as a unit vector field. Such an n-dimensional manifold is denoted by $(Q E)_{n}$. Quasi-Einstein manifolds have been studied by several authors such as Bejan[2], De and Ghosh[11], De and De[12] and De, Ghosh and Binh[13] and many others.
Quasi-Einstein manifolds arose during the study of exact solutions of the Einstein field equations as well as during considerations of quasi-umbilical hypersurfaces of semi-Euclidean spaces. For instance, the Robertson-Walker spacetimes are quasi-Einstein manifolds. Also, quasi-Einstein manifolds can be taken as a model of the perfect fluid spacetime in general relativity[10]. So quasi-Einstein manifolds have some importance in the general theory of relativity.
Quasi-Einstein manifolds have been generalized by several authors in several ways such as generalized quasi-Einstein manifolds([7],[14],[15],[16],[21],[24]), generalized Einstein manifolds[1], super quasi-Einstein manifolds([8],[18],[23]), $\mathrm{N}(\mathrm{k})$-quasi-Einstein manifolds([9],[22],[27],[28]) and many others.
In a paper De and Ghosh[14] introduced the notion of generalized quasi-Einstein manifolds in another way. A non-flat Riemannian or semi-Riemannian manifold $\left(M^{n}, g\right)(n>2)$ is called a generalized quasi-Einstein manifold if its Ricci tensor S of type $(0,2)$ is non-zero and satisfies the condition
\[

$$
\begin{equation*}
S(X, Y)=a g(X, Y)+b A(X) A(Y)+c B(X) B(Y) \tag{4}
\end{equation*}
$$

\]

where $a, b, c \in \mathbb{R}$ and A, B are two non-zero 1-forms such that

$$
g(A, B)=0, \quad\|A\|=\|B\|=1
$$

The unit vector fields U and V corresponding to the 1-forms A and B respectively, defined by

$$
g(X, U)=A(X), g(X, V)=B(X)
$$

for every vector field X are orthogonal, that is, $g(U, V)=0$. Such a manifold is denoted by $G(Q E)_{n}$. If $c=0$, then the manifold reduces to a quasi-Einstein manifold[6].

Gray[19] introduced two classes of Riemannian manifolds determined by the covariant differentiation of Ricci tensor. The class A consisting of all Riemannian manifolds whose Ricci tensor S is a Codazzi type tensor, i.e.,

$$
\left(\nabla_{X} S\right)(Y, Z)=\left(\nabla_{Y} S\right)(X, Z)
$$

The class B consisting of all Riemannian manifolds whose Ricci tensor is cyclic parallel, i.e.,

$$
\left(\nabla_{X} S\right)(Y, Z)+\left(\nabla_{Y} S\right)(Z, X)+\left(\nabla_{Z} S\right)(X, Y)=0
$$

A non-flat Riemannian or semi-Riemannian manifold $\left(M^{n}, g\right)(n>2)$ is called a generalized Ricci recurrent manifold[17] if its Ricci tensor S of type $(0,2)$ satisfies the condition

$$
\left(\nabla_{X} S\right)(Y, Z)=\gamma(X) S(Y, Z)+\delta(X) g(Y, Z)
$$

where γ and δ are non-zero 1-forms. If $\delta=0$, then the manifold reduces to a Ricci recurrent manifold[25].
The present paper is organized as follows:
After introduction in Section 2, it is shown that if the generators U and V are Killing vector fields, then the generalized quasi-Einstein manifold satisfies cyclic parallel Ricci tensor. Section 3 deals with $G(Q E)_{n}$ satisfying Codazzi type of Ricci tensor. In the next two sections we consider $G(Q E)_{n}$ with generators U and V both as concurrent and recurrent vector fields. Finally, we give some examples of generalized quasi-Einstein manifolds.

2. The generators U and V as Killing vector fields

In this section let us consider the generators U and V of the manifold are Killing vector fields. Then we have

$$
\begin{equation*}
\left(£_{u g}\right)(X, Y)=0 \tag{5}
\end{equation*}
$$

and

$$
\begin{equation*}
\left(£_{V} g\right)(X, Y)=0 \tag{6}
\end{equation*}
$$

where $£$ denotes the Lie derivative.
From (5) and (6) it follows that

$$
\begin{equation*}
g\left(\nabla_{X} U, Y\right)+g\left(X, \nabla_{Y} U\right)=0 \tag{7}
\end{equation*}
$$

and

$$
\begin{equation*}
g\left(\nabla_{X} V, Y\right)+g\left(X, \nabla_{Y} V\right)=0 \tag{8}
\end{equation*}
$$

Since $g\left(\nabla_{X} U, Y\right)=\left(\nabla_{X} A\right)(Y)$ and $g\left(\nabla_{X} V, Y\right)=\left(\nabla_{X} B\right)(Y)$, we obtain from (7) and (8) that

$$
\begin{equation*}
\left(\nabla_{X} A\right)(Y)+\left(\nabla_{Y} A\right)(X)=0 \tag{9}
\end{equation*}
$$

and

$$
\begin{equation*}
\left(\nabla_{X} B\right)(Y)+\left(\nabla_{Y} B\right)(X)=0, \tag{10}
\end{equation*}
$$

for all X, Y.
Similarly, we have

$$
\begin{align*}
& \left(\nabla_{X} A\right)(Z)+\left(\nabla_{Z} A\right)(X)=0 \tag{11}\\
& \left(\nabla_{Z} A\right)(Y)+\left(\nabla_{Y} A\right)(Z)=0 \tag{12}\\
& \left(\nabla_{X} B\right)(Z)+\left(\nabla_{Z} B\right)(X)=0 \tag{13}\\
& \left(\nabla_{Z} B\right)(Y)+\left(\nabla_{Y} B\right)(Z)=0, \tag{14}
\end{align*}
$$

for all X, Y, Z.
Now from (4) we have

$$
\begin{align*}
\left(\nabla_{Z} S\right)(X, Y)= & b\left[\left(\nabla_{Z} A\right)(X) A(Y)+A(X)\left(\nabla_{Z} A\right)(Y)\right] \\
& +c\left[\left(\nabla_{Z} B\right)(X) B(Y)+B(X)\left(\nabla_{Z} B\right)(Y)\right] \tag{15}
\end{align*}
$$

Using (15) we obtain

$$
\begin{array}{r}
\left(\nabla_{X} S\right)(Y, Z)+\left(\nabla_{Y} S\right)(Z, X)+\left(\nabla_{Z} S\right)(X, Y)=b\left[\left\{\left(\nabla_{X} A\right)(Y)\right.\right. \\
\left.+\left(\nabla_{Y} A\right)(X)\right\} A(Z)+\left\{\left(\nabla_{X} A\right)(Z)+\left(\nabla_{Z} A\right)(X)\right\} A(Y) \\
\left.+\left\{\left(\nabla_{Y} A\right)(Z)+\left(\nabla_{Z} A\right)(Y)\right\} A(X)\right]+c\left[\left\{\left(\nabla_{X} B\right)(Y)\right.\right. \\
\left.+\left(\nabla_{Y} B\right)(X)\right\} B(Z)+\left\{\left(\nabla_{X} B\right)(Z)+\left(\nabla_{Z} B\right)(X)\right\} B(Y) \\
\left.+\left\{\left(\nabla_{Y} B\right)(Z)+\left(\nabla_{Z} B\right)(Y)\right\} B(X)\right] . \tag{16}
\end{array}
$$

By virtue of (9)-(14) we obtain from (16) that

$$
\left(\nabla_{X} S\right)(Y, Z)+\left(\nabla_{Y} S\right)(Z, X)+\left(\nabla_{Z} S\right)(X, Y)=0
$$

Thus we can state the following theorem:
Theorem 2.1. If the generators of a $G(Q E)_{n}$ are Killing vector fields, then the manifold satisfies cyclic parallel Ricci tensor.

3. $G(Q E)_{n}$ satisfying Codazzi type of Ricci tensor

A Riemannian or semi-Riemannian manifold is said to satisfy Codazzi type of Ricci tensor if its Ricci tensor satisfies the following condition

$$
\begin{equation*}
\left(\nabla_{X} S\right)(Y, Z)=\left(\nabla_{Y} S\right)(X, Z) \tag{17}
\end{equation*}
$$

for all X, Y, Z.
Using (15) and (17), we obtain

$$
\begin{array}{r}
b\left[\left(\nabla_{X} A\right)(Y) A(Z)-\left(\nabla_{Y} A\right)(X) A(Z)+A(Y)\left(\nabla_{X} A\right)(Z)-\right. \\
\left.A(X)\left(\nabla_{Y} A\right)(Z)\right]+c\left[\left(\nabla_{X} B\right)(Y) B(Z)-\left(\nabla_{Y} B\right)(X) B(Z)\right. \\
\left.+B(Y)\left(\nabla_{X} B\right)(Z)-B(X)\left(\nabla_{Y} B\right)(Z)\right]=0 \tag{18}
\end{array}
$$

Putting $Z=U$ in (18) and using $\left(\nabla_{X} A\right)(U)=0$ we get

$$
\left(\nabla_{X} A\right)(Y)-\left(\nabla_{Y} A\right)(X)=0 \text {, i.e., } d A(X, Y)=0
$$

Similarly, putting $Z=V$ in (18) and using $\left(\nabla_{X} B\right)(V)=0$ yields $d B(X, Y)=0$.
Thus we can state the following:
Theorem 3.1. If a $G(Q E)_{n}$ satisfies the Codazzi type of Ricci tensor, then the associated 1-forms A and B are closed. Again putting $X=Z=U$ in (18) we have

$$
\begin{equation*}
\left(\nabla_{U} A\right)(Y)=0 \tag{19}
\end{equation*}
$$

which means that $g\left(X, \nabla_{U} U\right)=0$ for all Y, that is, $\nabla_{U} U=0$.
Similarly, putting $X=Z=V$ in (18) we have

$$
\begin{equation*}
\left(\nabla_{V} B\right)(Y)=0 \tag{20}
\end{equation*}
$$

which yields $\nabla_{V} V=0$. This leads to the following theorem:
Theorem 3.2. If a generalized quasi-Einstein manifold satisfies Codazzi type of Ricci tensor, then the integral curves of the vector fields U and V are geodesic.

4. The generators U and V as concurrent vector fields

A vector field ξ is said to be concurrent if[26]

$$
\begin{equation*}
\nabla_{X} \xi=\rho X \tag{21}
\end{equation*}
$$

where ρ is a non-zero constant. If $\rho=0$, the vector field reduces to a parallel vector field.
In this section we consider the vector fields U and V corresponding to the associated 1-forms A and B respectively are concurrent. Then

$$
\begin{equation*}
\left(\nabla_{X} A\right)(Y)=\alpha g(X, Y) \tag{22}
\end{equation*}
$$

and

$$
\begin{equation*}
\left(\nabla_{X} B\right)(Y)=\beta g(X, Y) \tag{23}
\end{equation*}
$$

where α and β are non-zero constants.
Using (22) and (23) in (15) we get

$$
\begin{align*}
\left(\nabla_{Z} S\right)(X, Y)= & b[\alpha g(X, Z) A(Y)+\alpha g(Y, Z) A(X)] \\
& +c[\beta g(X, Z) B(Y)+\beta g(Y, Z) B(X)] \tag{24}
\end{align*}
$$

Contracting (24) over X and Y we obtain

$$
\begin{equation*}
d r(Z)=2[b \alpha A(Z)+c \beta B(Z)] \tag{25}
\end{equation*}
$$

where r is the scalar curvature of the manifold.
Again from (4) we have

$$
\begin{equation*}
r=a n+b+c \tag{26}
\end{equation*}
$$

Since, $a, b, c \in \mathbb{R}$, it follows that $d r(X)=0$, for all X. Thus equation (25) yields

$$
\begin{equation*}
b \alpha A(Z)+c \beta B(Z)=0 \tag{27}
\end{equation*}
$$

Since α and β are not zero, using (27) in (4), we finally get

$$
S(X, Y)=a g(X, Y)+\left(b+\frac{b^{2} \alpha^{2}}{c \beta^{2}}\right) A(X) A(Y)
$$

Thus the manifold reduces to a quasi-Einstein manifold. Hence we can state the following theorem:
Theorem 4.1. If the associated vector fields of a $G(Q E)_{n}$ are concurrent vector fields, then the manifold reduces to a quasi-Einstein manifold.

5. The generators U and V as recurrent vector fields

A vector fiels ξ corresponding to the associated 1-form η is said to be recurrent if[26]

$$
\begin{equation*}
\left(\nabla_{X} \eta\right)(Y)=\psi(X) \eta(Y) \tag{28}
\end{equation*}
$$

where ψ is a non-zero 1 -form.
In this section we suppose that the generators U and V corresponding to the associated 1-forms A and B are recurrent. Then we have

$$
\begin{equation*}
\left(\nabla_{X} A\right)(Y)=\lambda(X) A(Y) \tag{29}
\end{equation*}
$$

and

$$
\begin{equation*}
\left(\nabla_{X} B\right)(Y)=\mu(X) B(Y) \tag{30}
\end{equation*}
$$

where λ and μ are non-zero 1 -forms.
Now, using (29) and (30) in (15) we get

$$
\begin{equation*}
\left(\nabla_{Z} S\right)(X, Y)=2 b \lambda(Z) A(X) A(Y)+2 c \mu(Z) B(X) B(Y) \tag{31}
\end{equation*}
$$

We assume that the 1 -forms λ and μ are equal, i.e.,

$$
\begin{equation*}
\lambda(Z)=\mu(Z) \tag{32}
\end{equation*}
$$

for all Z . Then we obtain from (31) and (32) that

$$
\begin{equation*}
\left(\nabla_{Z} S\right)(X, Y)=2 \lambda(Z)[b A(X) A(Y)+c B(X) B(Y)] \tag{33}
\end{equation*}
$$

Using (4) and (33) we have

$$
\left(\nabla_{Z} S\right)(X, Y)=\alpha_{1}(Z) S(X, Y)+\alpha_{2}(Z) g(X, Y)
$$

where $\alpha_{1}(Z)=2 \lambda(Z)$ and $\alpha_{2}(Z)=-2 a \lambda(Z)$.
Thus we can state the following:
Theorem 5.1. If the generators of a $G(Q E)_{n}$ corresponding to the associated 1-forms are recurrent with the same vector of recurrence, then the manifold is a generalized Ricci recurrent manifold.

6. Examples of $G(Q E)_{n}$

In this section we prove the existence of generalized quasi-Einstein manifolds by constructing some non-trivial concrete examples.

Example 6.1. Let us consider a semi-Riemannian metric g on \mathbb{R}^{4} by

$$
\begin{equation*}
d s^{2}=g_{i j} d x^{i} d x^{j}=x^{2}\left[\left(d x^{1}\right)^{2}+\left(d x^{2}\right)^{2}+\left(d x^{3}\right)^{2}\right]-\left(d x^{4}\right)^{2} \tag{34}
\end{equation*}
$$

where $i, j=1,2,3,4$. Then the only non-vanishing components of the Christoffel symbols, the curvature tensors and the derivatives of the components of curvature tensors are

$$
\begin{gathered}
\Gamma_{11}^{2}=\Gamma_{33}^{2}=-\frac{1}{2 x^{2}}, \quad \Gamma_{22}^{2}=\Gamma_{12}^{1}=\Gamma_{23}^{3}=\frac{1}{2 x^{2}}, \\
R_{1221}=R_{2332}=-\frac{1}{2 x^{2}}, \quad R_{1331}=\frac{1}{4 x^{2}}, \quad R_{1232}=0,
\end{gathered}
$$

and the components obtained by the symmetry properties. The non-vanishing components of the Ricci tensor $R_{i j}$ are

$$
R_{11}=R_{33}=-\frac{1}{4\left(x^{2}\right)^{2}}, \quad R_{22}=-\frac{1}{\left(x^{2}\right)^{2}}
$$

It can be easily shown that the scalar curvature of the resulting manifold $\left(\mathbb{R}^{4}, g\right)$ is $-\frac{3}{2\left(x^{2}\right)^{3}} \neq 0$. We shall now show that $\left(\mathbb{R}^{4}, g\right)$ is a generalized quasi-Einstein manifold.
Let us now consider the associated scalars as follows:

$$
\begin{equation*}
a=\frac{1}{\left(x^{2}\right)^{3}}, \quad b=-\frac{5}{2\left(x^{2}\right)^{3}}, \quad c=-\frac{2}{\left(x^{2}\right)^{3}} . \tag{35}
\end{equation*}
$$

Again let us choose the associated 1-forms as follows:

$$
\begin{align*}
& A_{i}(x)= \begin{cases}\frac{1}{\sqrt{2}} \sqrt{x^{2}}, & \text { for } \mathrm{i}=1,3 \\
0, & \text { otherwise }\end{cases} \tag{36}\\
& B_{i}(x)= \begin{cases}\sqrt{x^{2}}, & \text { for } \mathrm{i}=2 \\
0, & \text { otherwise }\end{cases} \tag{37}
\end{align*}
$$

at any point $x \in \mathbb{R}^{4}$. To verify the relation (4), it is sufficient to check the following equations:

$$
\begin{align*}
& R_{11}=a g_{11}+b A_{1} A_{1}+c B_{1} B_{1}, \tag{38}\\
& R_{22}=a g_{22}+b A_{2} A_{2}+c B_{2} B_{2} \tag{39}\\
& R_{33}=a g_{33}+b A_{3} A_{3}+c B_{3} B_{3}, \tag{40}
\end{align*}
$$

since for the other cases (4) holds trivially. By virtue of (35), (36), (37) and (38) we get

$$
\begin{aligned}
\text { R.H.S. of (38) } & =a g_{11}+b A_{1} A_{1}+c B_{1} B_{1} \\
& =\frac{1}{\left(x^{2}\right)^{3}} x^{2}+\left(-\frac{5}{2\left(x^{2}\right)^{3}}\right) \frac{1}{2}\left(x^{2}\right)+0 \\
& =-\frac{1}{4\left(x^{2}\right)^{2}}=R_{11} \\
& =\text { L.H.S. of }(38) .
\end{aligned}
$$

By similar argument it can be shown that (39) and (40) are also true. We shall now show that the associated vectors A_{i} and B_{i} are unit.
Here

$$
g^{i j} A_{i} A_{j}=1, \quad g^{i j} B_{i} B_{j}=1, \quad g^{i j} A_{i} B_{j}=0
$$

Therefore the vectors A_{i} and B_{i} are unit and also they are orthogonal.
So, $\left(\mathbb{R}^{4}, g\right)$ is a generalized quasi-Einstein manifold.
Example 6.2. We consider a Riemannian manifold $\left(M^{4}, g\right)$ endowed with the Riemannian metric g given by

$$
\begin{equation*}
d s^{2}=g_{i j} d x^{i} d x^{j}=\left(d x^{1}\right)^{2}+\left(x^{1}\right)^{2}\left(d x^{2}\right)^{2}+\left(x^{2}\right)^{2}\left(d x^{3}\right)^{2}+\left(d x^{4}\right)^{2} \tag{41}
\end{equation*}
$$

where $i, j=1,2,3,4$. The only non-vanishing components of Christoffel symbols, the curvature tensor and the Ricci tensor are

$$
\begin{gathered}
\Gamma_{22}^{1}=-x^{1}, \quad \Gamma_{33}^{2}=-\frac{x^{2}}{\left(x^{1}\right)^{2}}, \quad \Gamma_{12}^{2}=\frac{1}{x^{1}}, \quad \Gamma_{23}^{3}=\frac{1}{x^{2}} \\
R_{1332}=-\frac{x^{2}}{x^{1}}, \quad S_{12}=-\frac{1}{x^{1} x^{2}} .
\end{gathered}
$$

It can be easily shown that the scalar curvature of the manifold is zero. We shall now show that $\left(\mathbb{R}^{4}, g\right)$ is a generalized quasi-Einstein manifold.
We take the associated scalars as follows:

$$
a=\frac{1}{x^{1}\left(x^{2}\right)^{2}}, \quad b=-\frac{8}{3\left(x^{1}\right)^{2} x^{2}}, \quad c=-\frac{2}{3\left(x^{1}\right)^{2} x^{2}} .
$$

We choose the 1-forms as follows:

$$
A_{i}(x)= \begin{cases}\frac{1}{\sqrt{3}}, & \text { for } \mathrm{i}=1 \\ \frac{x^{1}}{\sqrt{3}}, & \text { for } \mathrm{i}=2 \\ \frac{x^{2}}{\sqrt{3}}, & \text { for } \mathrm{i}=3 \\ 0, & \text { for } \mathrm{i}=4\end{cases}
$$

and

$$
B_{i}(x)= \begin{cases}\frac{1}{\sqrt{2}}, & \text { for } \mathrm{i}=1 \\ -\frac{x^{1}}{\sqrt{2}}, & \text { for } \mathrm{i}=2 \\ 0, & \text { otherwise }\end{cases}
$$

at any point $x \in M$. In our $\left(M^{4}, g\right)$, (4) reduces with these associated scalars and 1-forms to the following equation:

$$
\begin{equation*}
S_{12}=a g_{12}+b A_{1} A_{2}+c B_{1} B_{2} \tag{42}
\end{equation*}
$$

It can be easily prove that the equation (42) is true.
We shall now show that the associated vectors A_{i} and B_{i} are unit and also they are orthogonal.
Here,

$$
g^{i j} A_{i} A_{j}=1, \quad g^{i j} B_{i} B_{j}=1, \quad g^{i j} A_{i} B_{j}=0
$$

So, the manifold under consideration is a generalized quasi-Einstein manifold.
Example 6.3. [16] A 2-quasi-umbilical hypersurface of a space of constant curvature is a $G(Q E)_{n}$, which is not a quasi-Einstein manifold.

Example 6.4. [16] A quasi-umbilical hypersurface of a Sasakian space form is a $G(Q E)_{n}$, which is not a quasi-Einstein manifold.

Example 6.5. De and Mallick [16] considered a Riemannian metric g on R^{4} by

$$
\begin{equation*}
d s^{2}=g_{i j} d x^{i} d x^{j}=\left(x^{4}\right)^{\frac{4}{5}}\left[\left(d x^{1}\right)^{2}+\left(d x^{2}\right)^{2}+\left(d x^{3}\right)^{2}\right]+\left(d x^{4}\right)^{2} . \tag{43}
\end{equation*}
$$

Then they showed that $\left(M^{4}, g\right)$ is a generalized quasi-Einstein manifold, which is not a quasi-Einstein manifold.

Example 6.6. Özgür and Sular [24] assumed an isometrically immersed surface \bar{M} in E^{3} with non-zero distinct principal curvatures λ and μ. Then they considered the hypersurface $M=\bar{M} \times E^{n-2}$ in $E^{n+1}, n \geq 4$. The principal curvatures of M are $\tilde{\lambda}, \tilde{\mu}, 0, \ldots, 0$, where 0 occures ($\mathrm{n}-2$)-times. Hence the manifold is a 2 -quasi umbilical hypersurface and so it is generalized quasi-Einstein.

Example 6.7. Özgür and Sular [24] assumed a sphere S^{2} in E^{k+2} given by the immersion $f: S^{2} \rightarrow E^{k+2}$ and $B S^{2}$ be the bundle of unit normal to S^{2}. The hypersurface M defined by the map $\varphi_{t}: B S^{2} \rightarrow E^{k+2}, \varphi_{t}(x, \xi)=$ $F(x, t \xi)=f(x)+t \xi$ is called the tube of radius t over S^{2}. It was proved in [5] that if (λ, λ) are the principal curvature of S^{2} then the principal curvatures of M are $\left(\frac{\lambda}{1-\hbar \lambda}, \frac{\lambda}{1-t \lambda},-\frac{1}{t}, \ldots,-\frac{1}{t}\right.$), where $-\frac{1}{t}$ occures (k-1)-times. So M is 2-quasi umbilical and hence it is generalized quasi-Einstein.

Example 6.8. The study of warped product manifold was initiated by Kručkovič [20] in 1957. Again in 1969 Bishop and O'Neill [4] also obtained the same notion of the warped product manifolds while they were constructing a large class of manifolds of negative curvature. Warped product are generalizations of the Cartesian product of Riemannian manifolds. Let (\bar{M}, \bar{g}) and $\left(M^{*}, g^{*}\right)$ be two Riemannian or semi-Riemannian manifolds. Let \bar{M} and M^{*} be covered with coordinate charts $\left(U ; x^{1}, x^{2}, \ldots, x^{p}\right)$ and $\left(V ; y^{p+1}, y^{p+2}, \ldots ., y^{n}\right)$ respectively. Then the warped product $M=\bar{M} \times_{f} M^{*}$ is the product manifold of dimension n furnished with the metric

$$
\begin{equation*}
g=\pi^{*}(\bar{g})+(f \circ \pi) \sigma^{*}\left(g^{*}\right), \tag{44}
\end{equation*}
$$

where $\pi: M \rightarrow \bar{M}$ and $\sigma: M \rightarrow M^{*}$ are natural projections such that the warped product manifold $\bar{M} \times_{f} M^{*}$ is covered with the coordinate chart

$$
\left(U \times V ; x^{1}, x^{2}, \ldots, x^{p}, x^{p+1}=y^{p+1}, x^{p+2}=y^{p+2}, \ldots, x^{n}=y^{n}\right) .
$$

Then the local components of the metric g with respect to this coordinate chart are given by

$$
g_{i j}= \begin{cases}\bar{g}_{i j} & \text { for } \mathrm{i}=\mathrm{a} \text { and } \mathrm{j}=\mathrm{b}, \tag{45}\\ f g_{i j}^{* j} & \text { for } i=\alpha \text { and } j=\beta, \\ 0 & \text { otherwise, }\end{cases}
$$

Here $a, b, c, \ldots \in\{1,2, \ldots, p\}$ and $\alpha, \beta, \gamma, \ldots \in\{p+1, p+2, \ldots, n\}$ and $i, j, k, \ldots \in\{1,2, \ldots, n\}$. Here \bar{M} is called the base, M^{*} is called the fiber and f is called warping function of the warped product $M=\bar{M} \times_{f} M^{*}$. We denote by $\Gamma_{j k^{\prime}}^{i} R_{i j k l}, R_{i j}$ and r as the components of Levi-Civita connection ∇, the Riemann-Christoffel curvature tensor R, Ricci tensor S and the scalar curvature of (M, g) respectively. Moreover we consider that, when Ω is a quantity formed with respect to g, we denote by $\bar{\Omega}$ and Ω^{*}, the similar quantities formed with respect to \bar{g} and g^{*} respectively. Then the non-zero local components of Levi-Civita connection ∇ of (M, g) are given by

$$
\begin{equation*}
\Gamma_{b c}^{a}=\bar{\Gamma}_{b c^{\prime}}^{a} \Gamma_{\beta \gamma}^{\alpha}=\Gamma_{\beta \gamma^{\prime}}^{* \alpha} \quad \Gamma_{\beta \gamma}^{a}=-\frac{1}{2} \tilde{g}^{a b} f_{b} g_{\beta \gamma}^{*}, \Gamma_{a \beta}^{\alpha}=\frac{1}{2 f} f_{a} \delta_{\beta}^{\alpha}, \tag{46}
\end{equation*}
$$

where $f_{a}=\partial_{a} f=\frac{\partial f}{\partial x^{a}}$. The local components $R_{h i j k}=g_{h l} R_{i j k}^{l}=g_{h l}\left(\partial_{k} \Gamma_{i j}^{l}-\partial_{j} \Gamma_{i k}^{l}+\Gamma_{i j}^{m} \Gamma_{m k}^{l}-\Gamma_{i k}^{m} \Gamma_{m j}^{l}\right), \partial_{k}=\frac{\partial}{\partial x^{k}}$, of the Riemann-Christoffel curvature tensor R of (M, g) which may not vanish identically are the following:

$$
\begin{equation*}
R_{a b c d}=\bar{R}_{a b c d}, R_{a \alpha b \beta}=-f T_{a b} g_{a \beta}^{*}, R_{a \beta \gamma \delta}=f R_{\alpha \beta \gamma \delta}^{*}-f^{2} G_{a \beta \gamma \delta}^{*} \tag{47}
\end{equation*}
$$

where $G_{i j k l}=g_{i l} g_{j k}-g_{i k} g_{j l}$ and

$$
\begin{gathered}
T_{a b}=-\frac{1}{2 f}\left(\nabla_{b} f_{a}-\frac{1}{2 f} f_{a} f_{b}\right), \quad \operatorname{tr}(T)=g^{a b} T_{a b} \\
P=\frac{1}{4 f^{2}} g^{a b} f_{a} f_{b} \\
Q=f\{(n-p-1) P-\operatorname{tr}(T)\} .
\end{gathered}
$$

Again the non-zero local components of the Ricci tensor $R_{j k}=g^{i l} R_{i j k l}$ of (M, g) are given by

$$
\begin{equation*}
R_{a b}=\bar{R}_{a b}+(n-p) T_{a b}, \quad R_{\alpha \beta}=R_{\alpha \beta}^{*}-Q g_{\alpha \beta}^{*}, \tag{48}
\end{equation*}
$$

The scalar curvature r of (M, g) is given by

$$
\begin{equation*}
r=\bar{r}+\frac{r^{*}}{f}-(n-p)[(n-p-1) P-2 \operatorname{tr}(T)] \tag{49}
\end{equation*}
$$

Here we consider warped product manifold $M=I \times{ }_{f} M^{\star}, \operatorname{dim} I=1, \operatorname{dim} M^{\star}=n-1(n \geq 3), f=\exp \left\{\frac{q}{2}\right\}$. We take the metric on I as $(d t)^{2}$ and M^{\star} is a quasi-Einstein manifold.

Using the above consideration and (48) we get

$$
R_{t t}=\bar{R}_{t t}+(n-1) T_{t t}
$$

which implies

$$
\begin{equation*}
R_{t t}=-\frac{(n-1)}{16}\left[\left(q^{\prime}\right)^{2}+4 q^{\prime \prime}\right] \tag{50}
\end{equation*}
$$

since $\bar{R}_{t t}$ of I is zero.
Also

$$
R_{\alpha \beta}=R_{\alpha \beta}^{\star}-Q g_{\alpha \beta}^{\star}
$$

which implies

$$
\begin{equation*}
R_{\alpha \beta}=R_{\alpha \beta}^{\star}-\frac{e^{\frac{q}{2}}}{16}\left[(2 n-3)\left(q^{\prime}\right)^{2}+4(n-1) q^{\prime \prime}\right] g_{\alpha \beta}^{\star} \tag{51}
\end{equation*}
$$

where "' ' and " "' denote the 1st order and 2nd order partial derivatives respectively with respect to t. Since M^{\star} is $(Q E)_{n}$, we obtain

$$
\begin{equation*}
R_{\alpha \beta}^{\star}=\lambda g_{\alpha \beta}^{\star}+\mu A_{\alpha}^{\star} A_{\beta}^{\star}, \tag{52}
\end{equation*}
$$

where λ and μ are certain non-zero scalars and A_{α}^{\star} is unit covariant vector such that $g^{\star \alpha \beta} A_{\alpha}^{\star} A_{\beta}^{\star}=1$ and

$$
A_{\alpha}(x)= \begin{cases}\bar{A}_{\alpha} & \text { for } \alpha=1 \tag{53}\\ A_{\alpha}^{*} & \text { otherwise } .\end{cases}
$$

Using (52) in (51) we get

$$
\begin{equation*}
R_{\alpha \beta}=\lambda g_{\alpha \beta}^{\star}+\mu A_{\alpha}^{\star} A_{\beta}^{\star}-\frac{e^{\frac{q}{2}}}{16}\left[(2 n-3)\left(q^{\prime}\right)^{2}+4(n-1) q^{\prime \prime}\right] g_{\alpha \beta}^{\star}, \tag{54}
\end{equation*}
$$

Again, using (45) and (53) in (54) we can write

$$
\begin{equation*}
R_{\alpha \beta}=-\frac{1}{16}\left\{(2 n-3)\left(q^{\prime}\right)^{2}+4(n-1) q^{\prime \prime}\right\} g_{\alpha \beta}+\frac{\lambda}{e^{\frac{q}{2}}} g_{\alpha \beta}+\mu A_{\alpha} A_{\beta} \tag{55}
\end{equation*}
$$

Now if we choose $g_{\alpha \beta}=e^{\frac{q}{2}} B_{\alpha} B_{\beta}$, where

$$
B_{\alpha}(x)= \begin{cases}\bar{B}_{\alpha} & \text { for } \alpha=1 \tag{56}\\ B_{\alpha}^{*} & \text { otherwise }\end{cases}
$$

then

$$
\begin{equation*}
R_{\alpha \beta}=\frac{1}{16}\left\{(2 n-3)\left(q^{\prime}\right)^{2}+4(n-1) q^{\prime \prime}\right\} g_{\alpha \beta}+\lambda B_{\alpha} B_{\beta}+\mu A_{\alpha} A_{\beta} \tag{57}
\end{equation*}
$$

Again from (50) we obtain

$$
\begin{array}{r}
R_{t t}=\frac{1}{16}\left[(2 n-3)\left(q^{\prime}\right)^{2}+4(n-1) q^{\prime \prime}\right] g_{t t}-\frac{1}{16}\left[(2 n-3)\left(q^{\prime}\right)^{2}+4(n-1) q^{\prime \prime}\right] \\
-\frac{(n-1)}{16}\left[\left(q^{\prime}\right)^{2}+4 q^{\prime \prime}\right] \tag{58}
\end{array}
$$

since $\bar{g}_{t t}=1$ and $g_{t t}=\bar{g}_{t t}$ in I.
Thus (58) can be written as

$$
\begin{align*}
R_{t t}=\frac{1}{16}\left[(2 n-3)\left(q^{\prime}\right)^{2}+4(n-1) q^{\prime \prime}\right] g_{t t} & -\frac{3 n-4}{16}\left(q^{\prime}\right)^{2} \\
& +\frac{2(n-1)}{4} q^{\prime \prime} \tag{59}
\end{align*}
$$

Since $\operatorname{dim} I=1$, we can take

$$
\begin{equation*}
\bar{A}_{t}=q^{\prime} \tag{60}
\end{equation*}
$$

and

$$
\begin{equation*}
\bar{B}_{t}=\sqrt{q^{\prime \prime}}, \tag{61}
\end{equation*}
$$

where q^{\prime} and $q^{\prime \prime}$ are functions on M.
Then using (53), (56), (60) and (61), equation (59) can be written as follows:

$$
\begin{align*}
R_{t t}=\frac{1}{16}\left[(2 n-3)\left(q^{\prime}\right)^{2}+4(n-1) q^{\prime \prime}\right] g_{t t} & -\frac{3 n-4}{16} A_{t} A_{t} \\
& +\frac{2(n-1)}{4} B_{t} B_{t} \tag{62}
\end{align*}
$$

Thus from (57) and (62) we can conclude that $M=I \times_{f} M^{\star}$ is a generalized quasi-Einstein manifold if M^{*} is a quasi-Einstein manifold.

References

[1] C. L. Bejan and T. Q. Binh, Generalized Einstein manifolds, WSPC-Proceeding Trim Size, DGA 2007, 47-54.
[2] C. L. Bejan, Characterizations of quasi-Einstein manifolds, An. Stiint. Univ. Al. I. Cuza Iasi. Mat. (N. S.), Tomul LIII, 2007 (Supliment), 67-72.
[3] A. L. Besse, Einstein manifolds, Ergeb. Math. Grenzgeb., 3. Folge, Bd. 10, Springer-Verlag, Berlin, Heidelberg, New York, 1987.
[4] R. L. Bishop and B. O'Neill, Manifolds of negative curvature, Trans. Amer. Math. Soc., 145(1969), 1-49.
[5] T. E. Cecil and P. J. Ryan, Tight and Taut Immersions of Manifolds, Research Notes in Mathematics, 107, Pitman (Advanced Publishing Program), Boston, M. A., 1985.
[6] M. C. Chaki and R. K. Maity, On quasi Einstein manifolds, Publ. Math. Debrecen, 57(2000), 297-306.
[7] M. C. Chaki, On generalized quasi-Einstein manifolds, Publ. Math. Debrecen, 58(2001), 683-691.
[8] M. C. Chaki, On super quasi-Einstein manifolds, Publ. Math. Debrecen, 64(2004), 481-488.
[9] M. Crasmareanu, Parallel tensors and Ricci solitons in N(k)-quasi-Einstein manifolds, Indian J. Pure Appl. Math., 43(2012), 359-369.
[10] U. C. De and G. C. Ghosh, On quasi-Einstein and special quasi-Einstein manifolds, Proc. of the Int. Conf. of Mathematics and its applications, Kuwait University, April 5-7, 2004, 178-191.
[11] U. C. De and G. C. Ghosh, On quasi-Einstein manifolds, Period. Math. Hungar., 48(2004), 223-231.
[12] U. C. De and B. K. De, On quasi-Einstein manifolds, Commun. Korean Math. Soc., 23(2008), 413-420.
[13] G. C. Ghosh, U. C. De and T. Q. Binh, Certain curvature restrictions on a quasi-Einstein manifold, Publ. Math. Debrecen, 69(2006), 209-217.
[14] U. C. De and G. C. Ghosh, On generalized quasi-Einstein manifolds, Kyungpook Math. J., 44(2004), 607-615.
[15] U. C. De and G. C. Ghosh, Some global properties of generalized quasi-Einstein manifolds, Ganita 56, 1(2005), 65-70.
[16] U. C. De and S. Mallick, On the existence of generalized quasi-Einstein manifolds, Arch. Math. (Brno), 47(2011), 279-291.
[17] U. C. De, N. Guha and D. Kamilya, On generalized Ricci-recurrent manifolds, Tensor(N.S.), 56(1995), 312-317.
[18] P. Debnath and A. Konar, On super quasi-Einstein manifolds, Publications de L'institut Mathematique, Nouvelle serie, Tome 89(103)(2011), 95-104.
[19] A. Gray, Einstein-like manifolds which are not Einstein, Geom. Dedicate 7(1998), 259-280.
[20] G. I. Kručkovicč, On semi-reducible Riemannian spaces, Dokl. Akad. Nauk SSSR 115 (1957), 862-865 (in Russian).
[21] C. Özgür, On a class of generalized quasi-Einstein manifolds, Applied Sciences, Balkan Society of Geometers, Geometry Balkan Press, 8(2006), 138-141.
[22] C. Özgür, N(k)-quasi-Einstein manifolds satisfying certain conditions, Chaos, Solitons and Fractals, 38(2008), 1373-1377.
[23] C. Özgür, On some classes of super quasi-Einstein manifolds, Chaos, Solitons and Fractals, 40(2009), 1156-1161.
[24] C. Özgür and S. Sular, On some properties of generalized quasi-Einstein manifolds, Indian Journal of Mathematics, 50(2008), 297-302.
[25] E. M. Patterson, Some theorems on Ricci-recurrent spaces, Journal London Math. Soc., 27(1952), 287-295.
[26] J. A. Schouten, Ricci-Calculus, Springer, Berlin, 1954.
[27] A. Taleshian and A. A. Hosseinzadeh, Investigation of some conditions on N(k)-quasi-Einstein manifolds, Bull. Malays. Math. Sci. Soc., 34(2011), 455-464.
[28] A. Taleshian and A. A. Hosseinzadeh, On W_{2}-Curvature Tensor N(k)-Quasi Einstein manifolds, The Journal of Mathematics and Computer Science, 1(2010), 28-32.
[29] L. Tamassy and T. Q. Binh, On weak symmetries of Einstein and Sasakian manifolds, Tensor, N.S., 53(1993), 140-148.

[^0]: 2010 Mathematics Subject Classification. 53C25, 53C35
 Keywords. Quasi-Einstein manifolds, generalized quasi-Einstein manifolds, generalized quasi-constant curvature, Codazzi type of Ricci tensor, cyclic parallel Ricci tensor, Killing vector field, concurrent vector field, recurrent vector field.
 Received: 23 Oktober 2014; Accepted: 17 November 2014
 Communicated by Ljubica Velimirović and Mića Stanković
 Email addresses: uc_de@yahoo.com (Uday Chand De), sahanousmallick@gmail.com (Sahanous Mallick)

