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CR-Submanifolds with the Symmetric ∇σ in a Locally Conformal
Kaehler Space Form

Koji Matsumotoa

a2-3-65 Nishi-Odori, Yonezawa, Yamagata, 992-0059, Japan

Abstract. In this paper, we consider CR-submanifolds with the symmetric ∇σ which is a generalization
of parallel second fundamental form, in a locally conformal Kaehler space form. About the symmetric
tensor field P defined in (1.7), we show that, in an anti-holomorphic submanifold in an l.c.K.-space form,
P is diagonal with respect to an adapted frame and has two eigenfunctions (See Theorem 3.1). Finally, we
consider the relation of the eigenfunctions of P and the Lee form (See Theorems 3.2 and 3.3).

1. Locally conformal Kaehler manifolds.

A Hermitian manifold M̃ with structure (J, 1̃) is called a locally conformal Kaehler (an l.c.K.-) manifold
if each point x ∈ M̃ has an open neighbourhood U with a positive differentiable function ρ : U → R such
that 1̃∗ = e−2ρ1̃|U is a Kaehlerian metric on U, that is, ∇∗ J = 0, where J is the almost complex structure, 1̃ is
the Hermitian metric, ∇∗ is the covariant differentiation with respect to 1̃∗, 1̃|U is the restriction of 1̃ to U and
R is a real number space ([8] -[10],[13], etc.).

Remark 1.1. We know that a typical example of a compact l.c.K.-manifold is a Hopf manifold which has no Kaehler
structure ([11],[12]) and examples of non-compact case are in [7].

Then the following useful proposition is wellknown ([8]);

Proposition 1.1. A Hermitian manifold M̃ with structure (J, 1̃) is l.c.K.- if and only if there exists a global 1-form α
which is called the Lee form satisfying

J2 = −I, (1.1)

1̃(JV, JU) = 1̃(V,U), (1.2)

NJ(V,U) = 0, (1.3)

dα = 0 (α : closed), (1.4)

(∇̃V J)U = −1̃(α],U)JV + 1̃(V,U)β] + 1̃(JV,U)α] − 1̃(β],U)V (1.5)
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for any V,U ∈ TM̃, where ∇̃ denotes the covariant differentiation with respect to 1̃, α] is the dual vector field of α
which is called the Lee vector field, the 1-form β is defined by β(X) = −α(JX), β] is the dual vector field of β, TM̃
means the tangent bundle of M̃ and NJ denotes the Nijenhuis tensor with respect to J which is defined by

NJ(V,U) = [JV, JU] − J[JV,U] − J[V, JU] + J2[V,U]([14]).

We write such a manifold M̃(J, 1̃, α).
An l.c.K.-manifold M̃(J, 1̃, α) is called an l.c.K.-space form if it has a constant holomorphic sectional

curvature, that is, R̃(JU,U,U, JU) = constant for any unit U ∈ TM̃, where R̃ is the Riemannian curvature
tensor with respect to 1̃. Then we know that the tensor R̃ of an l.c.K.-space form with the constant
holomorphic sectional curvature c is given by ([8])

4R̃(W,Z,V,U) = c{1̃(W,U)1̃(Z,V) − 1̃(W,V)1̃(Z,U) + 1̃(JW,U)1̃(JZ,V) − 1̃(JW,V)1̃(JZ,U)
− 21̃(JW,Z)1̃(JV,U)} + 3{P(W,U)1̃(Z,V) − P(W,V)1̃(Z,U) + 1̃(W,U)P(Z,V)

− 1̃(W,V)P(Z,U)} − P̃(W,U)1̃(JZ,V) + P̃(W,V)1̃(JZ,U) − 1̃(JW,U)P̃(Z,V)

(1.6)

for any W,Z,V,U ∈ TM̃, where P and P̃ are respectively defined by

P(V,U) = −(∇̃Vα)U − α(V)α(U) +
1
2
‖α‖21̃(V,U), (1.7)

and

P̃(V,U) = P(JV,U) (1.8)

for any V,U ∈ TM̃, where ‖α‖ is the length of the Lee vector field α] with respect to 1̃, that is, ‖α‖2 = 1̃(α], α]).

Remark 1.2. To get (1.6), we have to assume that the symmetric (0,2)-tensor P is hybrid or equivalently P̃ is
skew-symmetric. This means that the Ricci tensor R̃1 with respect to 1̃ is hybrid.

Remark 1.3. We know that a Hopf manifold is an l.c.K.-space form with the parallel Lee form (∇α = 0). And it has
no hybrid P. But, we don’t know the representation of the Riemannian curvature tensor of an l.c.K.-space form with
non hybrid P.

We write M̃(c) an l.c.K.-space form with the constant holomorphic sectional curvature c.

2. CR-submanifolds in an l.c.K.-manifold.

In generally, between a Riemannian manifold (M̃, 1̃) and its Riemannian submanifold M, the Gauss and
the Weingarten formulas are respectively given by

∇̃XY = ∇XY + σ(X,Y), (2.1)

and

∇̃Xξ = −AξX + ∇⊥Xξ (2.2)

for any X,Y ∈ TM and ξ ∈ T⊥M, where σ is the second fundamental form, Aξ is the shape operator with
respect to ξ, ∇⊥ is the normal connection and T⊥M is the normal bundle of M([6]). The second fundamental
form σ and the shape operator A are related by

1̃(AξY,X) = 1̃(σ(Y,X), ξ)

for any Y,X ∈ TM and ξ ∈ T⊥M.
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The Codazzi equation is given by

{R̃(X,Y)Z}⊥ = (∇Xσ)(Y,Z) − (∇Yσ)(X,Z), (2.3)

for any X,Y,Z ∈ TM, where {R̃(X,Y)Z}⊥ denotes the normal part of R̃(X,Y)Z and (∇Xσ)(Y,Z) is defined by

(∇Xσ)(Y,Z) = ∇⊥Xσ(Y,Z) − σ(∇XY,Z) − σ(Y,∇XZ) (2.4)

for any X,Y,Z ∈ TM ([6]).
The tensor field ∇σ is said to be symmetric if (∇Zσ)(Y,X) is symmetric with respect to any Z,Y,X ∈ TM

and the second fundamental form σ is said to be parallel if it satisfies ∇σ = 0.

Remark 2.1. The above definitions mean that the normal part of R̃(Z,Y)X is identically zero for any Z,Y,X ∈ TM,
that is, the Codazzi equation is zero.

Remark 2.2. In a Riemannian manifold M̃, a symmetric (0,2) tensor T is said to be a Codazzi type if (∇XT)(Y,Z) is
symmetric with respect to any X,Y,Z ∈ TM̃.

Definition 2.1. A submanifold M in an l.c.K.-manifold M̃ is called a CR-submanifold if there exists a differentiable
distributionD : x→Dx ⊂ TxM on M satisfying the following conditions;

(i)D is holomorphic, i.e., JDx = Dx for each x ∈M and
(ii) the complementary orthogonal distribution D⊥ : x → D⊥x ⊂ TxM is totally real, i.e., JD⊥x ⊂ T⊥x M for each

x ∈M, where TxM (resp. T⊥x M) denotes the tangent (resp. normal) vector space at x of M ([1]-[5],etc.).

In a CR-submanifold, the distributionD (resp. D⊥) is called a holomorphic (resp. totally real) distribution.
If dimD⊥x = 0 (resp. dimDx = 0) for each x ∈M, then the CR-submanifold is a holomorphic (resp. totally

real) submanifold. A CR-submanifold M is said to be anti-holomorphic if JD⊥x = T⊥x M for any x ∈M.
For a CR-submanifold M of an almost Hermitian manifold M̃, we denote by ν the complementary

orthogonal subbundle of JD⊥ in the normal bundle T⊥M. Then we have the following direct sum decom-
position

T⊥M = JD⊥ ⊕ ν, JD⊥⊥ν. (2.5)

Remark 2.3. By the definition of the distribution ν, a CR-submanifold in an l.c.K.-manifold is anti-holomorphic if
νx = {0} for any x ∈M.

In a CR-submanifold M of an l.c.K.-manifold M̃, let be dimD = 2p, dimD⊥ = q, dim M = n, dim ν = 2s and
dim M̃ = m. Then we know 2p + q = n and 2(p + q + s) = m.

Remark 2.4. We know that the dimensions of the distributionsD and ν are real even.

Now, we recall an adapted frame on M̃. We take a following local orthonormal frame on M̃,
(i) {e1, e2, ..., ep, e1∗ , e2∗ , ..., ep∗ } is a local orthonormal frame ofD,
(ii) {e2p+1, e2p+2, ..., e2p+q} is a local orthonormal frame ofD⊥,
(iii) {en+q+1, en+q+2, ...en+q+s, e(n+q+1)∗ , e(n+q+2)∗ , ..., e(n+q+s)∗ } is a local orthonormal frame of ν. Then we know
(iv) {e1, ..., ep, e1∗ , ..., ep∗ , e2p+1, ..., e2p+q} is a local orthonormal frame of TM,
(v) {e(2p+1)∗ , ..., e(2p+q)∗ , en+q+1, ..., en+q+s, e(n+q+1)∗ , ..., e(n+q+s)∗ } is a local orthonormal frame of T⊥M, where

ei∗ = Jei for any i ∈ {1, 2, ..., p}, e(2p+b)∗ = Je2p+a for any a ∈ {1, 2, ..., q} and e(n+q+α)∗ = Jen+q+α for any α ∈ {1, 2, ..., s}.
We call such a local orthonormal frame an adapted frame of M̃ ([9]).
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3. The Codazzi equation.

In this section, we consider the Codazzi equation in a CR-submanifold M in an l.c.K.-space form M̃(c).

Let M be a CR-submanifold in an l.c.K.-space form M̃(c). Then the curvature tensor R̃ is given by (1.6).
Thus, with respect to an adapted frame, {R̃(X,Y)Z}⊥ is written by



4R̃kjia∗ = 3(Pka∗δ ji − P ja∗δki) − Pkaδ j∗i + P jaδk∗i + 2Piaδk∗ j,

4R̃kjir = 3(Pkrδ ji − P jrδki) − Pk∗rδ j∗i + P j∗rδk∗i + 2Pi∗rδk∗ j,

2R̃kjba∗ = −cδk∗ jδba + Pk∗ jδba + Pbaδk∗ j,

2R̃kjbr = Pb∗rδk∗ j,

4R̃kbia∗ = −cδk∗iδba − 3Pba∗δki + Pk∗iδba + Pbaδk∗i,

4R̃kbir = −3Pbrδki + Pb∗rδk∗i,

4R̃kcba∗ = 3Pka∗δcb + Pk∗bδca + 2Pk∗cδba,

4R̃kcbr = 3Pkrδcb,

4R̃dcba∗ = 3(Pda∗δcb − Pca∗δdb) + Pd∗bδca − Pc∗bδda + 2Pd∗cδba,

4R̃dcbr = 3(Pdrδcb − Pcrδdb),

(3.1)

for any i, j, ..., k ∈ {1, 2, ..., 2p}, a, b, ..., d ∈ {2p + 1, 2p + 2, ..., 2p + q = n} and s, r ∈ {n + q + 1,n + q + 2,m}, where
we put R̃ωνµλ = R̃(eω, eν, eµ, eλ), Pµλ = P(eµ, eλ), etc. for any ω, ν, µ, λ ∈ {1, 2, ...,n} and we used the properties
of P and P̃.

By virtue of (2.4) and (3.1), we obtain



4{1̃((∇kσ) ji, ea∗ ) − 1̃((∇ jσ)ki, ea∗ )} = 3(Pka∗δ ji − P ja∗δki)
−Pkaδ j∗i + P jaδk∗i + 2Piaδk∗ j,

4{1̃((∇kσ) ji, er) − 1̃((∇ jσ)ki, er)} = 3(Pkrδ ji − P jrδki)
−Pk∗rδ j∗i + P j∗rδk∗i + 2Pi∗rδk∗ j,

2{1̃((∇kσ) jb, ea∗ ) − 1̃((∇ jσ)kb, ea∗ )} = −cδk∗ jδba

+(Pk∗ jδba + Pbaδk∗ j),
2{1̃((∇kσ) jb, er) − 1̃((∇ jσ)kb, er)} = Pb∗rδk∗ j,

4{1̃((∇kσ)bi, ea∗ ) − 1̃((∇bσ)ki, ea∗ )} = −cδk∗iδba − 3Pba∗δki,

4{1̃((∇kσ)bi, er) − 1̃((∇bσ)ki, er)} = −3Pbr + Pk∗rδk∗i,

4{1̃((∇kσ)cb, ea∗ ) − 1̃((∇cσ)kb, er)} = 3Pka∗δcb + Pkb∗δca + 2Pk∗cδba,

4{1̃((∇kσ)cb, er) − 1̃((∇cσ)kb, er)} = 3Pkrδcb,

4{1̃((∇dσ)cb, ea∗ ) − 1̃((∇cσ)db, ea∗ )} = 3(Pda∗δcb − Pca∗δdb)
+P̃dbδca − Pc∗bδda + 2Pdcδba,

4{1̃((∇dσ)cb, er) − 1̃((∇cσ)db, er)} = 3(Pdrδcb − Pcrδdb),

(3.2)

for any i, j, ..., k ∈ {1, 2, ..., 2p}, a, b, ..., d ∈ {2p + 1, 2p + 2, ..., 2p + q} and s, r ∈ {n + q + 1,n + q + 2,m}, where we
put σµλ = σ(eµ, eλ) and (∇νσ)µλ = (∇eνσ)(eµ, eλ) for any ν, µ, λ ∈ {1, 2, ...,n}.

Now, we assume that the submanifold M has the symmetric ∇σ, that is, σ is a Codazzi type. Then we
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have from (3.2)

3(Pka∗δ ji − P ja∗δki) − Pkaδ j∗i + P jaδk∗i + 2Piaδk∗ j = 0,
3(Pkrδ ji − P jrδki) − Pk∗rδ j∗i + P j∗rδk∗i + 2Pi∗rδk∗ j = 0,
cδk∗ jδba − (Pk∗ jδba + Pbaδk∗ j) = 0,
Pb∗rδk∗ j = 0,
cδk∗iδba + 3Pba∗δki − Pk∗iδba − Pb∗a∗ = 0,
Pbrδki − Pb∗rδk∗i = 0,
3Pka∗δcb + Pkb∗δca + 2Pk∗cδba = 0,
3Pkrδcb = 0,
3(Pda∗δcb − Pca∗δdb) + Pd∗bδca − Pc∗bδda + 2Pd∗cδba = 0,
Pdrδcb − Pcrδdb = 0.

(3.3)

By virtue of (3.3)3), we can easily see

P j∗i∗ = Fδ ji, Pba = Gδba (3.4)

for any i, j, ..., k ∈ {1, 2, ..., p}, a, b, ..., d ∈ {2p + 1, 2p + 2, ..., 2p + q}, where F and G denote the eigenfunctions of
P which are given by

F =
cq − Pb

b

q
, G =

cp − Pk
k

p
.

In particular, for any i, j, ..., k ∈ {1, 2, ..., p}, a, b, ..., d ∈ {2p+1, 2p+2, ..., 2p+q} and s, r ∈ {n+q+1,n+q+2,m},
the equation (3.3) is written as

Pka∗δ ji − P ja∗δki = 0,
Pkrδ ji − P jrδki = 0,
Pk∗ j = 0, Pbr = 0, Pkr = 0,
3Pba∗δki − Pk∗iδba = 0,
3Pka∗δcb + Pkb∗δca + 2Pk∗cδba = 0,
3(Pda∗δcb − Pca∗δdb) + Pd∗bδca − Pc∗bδda + 2Pd∗cδba = 0,
Pdrδcb − Pcrδdb = 0,

(3.3)′

Using (1.8), the tensor field P satisfies

P j∗i∗ = P ji, P j∗a = P ja∗ , P j∗r = P jr∗ , Pb∗a∗ = Pba (3.5)

for any j, i ∈ {1, 2, ..., p}, b, a ∈ {2p + 1, 2p + 2, ..., 2p + q = n} and r ∈ {n + q + 1,n + q + 2, ...,m}.
By virtue of (3.3)′ and the above relations, we obtain

P j∗i = 0, P ja = 0, Pk∗a = 0, Pkr = 0, Pba∗ = 0, Pbr = 0. (3.6)

As a result, the tensor field Pµλ is expressed as

(Pµλ) =


P ji P ji∗ P ja P ja∗ P jr
P j∗i P j∗i∗ P j∗a P j∗a∗ P j∗r
Pbi Pbi∗ Pba Pba∗ Pbr
Pb∗i Pb∗i∗ Pb∗a Pb∗a∗ Pb∗r
Pri Pri∗ Pra Pra∗ Psr

 =


P ji P ji∗ P ja P ja∗ P jr
P j∗i P ji P j∗a P j∗a∗ P j∗r
Pbi Pbi∗ Pba Pba∗ Pbr
Pb∗i Pb∗i∗ Pb∗a Pba Pb∗r
Pri Pri∗ Pra Pra∗ Psr

 (3.7)
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=



F 0 . . . 0 0 . . . . . . 0 0 . . . 0
0 F 0 . . . 0 . . . . . . 0 0 . . . 0
...

...
. . .

...
...

...
...

...
...

...
...

0 . . . 0 F 0 . . . . . . 0 0 . . . 0
0 . . . . . . 0 G 0 . . . 0 0 . . . 0
0 . . . . . . 0 0 G 0 . . . . . . . . . 0
...

...
...

...
...

...
. . .

...
...

...
...

0 . . . . . . 0 0 . . . 0 G 0 . . . 0
0 . . . . . . 0 0 . . . . . . 0 Psr


.

Thus we have from (3.7)

Theorem 3.1. In a CR-submanifold M with the symmetric ∇σ in an l.c.K.-space form M̃(c), the tensor field Pµλ
is expressed by (3.7). In particular, if M is anti-holomorphic, then the matrix (Pµλ) is a diagonal one with two
eigenfunctions F and G.

By virtue of (1.7) and (3.7), we know

P ji = −∇̃ jαi − α jαi +
1
2
‖α‖2δ ji = Fδ ji, (3.8)

that is,

∇̃ jαi = −α jαi + (
1
2
‖α‖2 − F)δ ji. (3.8)′

The covariant differentiation of (3.8), (3.8)′ and the Bianchi identity give us

R̃kji
AαA = (

1
2
‖α‖2 − F)(α jδki − αkδ ji) − (

1
2
∇̃k‖α‖

2
− Fk)δ ji + (

1
2
∇̃ j‖α‖

2
− F j)δki, (3.9)

where we put F j = ∇̃ jF and the suffix A run over the range 1, 2, ...,m.
Next, using (1.6) and (3.7), we find

4R̃kjih = (c + 6F)(δkhδ ji − δkiδ jh) + (c − 2F){1̃(Jek, eh)1̃(Je j, ei)
−1̃(Jek, ei)1̃(Je j, eh) − 21̃(Jek, e j)1̃(Jei, eh)},

R̃kjia = 0, R̃kjia∗ = 0, R̃kjir = 0,
(3.10)

for any k, j, i, h ∈ {1, 2, ..., 2p}, a ∈ {2p + 1, 2p + 2, ..., 2p + q} and r ∈ {n + q + 1,n + q + 2, ...,m}.
From (3.10)1), for any k, j, i, h ∈ {1, 2, ..., p}, we know

4R̃kjih = R̃k∗ j∗i∗h∗ = (c + 6F)(δkhδ ji − δkiδ jh). (3.11)

On the other hand, we have from (3.10)

R̃kjiAα
A =R̃kjihα

h =
c + 6F

4
(αkδ ji − α jδkh) +

c − 2F
4
{1̃(Je j, ei)1̃(Jek, eh)αh

− 1̃(Jek, ei)1̃(Je j, eh)αh
− 21̃(Jek, e j)1̃(Jei, eh)αh

}

(3.12)

for any A ∈ {1, 2, ...,m} and k, j, i, h ∈ {1, 2, ..., 2p}.
By virtue of (3.9) and (3.12), we obtain

(
1
2
‖α‖2 +

c + 2F
4

)(α jδki − αkδ ji) + (
1
2
∇̃ j‖α‖

2
− F j)δki − (

1
2
∇̃k‖α‖

2
− Fk)δ ji

=
2F − c

4
{1̃(Je j, ei)1̃(Jek, eh)αh

− 1̃(Jek, ei)1̃(Je j, eh)αh
− 21̃(Jek, e j)1̃(Jei, eh)αh

(3.13)
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for any k, j, i ∈ {1, 2, ..., 2p}.
In particular, for k, j, i ∈ {1, 2, ..., p} or k, j, i ∈ {p + 1, p + 2, ..., 2p}, the above equation implies

(
1
2
‖α‖2 +

c + 2F
4

)(α jδki − αkδ ji) + (
1
2
∇̃ j‖α‖

2
− F j)δki − (

1
2
∇̃k‖α‖

2
− Fk)δ ji = 0. (3.14)

Thus, we have from the above equation

1
2
∇̃ j‖α‖

2
− F j = −(

1
2
‖α‖2 +

c + 2F
4

)α j (3.15)

for any j ∈ {1, 2, ..., p} if p , 1. For k, j, i ∈ {p + 1, p + 2, ..., 2p}, we have the same equation with (3.15). Thus,
we have (3.15) for any j ∈ {1, 2, ..., 2p}, if p , 1, Thus, by virtue of (3.13) and (3.15), we have

(2F − c){1̃(Je j, ei)1̃(Jek, eh)αh
− 1̃(Jek, ei)1̃(Je j, eh)αh

− 21̃(Jek, e j)1̃(Jei, eh)αh
} = 0.

From this, we know F = c
2 or αi = 0 for any i ∈ {1, 2, ..., 2p}. In the case of αi = 0 for any i ∈ {1, 2, ..., 2p}, we

have from Pbi = 0 ∇̃iαb = 0, that is, the vector field αb is parallel inD. Thus we have from the definition of F

Theorem 3.2. If a CR-submanifold M in an l.c.K.-space form tildeM(c) has the symmetric ∇σ and p , 1, then we
have

(i) the eigenfunction F of P is constant (= c
2 ) or

(ii) the Lee vector field α] is orthogonal with to D and the Lee vector field αb is parallel in D for any b ∈
{2p + 1, 2p + 2, ..., 2p + q} .

Next, we assume that the Lee vector field α] is orthogonal toD.
From (3.7), we have Pba = Gδba, that is,

∇̃cαb = −αcαb + (
1
2
‖α‖2 − G)δcb. (3.16)

Similarly with the last case, we have from (3.16) and Bianchi identity

R̃dcb
AαA = (

1
2
‖α‖2 − G)(αcδdb − αdδca) − (

1
2
∇̃d‖α‖

2
− Gd)δcb + (

1
2
∇̃c‖α‖

2
− Gc)δdb, (3.17)

where we put Ga = ∇̃aG for any a ∈ {2p + 1, 2p + 2, ..., 2p + q = n}.
By virtue of (1.6) and (3.7), we haveR̃dcba = 6G+c

4 (δdaδcb − δdbδca),
R̃dcbh = R̃dcba∗ = R̃dcbr = 0.

(3.18)

From (3.18), we have

R̃dcbaα
a =

6G + c
4

(δcbαd − δdbαc). (3.19)

Thus we have from (3.17) and (3.19)

1
2

(G + ‖α‖2 +
1
2

c)(δdbαc − δcbαd) = (
1
2
∇̃d‖α‖

2
− Gd)δcb − (

1
2
∇̃c‖α‖

2
− Gc)δdb. (3.20)

The contraction of the above equation by c and b gives us

1
2
∇̃d‖α‖

2
− Gd = −

1
2

(G + ‖α‖2 +
1
2

c)αd, (3.21)

if q , 1.
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On the other hand, we know from (3.16)

∇̃d‖αD⊥‖
2 = 2(

1
2
‖α‖2 − G − ‖αD⊥‖2)αd,

where αD⊥ denotes theD⊥-component of α. Moreover, we have from (3.7), using Pba∗ = 0

∇̃d‖αJD⊥‖
2 = −2‖αJD⊥‖

2αd,

where αJD⊥ is the JD⊥-component of α. From the above 2 equations, we obtain

∇̃d‖αD⊥+JD⊥‖
2 = 2(

1
2
‖α‖2 − G − ‖αD⊥+JD⊥‖

2)αd. (3.22)

Now, we assume that the submanifold M is anti-holomorphic (ν = {0}), then αD⊥+JD⊥ = α. In this case, the
equation (3.22) is written as

∇̃d‖α‖
2 = −2(G +

‖α‖2

2
)αd.

Substituting the above equation into (3.21), we get

∇̃dG =
1
2

(c − G)αd (3.23)

By the similar calculation with the last case, we obtain

∇̃d∗G =
1
2

(c − G)αd∗ . (3.24)

Theorem 3.3. In an anti-holomorphic CR-submanifold M in an l.c.K.-space form M̃(c), if the second fundamental
form σ is the Codazzi type, the dimension of D⊥ is not one and the Lee vector field α] is orthogonal to D, then the
eigen function G satisfies (3.23) and (3.24). In particular, if the function G is constant, then G = c.
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