$C R$-Submanifolds with the Symmetric $\nabla \sigma$ in a Locally Conformal Kaehler Space Form

Koji Matsumoto ${ }^{\text {a }}$
a2-3-65 Nishi-Odori, Yonezawa, Yamagata, 992-0059, Japan

Abstract

In this paper, we consider $C R$-submanifolds with the symmetric $\nabla \sigma$ which is a generalization of parallel second fundamental form, in a locally conformal Kaehler space form. About the symmetric tensor field P defined in (1.7), we show that, in an anti-holomorphic submanifold in an l.c.K.-space form, P is diagonal with respect to an adapted frame and has two eigenfunctions (See Theorem 3.1). Finally, we consider the relation of the eigenfunctions of P and the Lee form (See Theorems 3.2 and 3.3).

1. Locally conformal Kaehler manifolds.

A Hermitian manifold \tilde{M} with structure (J, \tilde{g}) is called a locally conformal Kaehler (an 1.c.K.-) manifold if each point $x \in \tilde{M}$ has an open neighbourhood U with a positive differentiable function $\rho: U \rightarrow \mathcal{R}$ such that $\tilde{g}^{*}=e^{-2 \rho} \tilde{g}_{\mid U}$ is a Kaehlerian metric on U, that is, $\nabla^{*} J=0$, where J is the almost complex structure, \tilde{g} is the Hermitian metric, ∇^{*} is the covariant differentiation with respect to $\tilde{g}^{*}, \tilde{g}_{\mid U}$ is the restriction of \tilde{g} to U and \mathcal{R} is a real number space ([8] -[10],[13], etc.).

Remark 1.1. We know that a typical example of a compact l.c.K.-manifold is a Hopf manifold which has no Kaehler structure ([11],[12]) and examples of non-compact case are in [7].

Then the following useful proposition is wellknown ([8]);
Proposition 1.1. A Hermitian manifold \tilde{M} with structure (J, \tilde{g}) is l.c.K.- if and only if there exists a global 1-form α which is called the Lee form satisfying

$$
\begin{align*}
& J^{2}=-I, \tag{1.1}\\
& \tilde{g}(J V, J U)=\tilde{g}(V, U), \tag{1.2}\\
& N_{J}(V, U)=0, \tag{1.3}\\
& d \alpha=0 \quad(\alpha: \text { closed }), \tag{1.4}\\
& \left(\tilde{\nabla}_{V} J\right) U=-\tilde{g}\left(\alpha^{\sharp}, U\right) J V+\tilde{g}(V, U) \beta^{\sharp}+\tilde{g}(J V, U) \alpha^{\sharp}-\tilde{g}\left(\beta^{\sharp}, U\right) V \tag{1.5}
\end{align*}
$$

[^0]for any $V, U \in T \tilde{M}$, where $\tilde{\nabla}$ denotes the covariant differentiation with respect to \tilde{g}, α^{\sharp} is the dual vector field of α which is called the Lee vector field, the 1 -form β is defined by $\beta(X)=-\alpha(J X), \beta^{\sharp}$ is the dual vector field of $\beta, T \tilde{M}$ means the tangent bundle of \tilde{M} and N_{J} denotes the Nijenhuis tensor with respect to J which is defined by
$$
N_{J}(V, U)=[J V, J U]-J[J V, U]-J[V, J U]+J^{2}[V, U]([14]) .
$$

We write such a manifold $\tilde{M}(J, \tilde{g}, \alpha)$.
An l.c.K.-manifold $\tilde{M}(J, \tilde{g}, \alpha)$ is called an l.c.K.-space form if it has a constant holomorphic sectional curvature, that is, $\tilde{R}(J U, U, U, J U)=$ constant for any unit $U \in T \tilde{M}$, where \tilde{R} is the Riemannian curvature tensor with respect to \tilde{g}. Then we know that the tensor \tilde{R} of an l.c.K.-space form with the constant holomorphic sectional curvature c is given by ([8])

$$
\begin{align*}
4 \tilde{R}(W, Z, V, U) & =c\{\tilde{g}(W, U) \tilde{g}(Z, V)-\tilde{g}(W, V) \tilde{g}(Z, U)+\tilde{g}(J W, U) \tilde{g}(J Z, V)-\tilde{g}(J W, V) \tilde{g}(J Z, U) \\
& -2 \tilde{g}(J W, Z) \tilde{g}(J V, U)\}+3\{P(W, U) \tilde{g}(Z, V)-P(W, V) \tilde{g}(Z, U)+\tilde{g}(W, U) P(Z, V) \tag{1.6}\\
& -\tilde{g}(W, V) P(Z, U)\}-\tilde{P}(W, U) \tilde{g}(J Z, V)+\tilde{P}(W, V) \tilde{g}(J Z, U)-\tilde{g}(J W, U) \tilde{P}(Z, V)
\end{align*}
$$

for any $W, Z, V, U \in T \tilde{M}$, where P and \tilde{P} are respectively defined by

$$
\begin{equation*}
P(V, U)=-\left(\tilde{\nabla}_{V} \alpha\right) U-\alpha(V) \alpha(U)+\frac{1}{2}\|\alpha\|^{2} \tilde{g}(V, U) \tag{1.7}
\end{equation*}
$$

and

$$
\begin{equation*}
\tilde{P}(V, U)=P(J V, U) \tag{1.8}
\end{equation*}
$$

for any $V, U \in T \tilde{M}$, where $\|\alpha\|$ is the length of the Lee vector field α^{\sharp} with respect to \tilde{g}, that is, $\|\alpha\|^{2}=\tilde{g}\left(\alpha^{\sharp}, \alpha^{\sharp}\right)$.
Remark 1.2. To get (1.6), we have to assume that the symmetric (0,2)-tensor P is hybrid or equivalently \tilde{P} is skew-symmetric. This means that the Ricci tensor \tilde{R}_{1} with respect to \tilde{g} is hybrid.

Remark 1.3. We know that a Hopf manifold is an l.c.K.-space form with the parallel Lee form $(\nabla \alpha=0)$. And it has no hybrid P. But, we don't know the representation of the Riemannian curvature tensor of an l.c.K.-space form with non hybrid P.

We write $\tilde{M}(c)$ an l.c.K.-space form with the constant holomorphic sectional curvature c.

2. $C R$-submanifolds in an l.c.K.-manifold.

In generally, between a Riemannian manifold (\tilde{M}, \tilde{g}) and its Riemannian submanifold M, the Gauss and the Weingarten formulas are respectively given by

$$
\begin{equation*}
\tilde{\nabla}_{X} Y=\nabla_{X} Y+\sigma(X, Y) \tag{2.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\tilde{\nabla}_{X} \xi=-A_{\xi} X+\nabla_{X}^{\perp} \xi \tag{2.2}
\end{equation*}
$$

for any $X, Y \in T M$ and $\xi \in T^{\perp} M$, where σ is the second fundamental form, A_{ξ} is the shape operator with respect to ξ, ∇^{\perp} is the normal connection and $T^{\perp} M$ is the normal bundle of $M([6])$. The second fundamental form σ and the shape operator A are related by

$$
\tilde{g}\left(A_{\xi} Y, X\right)=\tilde{g}(\sigma(Y, X), \xi)
$$

for any $Y, X \in T M$ and $\xi \in T^{\perp} M$.

The Codazzi equation is given by

$$
\begin{equation*}
\{\tilde{R}(X, Y) Z\}^{\perp}=\left(\nabla_{X} \sigma\right)(Y, Z)-\left(\nabla_{Y \sigma}\right)(X, Z) \tag{2.3}
\end{equation*}
$$

for any $X, Y, Z \in T M$, where $\{\tilde{R}(X, Y) Z\}^{\perp}$ denotes the normal part of $\tilde{R}(X, Y) Z$ and $\left(\nabla_{X} \sigma\right)(Y, Z)$ is defined by

$$
\begin{equation*}
\left(\nabla_{X} \sigma\right)(Y, Z)=\nabla_{X}^{\perp} \sigma(Y, Z)-\sigma\left(\nabla_{X} Y, Z\right)-\sigma\left(Y, \nabla_{X} Z\right) \tag{2.4}
\end{equation*}
$$

for any $X, Y, Z \in T M$ ([6]).
The tensor field $\nabla \sigma$ is said to be symmetric if $\left(\nabla_{Z \sigma}\right)(Y, X)$ is symmetric with respect to any $Z, Y, X \in T M$ and the second fundamental form σ is said to be parallel if it satisfies $\nabla \sigma=0$.

Remark 2.1. The above definitions mean that the normal part of $\tilde{R}(Z, Y) X$ is identically zero for any $Z, Y, X \in T M$, that is, the Codazzi equation is zero.

Remark 2.2. In a Riemannian manifold \tilde{M}, a symmetric (0,2) tensor T is said to be a Codazzi type if $\left(\nabla_{X} T\right)(Y, Z)$ is symmetric with respect to any $X, Y, Z \in T \tilde{M}$.

Definition 2.1. A submanifold M in an l.c.K.-manifold \tilde{M} is called a $C R$-submanifold if there exists a differentiable distribution $\mathcal{D}: x \rightarrow \mathcal{D}_{x} \subset T_{x} M$ on M satisfying the following conditions;
(i) \mathcal{D} is holomorphic, i.e., $J \mathcal{D}_{x}=D_{x}$ for each $x \in M$ and
(ii) the complementary orthogonal distribution $\mathcal{D}^{\perp}: x \rightarrow \mathcal{D}_{x}^{\perp} \subset T_{x} M$ is totally real, i.e., $J \mathcal{D}_{x}^{\perp} \subset T_{x}^{\perp} M$ for each $x \in M$, where $T_{x} M\left(\right.$ resp. $\left.T_{x}^{\perp} M\right)$ denotes the tangent (resp. normal) vector space at x of M ([1]-[5],etc.).

In a $C R$-submanifold, the distribution \mathcal{D} (resp. \mathcal{D}^{\perp}) is called a holomorphic (resp. totally real) distribution.
If $\operatorname{dim} \mathcal{D}_{x}^{\perp}=0$ (resp. $\operatorname{dim} \mathcal{D}_{x}=0$) for each $x \in M$, then the $C R$-submanifold is a holomorphic (resp. totally real) submanifold. A CR-submanifold M is said to be anti-holomorphic if $J \mathcal{D}_{x}^{\perp}=T_{x}^{\perp} M$ for any $x \in M$.

For a $C R$-submanifold M of an almost Hermitian manifold \tilde{M}, we denote by v the complementary orthogonal subbundle of $J D^{\perp}$ in the normal bundle $T^{\perp} M$. Then we have the following direct sum decomposition

$$
\begin{equation*}
T^{\perp} M=J \mathcal{D}^{\perp} \oplus v, \quad J \mathcal{D}^{\perp} \perp v . \tag{2.5}
\end{equation*}
$$

Remark 2.3. By the definition of the distribution v, a $C R$-submanifold in an l.c.K.-manifold is anti-holomorphic if $v_{x}=\{0\}$ for any $x \in M$.

In a $C R$-submanifold M of an 1.c.K.-manifold \tilde{M}, let be $\operatorname{dim} \mathcal{D}=2 p, \operatorname{dim} \mathcal{D}^{\perp}=q, \operatorname{dim} M=n, \operatorname{dim} v=2 s$ and $\operatorname{dim} \tilde{M}=m$. Then we know $2 p+q=n$ and $2(p+q+s)=m$.

Remark 2.4. We know that the dimensions of the distributions \mathcal{D} and v are real even.
Now, we recall an adapted frame on \tilde{M}. We take a following local orthonormal frame on \tilde{M},
(i) $\left\{e_{1}, e_{2}, \ldots, e_{p}, e_{1^{1}}, e_{2^{2}}, \ldots, e_{p^{p}}\right\}$ is a local orthonormal frame of \mathcal{D},
(ii) $\left\{e_{2 p+1}, e_{2 p+2}, \ldots, e_{2 p+q}\right\}$ is a local orthonormal frame of \mathcal{D}^{\perp},
(iii) $\left\{e_{n+q+1}, e_{n+q+2}, \ldots e_{n+q+s}, e_{(n+q+1)^{\prime}}, e_{(n+q+2)^{r}}, \ldots, e_{(n+q+s)^{\prime}}\right\}$ is a local orthonormal frame of v. Then we know
(iv) $\left\{e_{1}, \ldots, e_{p}, e_{1^{*}}, \ldots, e_{p^{*}}, e_{2 p+1}, \ldots, e_{2 p+q}\right\}$ is a local orthonormal frame of $T M$,
(v) $\left\{e_{(2 p+1)^{1}}, \ldots, e_{(2 p+q)^{\prime}}, e_{n+q+1}, \ldots, e_{n+q+s}, e_{(n+q+1)^{2}}, \ldots, e_{(n+q+5)}\right\}$ is a local orthonormal frame of $T^{\perp} M$, where $e_{i^{*}}=J e_{i}$ for any $i \in\{1,2, \ldots, p\}, e_{(2 p+b)^{*}}=J e_{2 p+a}$ for any $a \in\{1,2, \ldots, q\}$ and $e_{(n+q+\alpha)^{*}}=J e_{n+q+\alpha}$ for any $\alpha \in\{1,2, \ldots, s\}$. We call such a local orthonormal frame an adapted frame of \tilde{M} ([9]).

3. The Codazzi equation.

In this section, we consider the Codazzi equation in a $C R$-submanifold M in an l.c.K.-space form $\tilde{M}(c)$.
Let M be a $C R$-submanifold in an l.c.K.-space form $\tilde{M}(c)$. Then the curvature tensor \tilde{R} is given by (1.6). Thus, with respect to an adapted frame, $\{\tilde{R}(X, Y) Z\}^{\perp}$ is written by

$$
\left\{\begin{array}{l}
4 \tilde{R}_{k j i a^{*}}=3\left(P_{k a^{*}} \delta_{j i}-P_{j a^{*}} \delta_{k i}\right)-P_{k a} \delta_{j^{*} i}+P_{j a} \delta_{k^{*} i}+2 P_{i a} \delta_{k^{*} j}, \\
4 \tilde{R}_{k j i r}=3\left(P_{k r} \delta_{j i}-P_{j r} \delta_{k i}\right)-P_{k^{*} r} \delta_{j^{*} i}+P_{j^{*} r} \delta_{k^{*} i}+2 P_{i^{*} r} \delta_{k^{*} j}, \\
2 \tilde{R}_{k j b a^{*}}=-c \delta_{k^{*} j} \delta_{b a}+P_{k^{*} j} \delta_{b a}+P_{b a} \delta_{k^{*} j}, \\
2 \tilde{R}_{k j b r}=P_{b^{*} r} \delta_{k^{*} j}, \\
4 \tilde{R}_{k b i a^{*}}=-c \delta_{k^{*} i} \delta_{b a}-3 P_{b a^{*}} \delta_{k i}+P_{k^{*} i} \delta_{b a}+P_{b a} \delta_{k^{*} i}, \tag{3.1}\\
4 \tilde{R}_{k b i r}=-3 P_{b r} \delta_{k i}+P_{b^{*} r} \delta_{k^{*} i} \\
4 \tilde{R}_{k c b a^{*}}=3 P_{k a^{*}} \delta_{c b}+P_{k^{*} b} \delta_{c a}+2 P_{k^{*} c} \delta_{b a,} \\
4 \tilde{R}_{k c b r}=3 P_{k r} \delta_{c b}, \\
4 \tilde{R}_{d c b a^{*}}=3\left(P_{d a^{*}} \delta_{c b}-P_{c a^{*}} \delta_{d b}\right)+P_{d^{*} b} \delta_{c a}-P_{c^{*} b} \delta_{d a}+2 P_{d^{*} c} \delta_{b a r} \\
4 \tilde{R}_{d c b r}=3\left(P_{d r} \delta_{c b}-P_{c r} \delta_{d b}\right),
\end{array}\right.
$$

for any $i, j, \ldots, k \in\{1,2, \ldots, 2 p\}, a, b, \ldots, d \in\{2 p+1,2 p+2, \ldots, 2 p+q=n\}$ and $s, r \in\{n+q+1, n+q+2, m\}$, where we put $\tilde{R}_{\omega v \mu \lambda}=\tilde{R}\left(e_{\omega}, e_{v}, e_{\mu}, e_{\lambda}\right), P_{\mu \lambda}=P\left(e_{\mu}, e_{\lambda}\right)$, etc. for any $\omega, v, \mu, \lambda \in\{1,2, \ldots, n\}$ and we used the properties of P and \tilde{P}.

By virtue of (2.4) and (3.1), we obtain

$$
\left\{\begin{array}{l}
4\left\{\tilde{g}\left(\left(\nabla_{k} \sigma\right)_{j i}, e_{a^{*}}\right)-\tilde{g}\left(\left(\nabla_{j} \sigma\right)_{k i}, e_{a^{*}}\right)\right\}=3\left(P_{k a^{*}} \delta_{j i}-P_{j a^{*}} \delta_{k i}\right) \tag{3.2}\\
\quad \quad-P_{k a} \delta_{j^{*} i}+P_{j a} \delta_{k^{*} i}+2 P_{i a} \delta_{k^{*} j}, \\
4\left\{\tilde{g}\left(\left(\nabla_{k} \sigma\right)_{j i}, e_{r}\right)-\tilde{g}\left(\left(\nabla_{j} \sigma\right)_{k i}, e_{r}\right)\right\}=3\left(P_{k r} \delta_{j i}-P_{j r} \delta_{k i}\right) \\
\quad-P_{k^{*} r} \delta_{j^{*} i}+P_{j^{*} r} \delta_{k^{*} i}+2 P_{i^{*} r} \delta_{k^{*} j}, \\
2\left\{\tilde{g}\left(\left(\left(\nabla_{k} \sigma\right)_{j b}, e_{a^{*}}\right)-\tilde{g}\left(\left(\nabla_{j} \sigma\right)_{k b}, e_{a^{*}}\right)\right\}=-c \delta_{k^{*} j} \delta_{b a}\right. \\
\quad \quad+\left(P_{k^{*} j} \delta_{b a}+P_{b a} \delta_{k^{*} j}\right), \\
2\left\{\tilde{g}\left(\left(\nabla_{k} \sigma\right)_{j b}, e_{r}\right)-\tilde{g}\left(\left(\nabla_{j} \sigma\right)_{k b}, e_{r}\right)\right\}=P_{b^{*} r} \delta_{k^{*} j}, \\
4\left\{\tilde{g}\left(\left(\nabla_{k} \sigma\right)_{b i}, e_{a^{*}}\right)-\tilde{g}\left(\left(\nabla_{b} \sigma\right)_{k i}, e_{a^{*}}\right)\right\}=-c \delta_{k^{*} i} \delta_{b a}-3 P_{b a^{*}} \delta_{k i}, \\
4\left\{\tilde{g}\left(\left(\nabla_{k} \sigma\right)_{b i}, e_{r}\right)-\tilde{g}\left(\left(\nabla_{b} \sigma\right)_{k i}, e_{r}\right)\right\}=-3 P_{b r}+P_{k^{*} r} \delta_{k^{*} i}, \\
4\left\{\tilde{g}\left(\left(\nabla_{k} \sigma\right)_{c b}, e_{a^{*}}\right)-\tilde{g}\left(\left(\nabla_{c} \sigma\right)_{k b}, e_{r}\right)\right\}=3 P_{k k^{*}} \delta_{c b}+P_{k b^{*}} \delta_{c a}+2 P_{k^{*} c} \delta_{b a r} \\
4\left\{\tilde{g}\left(\left(\nabla_{k} \sigma\right)_{c b}, e_{r}\right)-\tilde{g}\left(\left(\nabla_{c} \sigma\right)_{k b}, e_{r}\right)\right\}=3 P_{k r} \delta_{c b}, \\
4\left\{\tilde{g}\left(\left(\nabla_{d} \sigma\right)_{c b}, e_{a^{*}}\right)-\tilde{g}\left(\left(\nabla_{c} \sigma\right)_{d b}, e_{a^{*}}\right)\right\}=3\left(P_{d a^{*}} \delta_{c b}-P_{c a^{*}} \delta_{d b}\right) \\
\quad+\tilde{P}_{d b} \delta_{c a}-P_{c^{*} *} \delta_{d a}+2 P_{d c} \delta_{b a,} \\
4\left\{\tilde{g}\left(\left(\nabla_{d} \sigma\right)_{c b}, e_{r}\right)-\tilde{g}\left(\left(\nabla_{c} \sigma\right)_{d b}, e_{r}\right)\right\}=3\left(P_{d r} \delta_{c b}-P_{c r} \delta_{d b}\right),
\end{array}\right.
$$

for any $i, j, \ldots, k \in\{1,2, \ldots, 2 p\}, a, b, \ldots, d \in\{2 p+1,2 p+2, \ldots, 2 p+q\}$ and $s, r \in\{n+q+1, n+q+2, m\}$, where we put $\sigma_{\mu \lambda}=\sigma\left(e_{\mu}, e_{\lambda}\right)$ and $\left(\nabla_{\nu} \sigma\right)_{\mu \lambda}=\left(\nabla_{e_{\nu}} \sigma\right)\left(e_{\mu}, e_{\lambda}\right)$ for any $v, \mu, \lambda \in\{1,2, \ldots, n\}$.

Now, we assume that the submanifold M has the symmetric $\nabla \sigma$, that is, σ is a Codazzi type. Then we
have from (3.2)

$$
\left\{\begin{array}{l}
3\left(P_{k a^{*}} \delta_{j i}-P_{j a^{*}} \delta_{k i}\right)-P_{k a} \delta_{j^{*} i}+P_{j a} \delta_{k^{*} i}+2 P_{i a} \delta_{k^{*} j}=0, \tag{3.3}\\
3\left(P_{k r} \delta_{j i}-P_{j r} \delta_{k i}\right)-P_{k^{*} r} \delta_{j^{*} i}+P_{j^{*} r} \delta_{k^{*} i}+2 P_{i^{*} r} \delta_{k^{*} j}=0, \\
c \delta_{k^{*} j} \delta_{b a}-\left(P_{k^{*} j} \delta_{b a}+P_{b a} \delta_{k^{*} j}\right)=0, \\
P_{b^{*} r} \delta_{k^{*} j}=0, \\
c \delta_{k^{*} i} \delta_{b a}+3 P_{b a^{*}} \delta_{k i}-P_{k * i} \delta_{b a}-P_{b^{*} a^{*}}=0, \\
P_{b r} \delta_{k i}-P_{b^{*} r} \delta_{k^{*} i}=0, \\
3 P_{k a^{*}} \delta_{c b}+P_{k b^{*}} \delta_{c a}+2 P_{k^{*} c} \delta_{b a}=0, \\
3 P_{k r} \delta_{c b}=0 \\
3\left(P_{d a^{*}} \delta_{c b}-P_{c a^{*}} \delta_{d b}\right)+P_{d^{*} b} \delta_{c a}-P_{c^{*} b} \delta_{d a}+2 P_{d^{*} c} \delta_{b a}=0, \\
P_{d r} \delta_{c b}-P_{c r} \delta_{d b}=0
\end{array}\right.
$$

By virtue of $(3.3)_{3}$, we can easily see

$$
\begin{equation*}
P_{j^{+t^{*}}}=F \delta_{j i}, \quad P_{b a}=G \delta_{b a} \tag{3.4}
\end{equation*}
$$

for any $i, j, \ldots, k \in\{1,2, \ldots, p\}, a, b, \ldots, d \in\{2 p+1,2 p+2, \ldots, 2 p+q\}$, where F and G denote the eigenfunctions of P which are given by

$$
F=\frac{c q-P_{b}{ }^{b}}{q}, \quad G=\frac{c p-P_{k}^{k}}{p} .
$$

In particular, for any $i, j, \ldots, k \in\{1,2, \ldots, p\}, a, b, \ldots, d \in\{2 p+1,2 p+2, \ldots, 2 p+q\}$ and $s, r \in\{n+q+1, n+q+2, m\}$, the equation (3.3) is written as

$$
\left\{\begin{array}{l}
P_{k a^{*}} \delta_{j i}-P_{j a^{*}} \delta_{k i}=0 \tag{3.3}\\
P_{k r} \delta_{j i}-P_{j r} \delta_{k i}=0, \\
P_{k^{*} j}=0, \quad P_{b r}=0, \quad P_{k r}=0 \\
3 P_{b a^{*}} \delta_{k i}-P_{k * i} \delta_{b a}=0 \\
3 P_{k a^{*}} \delta_{c b}+P_{k b^{*}} \delta_{c a}+2 P_{k^{*} c} \delta_{b a}=0 \\
3\left(P_{d a^{*}} \delta_{c b}-P_{c a^{*}} \delta_{d b}\right)+P_{d^{*} b} \delta_{c a}-P_{c^{*} b} \delta_{d a}+2 P_{d^{*} c} \delta_{b a}=0 \\
P_{d r} \delta_{c b}-P_{c r} \delta_{d b}=0
\end{array}\right.
$$

Using (1.8), the tensor field P satisfies

$$
\begin{equation*}
P_{j^{*} t^{*}}=P_{j i}, \quad P_{j^{*} a}=P_{j a^{*}}, \quad P_{j^{*} r}=P_{j r^{*}}, \quad P_{b^{*} a^{*}}=P_{b a} \tag{3.5}
\end{equation*}
$$

for any $j, i \in\{1,2, \ldots, p\}, b, a \in\{2 p+1,2 p+2, \ldots, 2 p+q=n\}$ and $r \in\{n+q+1, n+q+2, \ldots, m\}$.
By virtue of (3.3)' and the above relations, we obtain

$$
\begin{equation*}
P_{j^{*} i}=0, \quad P_{j a}=0, \quad P_{k^{*} a}=0, \quad P_{k r}=0, \quad P_{b a^{*}}=0, \quad P_{b r}=0 \tag{3.6}
\end{equation*}
$$

As a result, the tensor field $P_{\mu \lambda}$ is expressed as

$$
\left(P_{\mu \lambda}\right)=\left(\begin{array}{ccccc}
P_{j i} & P_{j i^{*}} & P_{j a} & P_{j a^{*}} & P_{j r} \tag{3.7}\\
P_{j^{*} i} & P_{j^{*} t^{*}} & P_{j^{*} a} & P_{j^{*} a^{*}} & P_{j^{*} r} \\
P_{b i} & P_{b^{*}} & P_{b a} & P_{b a^{*}} & P_{b r} \\
P_{b^{*} i} & P_{b^{*} i^{*}} & P_{b^{*} a} & P_{b^{*} a^{*}} & P_{b^{*} r} \\
P_{r i} & P_{r i^{*}} & P_{r a} & P_{r a^{*}} & P_{s r}
\end{array}\right)=\left(\begin{array}{ccccc}
P_{j i} & P_{j i^{*}} & P_{j a} & P_{j a^{*}} & P_{j r} \\
P_{j^{*} i} & P_{j i} & P_{j^{*} a} & P_{j^{*} a^{*}} & P_{j^{*} r} \\
P_{b i} & P_{b b^{*}} & P_{b a} & P_{b a^{*}} & P_{b r} \\
P_{b^{*} i} & P_{b^{*} i^{*}} & P_{b^{*} a} & P_{b a} & P_{b^{*} r} \\
P_{r i} & P_{r i^{*}} & P_{r a} & P_{r a^{*}} & P_{s r}
\end{array}\right)
$$

$$
=\left(\begin{array}{cccc|cccc|ccc}
F & 0 & \ldots & 0 & 0 & \ldots & \ldots & 0 & 0 & \ldots & 0 \\
0 & F & 0 & \ldots & 0 & \ldots & \ldots & 0 & 0 & \ldots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & \ldots & 0 & F & 0 & \ldots & \ldots & 0 & 0 & \ldots & 0 \\
\hline 0 & \ldots & \ldots & 0 & G & 0 & \ldots & 0 & 0 & \ldots & 0 \\
0 & \ldots & \ldots & 0 & 0 & G & 0 & \ldots & \ldots & \ldots & 0 \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \vdots \\
0 & \ldots & \ldots & 0 & 0 & \ldots & 0 & G & 0 & \ldots & 0 \\
\hline 0 & \ldots & \ldots & 0 & 0 & \ldots & \ldots & 0 & & P_{s r} &
\end{array}\right) .
$$

Thus we have from (3.7)
Theorem 3.1. In a $C R$-submanifold M with the symmetric $\nabla \sigma$ in an l.c.K.-space form $\tilde{M}(c)$, the tensor field $P_{\mu \lambda}$ is expressed by (3.7). In particular, if M is anti-holomorphic, then the matrix $\left(P_{\mu \lambda}\right)$ is a diagonal one with two eigenfunctions F and G.

By virtue of (1.7) and (3.7), we know

$$
\begin{equation*}
P_{j i}=-\tilde{\nabla}_{j} \alpha_{i}-\alpha_{j} \alpha_{i}+\frac{1}{2}\|\alpha\|^{2} \delta_{j i}=F \delta_{j i}, \tag{3.8}
\end{equation*}
$$

that is,

$$
\begin{equation*}
\tilde{\nabla}_{j} \alpha_{i}=-\alpha_{j} \alpha_{i}+\left(\frac{1}{2}\|\alpha\|^{2}-F\right) \delta_{j i} . \tag{3.8}
\end{equation*}
$$

The covariant differentiation of (3.8), (3.8)' and the Bianchi identity give us

$$
\begin{equation*}
\tilde{R}_{k j i}^{A} \alpha_{A}=\left(\frac{1}{2}\|\alpha\|^{2}-F\right)\left(\alpha_{j} \delta_{k i}-\alpha_{k} \delta_{j i}\right)-\left(\frac{1}{2} \tilde{\nabla}_{k}\|\alpha\|^{2}-F_{k}\right) \delta_{j i}+\left(\frac{1}{2} \tilde{\nabla}_{j}\|\alpha\|^{2}-F_{j}\right) \delta_{k i}, \tag{3.9}
\end{equation*}
$$

where we put $F_{j}=\tilde{\nabla}_{j} F$ and the suffix A run over the range $1,2, \ldots, m$.
Next, using (1.6) and (3.7), we find

$$
\left\{\begin{align*}
4 \tilde{R}_{k j i h} & =(c+6 F)\left(\delta_{k h} \delta_{j i}-\delta_{k i} \delta_{j h}\right)+(c-2 F)\left\{\tilde{g}\left(J e_{k}, e_{h}\right) \tilde{g}\left(J e_{j}, e_{i}\right)\right. \tag{3.10}\\
& \left.-\tilde{g}\left(J e_{k}, e_{i}\right) \tilde{g}\left(J e_{j}, e_{h}\right)-2 \tilde{g}\left(J e_{k}, e_{j}\right) \tilde{g}\left(J e_{i}, e_{h}\right)\right\}, \\
\tilde{R}_{k j i a}= & 0, \quad \tilde{R}_{k j i a^{*}}=0, \quad \tilde{R}_{k j i r}=0,
\end{align*}\right.
$$

for any $k, j, i, h \in\{1,2, \ldots, 2 p\}, a \in\{2 p+1,2 p+2, \ldots, 2 p+q\}$ and $r \in\{n+q+1, n+q+2, \ldots, m\}$.
From (3.10) ${ }_{1}$, for any $k, j, i, h \in\{1,2, \ldots, p\}$, we know

$$
\begin{equation*}
4 \tilde{R}_{k j i h}=\tilde{R}_{k^{*} j^{*} i^{*} h^{*}}=(c+6 F)\left(\delta_{k h} \delta_{j i}-\delta_{k i} \delta_{j h}\right) . \tag{3.11}
\end{equation*}
$$

On the other hand, we have from (3.10)

$$
\begin{align*}
\tilde{R}_{k j i A} \alpha^{A}= & \tilde{R}_{k j i h} \alpha^{h}=\frac{c+6 F}{4}\left(\alpha_{k} \delta_{j i}-\alpha_{j} \delta_{k h}\right)+\frac{c-2 F}{4}\left\{\tilde{g}\left(J e_{j}, e_{i}\right) \tilde{g}\left(J e_{k}, e_{h}\right) \alpha^{h}\right. \tag{3.12}\\
& \left.-\tilde{g}\left(J e_{k}, e_{i}\right) \tilde{g}\left(J e_{j}, e_{h}\right) \alpha^{h}-2 \tilde{g}\left(J e_{k}, e_{j}\right) \tilde{g}\left(J e_{i}, e_{h}\right) \alpha^{h}\right\}
\end{align*}
$$

for any $A \in\{1,2, \ldots, m\}$ and $k, j, i, h \in\{1,2, \ldots, 2 p\}$.
By virtue of (3.9) and (3.12), we obtain

$$
\begin{align*}
\left(\frac{1}{2}\|\alpha\|^{2}\right. & \left.+\frac{c+2 F}{4}\right)\left(\alpha_{j} \delta_{k i}-\alpha_{k} \delta_{j i}\right)+\left(\frac{1}{2} \tilde{\nabla}_{j}\|\alpha\|^{2}-F_{j}\right) \delta_{k i}-\left(\frac{1}{2} \tilde{\nabla}_{k}\|\alpha\|^{2}-F_{k}\right) \delta_{j i} \tag{3.13}\\
& =\frac{2 F-c}{4}\left\{\tilde{g}\left(J e_{j}, e_{i}\right) \tilde{g}\left(J e_{k}, e_{h}\right) \alpha^{h}-\tilde{g}\left(J e_{k}, e_{i}\right) \tilde{g}\left(J e_{j}, e_{h}\right) \alpha^{h}-2 \tilde{g}\left(J e_{k}, e_{j}\right) \tilde{g}\left(J e_{i}, e_{h}\right) \alpha^{h}\right.
\end{align*}
$$

for any $k, j, i \in\{1,2, \ldots, 2 p\}$.
In particular, for $k, j, i \in\{1,2, \ldots, p\}$ or $k, j, i \in\{p+1, p+2, \ldots, 2 p\}$, the above equation implies

$$
\begin{equation*}
\left(\frac{1}{2}\|\alpha\|^{2}+\frac{c+2 F}{4}\right)\left(\alpha_{j} \delta_{k i}-\alpha_{k} \delta_{j i}\right)+\left(\frac{1}{2} \tilde{\nabla}_{j}\|\alpha\|^{2}-F_{j}\right) \delta_{k i}-\left(\frac{1}{2} \tilde{\nabla}_{k}\|\alpha\|^{2}-F_{k}\right) \delta_{j i}=0 \tag{3.14}
\end{equation*}
$$

Thus, we have from the above equation

$$
\begin{equation*}
\frac{1}{2} \tilde{\nabla}_{j}\|\alpha\|^{2}-F_{j}=-\left(\frac{1}{2}\|\alpha\|^{2}+\frac{c+2 F}{4}\right) \alpha_{j} \tag{3.15}
\end{equation*}
$$

for any $j \in\{1,2, \ldots, p\}$ if $p \neq 1$. For $k, j, i \in\{p+1, p+2, \ldots, 2 p\}$, we have the same equation with (3.15). Thus, we have (3.15) for any $j \in\{1,2, \ldots, 2 p\}$, if $p \neq 1$, Thus, by virtue of (3.13) and (3.15), we have

$$
(2 F-c)\left\{\tilde{g}\left(J e_{j}, e_{i}\right) \tilde{g}\left(J e_{k}, e_{h}\right) \alpha^{h}-\tilde{g}\left(J e_{k}, e_{i}\right) \tilde{g}\left(J e_{j}, e_{h}\right) \alpha^{h}-2 \tilde{g}\left(J e_{k}, e_{j}\right) \tilde{g}\left(J e_{i}, e_{h}\right) \alpha^{h}\right\}=0
$$

From this, we know $F=\frac{c}{2}$ or $\alpha_{i}=0$ for any $i \in\{1,2, \ldots, 2 p\}$. In the case of $\alpha_{i}=0$ for any $i \in\{1,2, \ldots, 2 p\}$, we have from $P_{b i}=0 \tilde{\nabla}_{i} \alpha_{b}=0$, that is, the vector field α_{b} is parallel in \mathcal{D}. Thus we have from the definition of F

Theorem 3.2. If a $C R$-submanifold M in an l.c.K.-space form tilde $M(c)$ has the symmetric $\nabla \sigma$ and $p \neq 1$, then we have
(i) the eigenfunction F of P is constant $\left(=\frac{c}{2}\right)$ or
(ii) the Lee vector field α^{\sharp} is orthogonal with to \mathcal{D} and the Lee vector field α_{b} is parallel in \mathcal{D} for any $b \in$ $\{2 p+1,2 p+2, \ldots, 2 p+q\}$.

Next, we assume that the Lee vector field α^{\sharp} is orthogonal to \mathcal{D}.
From (3.7), we have $P_{b a}=G \delta_{b a}$, that is,

$$
\begin{equation*}
\tilde{\nabla}_{c} \alpha_{b}=-\alpha_{c} \alpha_{b}+\left(\frac{1}{2}\|\alpha\|^{2}-G\right) \delta_{c b} \tag{3.16}
\end{equation*}
$$

Similarly with the last case, we have from (3.16) and Bianchi identity

$$
\begin{equation*}
\tilde{R}_{d c b}^{A} \alpha_{A}=\left(\frac{1}{2}\|\alpha\|^{2}-G\right)\left(\alpha_{c} \delta_{d b}-\alpha_{d} \delta_{c a}\right)-\left(\frac{1}{2} \tilde{\nabla}_{d}\|\alpha\|^{2}-G_{d}\right) \delta_{c b}+\left(\frac{1}{2} \tilde{\nabla}_{c}\|\alpha\|^{2}-G_{c}\right) \delta_{d b} \tag{3.17}
\end{equation*}
$$

where we put $G_{a}=\tilde{\nabla}_{a} G$ for any $a \in\{2 p+1,2 p+2, \ldots, 2 p+q=n\}$.
By virtue of (1.6) and (3.7), we have

$$
\left\{\begin{array}{l}
\tilde{R}_{d c b a}=\frac{6 G+c}{4}\left(\delta_{d a} \delta_{c b}-\delta_{d b} \delta_{c a}\right), \tag{3.18}\\
\tilde{R}_{d c b h}=\tilde{R}_{d c b a^{*}}=\tilde{R}_{d c b r}=0 .
\end{array}\right.
$$

From (3.18), we have

$$
\begin{equation*}
\tilde{R}_{d c b a} \alpha^{a}=\frac{6 G+c}{4}\left(\delta_{c b} \alpha_{d}-\delta_{d b} \alpha_{c}\right) \tag{3.19}
\end{equation*}
$$

Thus we have from (3.17) and (3.19)

$$
\begin{equation*}
\frac{1}{2}\left(G+\|\alpha\|^{2}+\frac{1}{2} c\right)\left(\delta_{d b} \alpha_{c}-\delta_{c b} \alpha_{d}\right)=\left(\frac{1}{2} \tilde{\nabla}_{d}\|\alpha\|^{2}-G_{d}\right) \delta_{c b}-\left(\frac{1}{2} \tilde{\nabla}_{c}\|\alpha\|^{2}-G_{c}\right) \delta_{d b} \tag{3.20}
\end{equation*}
$$

The contraction of the above equation by c and b gives us

$$
\begin{equation*}
\frac{1}{2} \tilde{\nabla}_{d}\|\alpha\|^{2}-G_{d}=-\frac{1}{2}\left(G+\|\alpha\|^{2}+\frac{1}{2} c\right) \alpha_{d} \tag{3.21}
\end{equation*}
$$

if $q \neq 1$.

On the other hand, we know from (3.16)

$$
\tilde{\nabla}_{d}\left\|\alpha_{\mathcal{D}^{\perp}}\right\|^{2}=2\left(\frac{1}{2}\|\alpha\|^{2}-G-\left\|\alpha_{\mathcal{D}^{\perp}}\right\|^{2}\right) \alpha_{d}
$$

where $\alpha_{\mathcal{D}^{\perp}}$ denotes the \mathcal{D}^{\perp}-component of α. Moreover, we have from (3.7), using $P_{b a^{*}}=0$

$$
\tilde{\nabla}_{d}\left\|\alpha_{J \mathcal{D}^{\perp}}\right\|^{2}=-2\left\|\alpha_{J \mathcal{D}^{\perp}}\right\|^{2} \alpha_{d}
$$

where $\alpha_{J \mathcal{D}^{\perp}}$ is the $J \mathcal{D}^{\perp}$-component of α. From the above 2 equations, we obtain

$$
\begin{equation*}
\tilde{\nabla}_{d}\left\|\alpha_{\mathcal{D}^{\perp}+J \mathcal{D}^{\perp}}\right\|^{2}=2\left(\frac{1}{2}\|\alpha\|^{2}-G-\left\|\alpha_{\mathcal{D}^{\perp}+J \mathcal{D}^{\perp}}\right\|^{2}\right) \alpha_{d} . \tag{3.22}
\end{equation*}
$$

Now, we assume that the submanifold M is anti-holomorphic $(v=\{0\})$, then $\alpha_{\mathcal{D}^{\perp}+J \mathcal{D}^{\perp}}=\alpha$. In this case, the equation (3.22) is written as

$$
\tilde{\nabla}_{d}\|\alpha\|^{2}=-2\left(G+\frac{\|\alpha\|^{2}}{2}\right) \alpha_{d}
$$

Substituting the above equation into (3.21), we get

$$
\begin{equation*}
\tilde{\nabla}_{d} G=\frac{1}{2}(c-G) \alpha_{d} \tag{3.23}
\end{equation*}
$$

By the similar calculation with the last case, we obtain

$$
\begin{equation*}
\tilde{\nabla}_{d^{*}} G=\frac{1}{2}(c-G) \alpha_{d^{*}} \tag{3.24}
\end{equation*}
$$

Theorem 3.3. In an anti-holomorphic $C R$-submanifold M in an l.c.K.-space form $\tilde{M}(c)$, if the second fundamental form σ is the Codazzi type, the dimension of \mathcal{D}^{\perp} is not one and the Lee vector field α^{\sharp} is orthogonal to \mathcal{D}, then the eigen function G satisfies (3.23) and (3.24). In particular, if the function G is constant, then $G=c$.

References

[1] A. Bejancu, CR-submanifolds of a Kaehler manifold I, II, Proc. Amer. Math. Soc., 69 (1978), 134-142 and Trans. Amer. Math. Soc., 250 (1979), 333-345.
[2] A. Bejancu, Geomerty of CR-submanifolds, D. Reidel Publishing Company, (1986).
[3] V. Bonanzinga and K. Matsumoto, Warped product CR-submanifolds in locally conformal Kaehler manifolds, Periodica Math. Hungarica 48 (2-2) (2004), 207-221.
[4] V. Bonanzinga and K. Matsumoto, On doubly warped product $C R$-submanifolds in a locally conformal Kaehler manifold,Tensor (N.S.) 69 (2008), 76-82.
[5] B. Y. Chen, CR-submanifolds of a Kaehler manifold I and II, J. of Differential Geometry, 16, 305-322 and 493-509(1981).
[6] B. Y. Chen, Geometry of submanifolds, New York, Marcel Dekker, (1973).
[7] S. Dragomir and L. Ornea, Locally Conformal Kḧler Geometry, Birkhäuser, (1998).
[8] T. Kashiwada, Some properties of locally conformal Kähler manifolds, Hokkaido Math, J., 8 (1979), 191-198.
[9] K. Matsumoto, Locally conformal Kähler manifolds and their submanifolds, Mem. Sec, Acad. Românâ. Ser. IV 14 (1991), 7-49(1993).
[10] K. Matsumoto, On CR-submanifolds of locally conformal Kähler manifolds I, II, J. Korean Math. 21 (1984), 49-61 and Tensor N, S., 45 (1987), 144-150.
[11] K. Matsumoto and Z. Şentürk, Certain twisted product CR-submanifolds in a Kaehler manifold, Proc. of the conference RIGA 2011, Riemannian Geometry and Applications, 2011.
[12] A. Mihai, Modern Topics in Submanifold theory, University of Bucharest, (2006).
[13] I. Vaisman, Locally conformal almost Kähler manifolds, Israel J, Math., 24(1976), 338-351.
[14] K. Yano, Differential geometry on complex and almost complex spaces, Pergamon Press, (1965).

[^0]: 2010 Mathematics Subject Classification. Primary 53C05; Secondary 53C40, 53A40
 Keywords. Locally conformal Kaehler space form, anti-holomorphic submanifold, $C R$-submanifold, symmetric $\nabla \sigma$
 Received: 13 November 2014; Accepted: 15 December 2014
 Communicated by Ljubica Velimirović and Mića Stanković
 Email address: tokiko_matsumoto@yahoo. com (Koji Matsumoto)

