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Isoperimetric Inequality, F. Gehring’s Problem
on Linked Curves and Capacity

Miodrag Mateljevića

aTo the memory on professor Vojin Dajović on the occasion 100 years since his birthday

Abstract. In this mainly review paper, we discuss connections between F. Gehring’s problem and some
results of isoperimetric type. We also prove a few new results and give novelity at some places.

1. Introduction

In order to discuss Gehring’s problem we first need some definitions.
For a ∈ Rn, we denote by Sn

r = S(a; r) = {x : |x − a| = r} and Bn
r = B(a; r) = {x : |x − a| < r} the sphere and

the ball in Rn of radius r with center at a respectively. We also use short notation Sn and Bn for S(0; 1) and
B(0; 1) respectively.

A path in Rn is continuous mapping γ : [a, b]→ Rn of compact interval [a, b] ⊂ R into Rn. By γ∗ or tr(γ)
we denote the trace γ∗ = {γ(t) : a ≤ t ≤ b} of γ and its length by |γ| or length(γ). Closed curves γ and γ0 are
linked if γ0 is not homotopic 0 in R3

\ γ∗.
The following theorem was conjectured by Gehring [16, 24], Problem 7.22.

Theorem 1.1 (The problem of Gehring). If γ and γ0 are linked curves in R3 on distance 1, show that length of
each of those curves is at least 2π.

In this paper we will try to tell an interesting story about this conjecture. Theorem 1.1 attracted attention of
mathematicians. It seems that several mathematicians have been working on this problem independently;
including Gehring [25], M. Ortel, M. Mateljević, 1975, [32], R. Osserman [41, 42], Edelstein and Schwarz [18],
Eremenko, O. Vinkovskii and I. Syutrik [19]. In section 3, short review of their works and further develop-
ment ( which include work of Jason Cantarella, Joe Fu, Rob Kusner, John M. Sullivan, and Nancy Wrinkle
cf. [10–12]) are given. In section 2, we also sketch the proof given in [32] and give two generalizations of
Theorem 1.1, Theorem 2.1 and Theorem 2.2 below.

Roughly speaking the paper can be divide in two parts; the first part consists of Section 2- 4, Section
8 and Section 9, and the rest of the paper is the second part (Sections 5-7), which is mainly independent
of the first one. The author first wrote the first part. Then taking into account that minimal surfaces and
isoperimetric inequalty on minimal surfaces are used for solution of Gehring’s problem, the author decided
to add the second part.
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In Section 5 and 6 we consider planar version of isoperimetric inequality, related to potential,Green’s
function,Robin constant,diameter, transfinite diameter, capacity of condenser, modulus and the extremal
distance, capacity and area-modulus inequality. For example, Theorems 5.2 and 5.1 are new results (or at
least have some novelty) as far as I know. In particular, the Carleman result, Theorem 6.2 attracts special
attention: Among all ring domains with given area and with given area of the ”holes” the domain bounded
by two concentric circles gives the smallest value of cap(D,F). For application in complex dynamics see
Milnor [40]. Theorem 5.4 is a generalization of the Carleman result. It seems that it is a new result.

In Section 7 we consider planar versions of isoperimetric inequality, related to multiplicity (for mappings
which are non-injective) and we announce Theorem 7.6.

In section 8(Appendix 1) we discuss some auxiliary results which include Fenchel’s Theorem, the
linking number of two paths, the geodesics on spheres etc.. Short review concerning connections between
Borromean rings, the Gehring Link Problem and the new IMU logo and physical reality is given in Section
9(Appendix 2). The logo design is based on the Borromean rings, a famous topological link of three
components, and the paper which is related to Gehring’s problem, cf. [11].

2. Generalization of Gehring problem

For point x and set A define

c(x,A) = {tx + (1 − t)y : 0 ≤ t ≤ 1, y ∈ A}.

Solution 1. A proof can be derived in few steps, cf [32]:

a) Show that for every x ∈ γ∗, c(x, γ∗) ∩ γ∗0 , ∅
b) Let x∗ ∈ γ∗ and y0 ∈ c(x∗, γ∗) ∩ γ∗0. Then there exists y∗ ∈ γ∗ and 0 < t < 1 such that y0 = tx∗ + (1 − t)y∗.
Define Γ = f ◦ γ, where

f (y) = y0 +
y − y0

‖y − y0‖
.

c) Show that |Γ| ≤ |γ|.
d) Closed curve Γ belongs to the unit sphere S(y0, 1) and contains antipodal points f (x∗) and f (y∗) of the
sphere S(y0, 1). Since geodesic line on the sphere are arcs of great circles, the length of Γ is at least 2π.

It seems that solution of Gehring’s problem, first published in 1975, [32], see also 1976, [18]. On this
and the other problems in complex analysis see in [2] and [5]. In [2] it is reported that Mateljević solved
problem, but the [32] is not cited. In the second part of mentioned paper [2], a summary of W. K. Hayman’s
lecture, on progress on problems presented in two preceding report, is given. It is interesting that the above
mentioned authors have overlooked the paper [32].

For example, in [11, 42] the solution is attributed to M.Ortel (unpublished). In [11], they write: ”because
Ortel’s elegant solution was never published, we reproduce it here with his permission”:

Solution 2. Fix any point a ∈ A; the cone on A from a is a disk spanning A. Since A and B are linked, B
meets this disk at some point b ∈ B, lying on a chord of A. Because Dist(b,A) ≥ 1, projecting A to the unit
sphere S around b does not increase its length. The projection is a closed curve joining two antipodal points
on S, and so has length at least 2π. Solution 1 and Solution 2 are almost identical.

By de we denote Euclidean distance in Rn. For given an arbitrary set E define

Er = {x ∈ Rn for which there is y ∈ E : |x − y| < r}.

We call Er ”thickening” or ”tube-domain” about E.
Let c be a path in R3 space. Set r(x, y) = sup{de(z, tr(c)) : z ∈ [x, y]} and define r(c) = sup{r(x, y) : x, y ∈

tr(c)}. We call r(c) the inner space radius of c.
Using approach as in the above proof of Theorem 1.1, we can get the following generalization:
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Theorem 2.1. Let γ be a path in R3 space. Then |γ| ≥ 2πr(γ).

There are points x0, y0 on γ and z0 ∈ [x0, y0] such that the curve γ has no points inside sphere S0 = S(z0, r0,
where r0 = r(c). Let γ′ be the central projection of γ from z0 onto the sphere S0 around z0. Then γ′ passes
through two diametrically opposite points of the sphere S0 and thus, by Theorem 8.1, its length is at least
2πr0.

Theorem 2.2. Let L1 and L2 be two paralell plane in in R3, R strip between them and γ0 a curve in R joint L1 and
L2. For r > 0, suppose that γ does not intersect tube γ0

r and γ links γ0
r in R. Then |γ| ≥ 2πr.

Fix a point M0 on γ. Then one can find another point M1 on γ such that the interval [M0,M1] intersects
γ0. Indeed, otherwise we can deform γ to M0 moving straight along these intervals [M0,M], M ∈ tr(γ),
and deformation will not cross γ0. Let O be a point on [M0,M1] that belongs to γ0. Let γ′ be the central
projection of γ from O onto the unit sphere around O. Then γ′ passes through two diametrically opposite
points of the sphere and thus, by Theorem 8.1, its length is at least 2πr.

3. Gehring problem and minimal surfaces

In [19], Eremenko sketched the following proof:
Let A and B be two closed curves in R3 which are linked. Suppose that the distance between A and B is 1.
Prove that length of A (or B) is at least 2π.

Solution 3 (Sketch of the proof by A. Eremenko and O. Vinkovskii). Suppose that length(B) < 2π. Let
F be the surface of minimal area whose boundary is B. (A continuous map from the closed unit disc to
R3 such that the image of the unit circle is B, and which is minimizing the area). Then A must intersect F;
let O be a point of intersection. Consider the sphere S of unit radius centered at O. The curve B must be
outside this sphere. Let B′ be the central projection from O of B on S. Then length(B′) ≤ length(B) < 2π. So
B′ belongs to an open hemisphere by Lemma 8.1. This implies that B′ and B belong to an open half-space
which has O on its boundary. This contradicts the minimality of the area of F. Acording to Eremenko [19],
he told this proof on the geometric seminar of I. N. Pesin in Lvov University in 1976 or 1977. A day later,
one of the participants, a second-year undergraduate student I. Syutrik found the proof similar to the above
proof of Theorem 1.1.

Shortly after this Eremenko found a published proof [18] based on the same idea as the first proof
described above, but using the convex hull instead of the minimal surface. Further, we need a version of
the isoperimetric inequality on minimal surfaces.

Theorem 3.1. Suppose that domain D lying on minimal surfaces in Rn and that: (i) the boundary of D consists of a
single rectifiable Jordan curve c. Then the isoperimetric inequality L2

≥ 4πA holds for domain D.

¿From elementary properties of volume, it follows from V(Bn
1) = ωn that V(Bn

r ) = ωnrn.
An important inequality in the theory of minimal surfaces is the following. Let M be an m-dimensional

minimal submanifold inRn, and assume that the origin lies on M. Using the notation of 2, let Mr = M∩Bn
r ,

and V(r) m-dimensional measure of Mr.

Theorem 3.2. If M has no boundary points in Bn
r , then V(r) ≥ ωmrm.

Theorem 3.3. Let C be a rectifiable Jordan curve in Rn, and let B be a set in Rn which links C. Let L be the length
of C and let r be the distance between B and C. Then L ≥ 2πr. Equality holds only when C is a euclidean circle of
radius r.

We sketch a prof by R. Osserman [42].
Solution 4. Let S be a solution of Plateau’s problem for C. That is, S is a simply-connected minimal

surface spanning C. Since B and C are linked, it follows that B ∩ S , 0. Let p be a point of B ∩ S. By a
translation we may assume that p is the origin. By hypothesis,the boundary of S (which is the curve C) lies
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outside of Bn
r . We may therefore apply Theorem 3.2 and conclude that the area A of S satisfies A ≥ πr2. But

then the isoperimetric inequality for minimal surfaces (Theorem 3.2 above) implies L2
≥ 4πA ≥ 4π2r2.

According to R. Osserman [42], Theorem 3.3 was conjectured by Gehring [24] and first proved by M.
Ortel (unpublished). The proof given above was suggested by Osserman [2]. Another proof has been
given by Edelstein and Schwarz [18], Gehring [25] has proved a higher-dimensional version of Theorem
3.3, but not with the best possible constant, which is presumably attained by linked spheres in orthogonal
subspaces. A different proof which yields the best constant for a 2-sphere linked by a 1-sphere in R4 has
been obtained by M. Gage [21].

3.1. Recent results
For further development see E. Bombieri and L. Simon [8], Jason Cantarella, Joe Fu, Rob Kusner, John

M. Sullivan, and Nancy Wrinkle [11], Jason Cantarella, Robert B. Kusner, and John M. Sullivan [12] and L.
Guth [26].

In the early 1970’s, Bombieri and Simon [8] proved the following sharp inequality about the geometry
of minimal surfaces in Euclidean space.

Theorem 3.4 (Bombieri-Simon radius inequality). Suppose that Z = Zm is a closed submanifold of Rn, and
that Ym+1 is a minimal surface with ∂Y = Z. Suppose that Z has the same volume as a round m-sphere of radius R.
Then for each point y ∈ Y, the distance from y to Z is at most R.

Theorem 3.5 (Gehring link conjecture). Suppose that Z = Zm and W = Wn−m−1 are linked submanifolds Rn. If
Z has the same volume as a round m-sphere of radius R, then the distance from Z to W is at most R.

By the solution of the Plateau problem, there is a minimal surface Y with ∂Y = Z. Since Z and W are
linked, Y must intersect W in some point y ∈ W. But by the radius inequality, the distance from y to Z is
at most R. Gromov built an analogy between the Gehring link conjecture and the systolic problem. On the
one hand, such an analogy sounds promising because both inequalities bound a 1-dimensional length (or
distance) in terms of an m-dimensional volume.

4. Criticality for the Gehring link problem

The unique minimizing configuration for Gehrings problem is a Hopf link consisting of two congruent
circles in perpendicular planes, each passing through the others center. This leads to a natural question:
what are the length-minimizing shapes of other link types when the different components stay unit distance
apart? This constraint prevents different components from crossing each other, but we cannot expect to
fix the link type exactly. Instead, the natural setting for this problem is Milnor’s notion of link homotopy:
two links are link-homotopic if one can be deformed into the other while keeping different components
disjoint. Clearly one link can be deformed into another while keeping all components at unit distance if
and only if they are link homotopic. We will define the link-thickness of a link to be the minimum distance
between different components. The problem we consider is then to minimize length in a link-homotopy
class, subject to the constraint of fixed link-thickness. Equivalently, we could minimize the link-ropelength
of the link, meaning the quotient of length over thickness.

A compact, oriented 1-manifold-with-boundary M is a finite union of components, each of which is
homeomorphic to a circle S1 or an interval [0, 1]. A parametrized curve is a mapping from a compact,
oriented 1-manifold- with-boundary M to R3. Two parametrized curves are equivalent if they differ by
an orientation-preserving reparametrization (that is, by composition with an orientation- preserving self-
homeomorphism of M). A curve L in R3 is an equivalence class of parametrized curves. We say L is closed
when each component of its domain M is a circle, that is, when its boundary ∂L is empty. Definition The
link-thickness LThi(L) of a curve L is the minimum distance between points on different components of L.
This is the supremal ε for which the (ε/2- neighborhoods of the components of L are disjoint. So suppose
we start with a closed curve L and we want to minimize length under the constraint that the link-thickness
remains at least one. Since we can rescale any link to have LThi ≥ 1, this problem is the same as minimizing
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(link-) ropelength, the quotient of length by link-thickness. The thickness constraint naturally prevents
different components from passing through each other, but does not prevent any given component from
changing its knot type through self-intersections. This is the setting for Milnors work on link homotopy:

Here we give only the content of the abstract of [11]. In 1974, Gehring posed the problem of minimizing
the length of two linked curves separated by unit distance. This constraint can be viewed as a measure of
thickness for links, and the ratio of length over thickness as the ropelength. In the paper [11] they refine
Gehrings problem to deal with links in a fixed link-homotopy class: they prove ropelength minimizers exist
and introduce a theory of ropelength criticality. Their balance criterion is a set of necessary and sufficient
conditions for criticality, based on a strengthened, infinite-dimensional version (Theorem 5.4) of the Kuhn-
Tucker theorem. They use this to prove that every critical link is C1 with finite total curvature. The balance
criterion also allows them to explicitly describe critical configurations (and presumed minimizers) for many
links including the Borromean rings. They also exhibit a surprising critical configuration for two clasped
ropes: near their tips the curvature is unbounded and a small gap appears between the two components.
These examples reveal the depth and richness hidden in Gehrings problem and our natural extension.

5. Isoperimetric inequality, diameter and capacity

The isoperimetric problem is to determine a plane figure of the largest possible area whose boundary
has a specified length. If L is the circumference of a closed Jordan rectifiable curve γ in the plane and the
area of a plane region it encloses A = A(γ), then A ≤ L2/4π.

A version which includes self-intersecting curve is outlined in [34, 35].

Proposition 5.1. [34] Let K be positively oriented unit circle and let a curve γ be defined by w = φ(eiθ), 0 ≤ θ ≤ 2π,
is of bounded variation and φ(eiθ) ∼

∑
∞

n=−∞ φ̂n e−inθ. Then the sign area bounded by this curve is A(φ) = i
2

∫
K φ dφ.

If we denote by L = |γ| length of the curve γ, then by isoperimetric inequality, A(φ) ≤ L2/4π.

By the next Proposition 5.1, A(φ) == π
∞∑
−∞

n|φ̂n|
2 < ∞.

Let a curve γ be defined on [0, 2π] and γ ∼
∑
∞

n=−∞ γ̂n e−inθ. If γ is of bounded variation, closed and

continuous curve, then the sign area A(γ) = i
2

∫ 2π

0 γ dγ = π
∞∑
−∞

n|γ̂n|
2 < ∞.

Theorem 5.1. Then

A(γ) = π
∞∑
−∞

n|γ̂n|
2 < ∞ (1)

Set 1 = P[γ]. For 0 ≤ r < 1, B(γr) = i
2

∫ 2π

0 γr dγ = π
∞∑
−∞

nr|n||γ̂n|
2 and B(γr) → A(γ) when r → 1−. Hence

the series 6 is Abel summable. Since n|γ̂n|
2
→ 0, by Tauber’s convergence theorem it is convergent in the

ordinary sense as well.
If we set

A+(γ) = π
∞∑
1

n|γ̂n|
2, A−(γ) = π

1∑
−∞

n|γ̂n|
2, it is clear that

A+(γ) = A+(γ) + A−(γ) and A+(γ) ≤ A+(γ).
If γ is closed Jordan positively oriented curve, the oriented area is the same as the usual area of Int(γ).
Let γ be closed Jordan curve and G̃ = Ext(γ). By Riemann’s theorem there is conformal mapping

f (z) = λ z + a0 +
a1

z
+ · · · +

ak

zk
+ · · · (4)

of E onto G̃. For ρ ≥ 1, set γρ(t) = f (ρeit), s(ρ) = A(γρ), τ(ρ) = ρ−2s(ρ) and |γ|∗1 = infc
∫ 2π

0 |γ(t) − c|dt.
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Theorem 5.2. Under the above hypothesis
(i.1) τ is not decreasing in [1,∞]
(ii.1) τ(ρ)→ π|λ|2 if ρ→∞.
(iii.1) A(γ) ≤ π|λ|2

(iv.1) |λ| ≤ |γ|∗1
(v.1) |λ| ≤ L, where L is length of γ.

For (iii.1) see also [35, 39].

Proof. Since

τ(ρ) = ρ−2s(ρ) = π
1∑

k=−∞

k|ak|
2ρ2k−2 = π|λ|2 + π

1∑
k=−∞

k|ak|
2ρ2k−2

we get (i.1) and (ii.1).
(iii.1) follows from A+(γ) = π|λ|2.
Using λ =

∫ 2π

0 γ(t)e−itdt and

iλ =
∫ 2π

0 γ′(t)e−itdt we find (iv.1) and (v.1) respectively.

As a corollary of (iii.1) and (v.1), we get the isoperimetric inequality for simple curve: 4πA ≤ L2.
The next example shows that the estimate (iv.1) can be better than (v.1). Let r > 1, zk = eik2π/n, wk = rzk

and Pn polygon z1w1z2w2 · · · zn−1wn−1znwnz1, then l(Pn)→∞ and it is clear that |Pn|
∗

1 ≤ 2πr.

5.1. area-modulus inequality
For 0 < r < R, let A(r,R) = {r < |z| < R} be the annulus with inner radius r and other radius R.
A domain A is ring if Ac has exactly two components. By topology, ∂A has also two components C1 and

C2. Denote by Γ = ΓA the collection of curves γ ⊂ A connecting C1 and C2.
There is A(r1, r2) and conformal maping φ of A(r1, r2) onto A. Modulus of A is defined as

M(A) =
log(r2/r1)

2π
.

Theorem 5.3. Let F ⊂ D and A = D \ F topological annulus. Then

e4πM(A)area(F) ≤ area(D). (2)

If equality holds in (5.3), then A is a circular regular ring.

If we set S0 = areaF = πr2
0 and S1 = areaD = πr2

1, and A0 = A(r0, r1) then:

4πM(A) ≤ ln
S1

S0
= 4πM(A0) .

Hence we rewrite Theorem 5.3 respectively in the form:
(I.1) M(A) ≤M(A(r1, r2)). We can also restate Theorem 5.3:
(I.1’) Consider the family of all doubly-connected plane domains bounded by an outer curve C1 and an
inner curve C0. For each domain D, let Ai be the area bounded by Ci, i = 0, 1. Then among all domains
conformally equivalent to a given one, the minimum of A1/A0 is attained by a circular annulus.
We first give here a proof due to Szegö (see [42] [1]) based on the isoperimetric inequality.
Let r0 < |z| < r1 be a given annulus, and let D be its image under a conformai map f (z). Let L(r) be the length
of the image of |z| = r, and A(r) the area enclosed. Then 4πA(r) ≤ L2(r) ≤ 2πA′(r)/A(r) and 2/r ≤ 2A′(r)/A(r),

r0 < r < r1. Integrating from r0 to r1, yields 2 ln r1
r0
≤ ln A1

A0
, or

r2
1

r2
0
≤

A1
A0

, which proves the theorem. �

Under the hypothesis of Theorem 5.3, there exists an annulus Ar = {r < |z| < 1} and a conformal mapping
φ : Ar → A, φ(z) =

∑
akzk.
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Let Γρ = φ ◦ Kρ and Gρ = Int(Γρ). Then

s(ρ) = area(Gρ) =
∑

k|ak|
2ρ2k.

Let
τ(ρ) = ρ−2s(ρ) =

∑
k|ak|

2ρ2k−2.

Theorem 5.4. (i.2) τ is increasing function.
(ii.2) In particular (2) holds. The equality holds in (5.3) if and only if φ(z) = a0 + a1z.

Proof. Since k(2k − 2) ≥ 0, τ′ is non negative and τ is increasing function and consequently τ(1) ≥ τ(r) and
therefore

s(1)
s(r)
≥

1
r2 = e2 ln 1

r . (3)

Hence, since M(A) = M(Ar) = ln 1
r /2π, it follows s(r)e4πmod(A)

≤ s(1). Since s(1) = area(D) and s(r) =
area(F), this yields (2).

If equality holds in (5.3), then equality holds in (3). Hence ak = 0, k , 1, and therefore φ(z) = a0 + a1z.

If function φ is analytic on an annulus Ar = {r < |z| < 1}, then τ(ρ) = ρ−2s(ρ) is not decreasing.
As a corollary A(r1,R1) and A(r2,R2) are conformally equivalent if and only if R1/r1 = R2/r2.
Let f be a holomorphic function on A(r,R), r < ρ < R, Γρ = f ◦ Kρ, where Kρ positively oriented circle of

radius ρ withe center at the origin.
Denote by S(ρ) = S f (ρ) the oriented area surrounded by Γρ and set τ(ρ) = τ f (ρ) = ρ−2S(ρ).

Theorem 5.5. (i.3) τ f is increasing on [r,R], that is for r < r1 ≤ R1 < R,

R2
1

r2
1

≤
S(R1)
S(r1)

.

(ii.3) Let A1 be two ring domain in the plane and ψ : A→ A1 be a covering with degree p.
(iii.3) Then τp(ρ) = ρ−2pS(ρ) is increasing, that is for r < r1 ≤ R1 < R,

R2p
1

r2p
1

≤
S(R1)
S(r1)

.

(iv.3) Let A and A1 be two ring domains in the plane and let ψ : A→ A1 be K-qr. Then |de1ψ|M(A) ≤ KM(A1).

The proof will appear in a forthcoming paper. If f is univalent, Theorem 5.5 (i.3) is reduced to Theorem A.
Beardon and Minda proved (Theorem 13.6, [6]):

If ψ is a holomorphic function. Then |de1ψ|M(A) ≤M(A1).
In addition, if ψ is a covering with degree p, then M(A1) = pM(A).

Note that if γ is a closed rectifiable curve of length L = l(γ), then
L ≥ 2πcapγ.

6. Capacity of condenser, modulus and the extremal distance

In this section we discus further result. A condenser in the complex plane C is a pair (D,K) where D is
a proper subdomain of C and K is a compact subset of D. Let h be the solution of the generalized Dirichlet
problem on A = D \ K with boundary values 0 on ∂D and 1 on ∂K. The function h is the equilibrium
potential of the condenser (D,K). The capacity of (D,K) is

Cap(D,K) =

∫
A
|∇h|2 .
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Milnor [40], p.232 attributes Theorem A to McMullen (McMullen inequality).
Let F ⊂ D and A = D \ F topological annulus in C. On the other hand, Carleman proved (see [4] p.82-84,

Theorem 2.14):

Theorem 6.1. Among all ring domains with given area and with given area of the ”holes” the domain bounded by
two concentric circles gives the smallest value of cap(D,F).

Let A be a ring; then ∂A has two components say C1 and C2. Denote by Γ = ΓA the collection of curves
γ ⊂ A connecting C1 and C2. Let Γ∗ be the collection of all curves that wind once around the annulus,
separating C1 from C2. Since cap(D,F) = M(ΓA) and M(A)M(ΓA) = 1, we have
(I.2) cap−1(D,F) = M(A).

By this crucial equality, Theorems 5.3 and 6.2 are equivalent. Recall (i.3): Let F ⊂ D and A = D \ F
topological annulus in R2, S1 = areaD = πr2

0 and S0 = areaF = πr2
1. Then by (I.2) and Theorem 5.3, we have

4πcap−1(D,F) ≤ ln
S1

S0
.

Therefore we can rewrite Theorems 5.3 and 6.2 respectively in the form:
(ii.3) cap(D,F) ≥ cap(Br1 ,Br0 ),
(iii.3) M(A) ≤M(A(r0, r1)).

6.1. Further results
Since M(A) = EL(ΓA) = distA(D,F), Theorems 5.3 can be stated in terms of extremal length (the extremal

distance in A between two sets D and F) (see subsection 6.3 for definitions):

Theorem 6.2. Among all ring domains with given area and with given area of the ”holes” the domain bounded by
two concentric circles gives the largest value of the extremal distance in A between two sets D and F.

C. Bandle proved a version for surfaces whose Gaussian curvature does not exceed a constant K0 (see
[4] p.82-84, Theorem 2.14).

The corresponding result, which is a generalization of Theorem A, if φ is not univalent (in particular
p-valent) has been proved by author around 20 years ago. Mc Mullen found application of Theorem A in
complex dynamics. In [45] the following result is proved: Let A be an annulus in C with fixed modulus
MA, and K the bounded component of C \A. If q is a meromorphic function in A∪K such that q has at most
one simple pole, the pole (if any) is in K and

∫
A∪K |q(z)|dxdy < ∞, then∫

K
|q(z)|dxdy ≤ e−2πM(A)

∫
A∪K
|q(z)|dxdy .

If q has no pole, 2π can be replaced by 4π.
The proof is a word-to-word translation [40] Appendix B, Corollary B.9, McMullen inequality with

Euclidean metric replaced by conformal metric
√
|q(z)||dz| induced from quadratic differential q(z)dz2.

M. Papadimitrakis and S. Pouliasis, cf. [43] prove an inequality for the capacity of a condenser via a holo
morphic function f , under a valency assumption on f , and they show that equality occurs if and only if f
has finite constant valency. Also, they generalize a well known inequality for quasiregular mappings and
give a necessary condition for the case of equality. Let p be a monic polynomial in one complex variable
and K a measurable subset of the complex plane. In terms of the area of K, in [15] it is given an upper
bound on the area of the preimage of K under p and a lower bound on the area of the image of K under
p, (counted with multiplicity). Both bounds are sharp. The former extends an inequality of Polya. The
proof uses Carleman’s isoperimetric inequality for plane condensers. Also it is included a summary of the
necessary potential theory. Let D be a domain in z-plane and consider a metric ds = ρ|dz|. Let γ be a closed
Jordan rectifiable curve in D and G a plane region it encloses. We define

A(ρ) = A(ρ; G) =

"
G

ρ2(z) dxdy, and
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L(ρ) = Lγ(ρ) =

∫
γ

ρ|dz| ,

and call A(ρ) and L(ρ)(respectively), ρ-area of G and ρ- length of γ respectively.
The isoperimetric inequality for surfaces is closely related to their Gaussian curvature. Namely it is well

known the following facts:
For every Riemannian metricρon a diskB2 with the Gauss curvature K(x) ≤ 0 the euclidean isoperimetric

inequality holds

4πA ≤ L2, (4)

where L(ρ) (ρ- length) is the circumference of a closed Jordan rectifiable curve γ in B2 and the area of a
plane region it encloses A(ρ) = A(ρ;γ).

A surface enjoys locally isoperimetric inequality (4) if and only if its Gaussian curvature is nonpositive
(Beckenbach-T. Rado and Weil [14, Remark V.5.3.] and [48]).

6.2. Another proof of Theorem 5.3
A nice proof is presented in [40]. It is based on length-area-modulus inequality and the isoperimetric

inequality. Namely, there exists a curve γ with winding number 1 about A whose length satisfies L2
≤

area(A)/mod(A). Since F is enclosed with this curve, by the isoperimetric inequality area(F) ≤ L2

4π . Hence

area(F) ≤
area(D)

1 + 4πmod(A)
. (5)

Cut the annulus A up into n concentric nested annuli Ak such that mod(Ak) = mod(A)/n. Let Fk be the
bounded component of the complement of Ak. Since Ak∪Fk = Fk+1, then area(Fk+1)/area(Fk) ≥ 1+4πmod(A)/n
by (5), hence

area(D)/area(F) ≥ (1 + 4πmod(A)/n)n,

where the right -hand side converges to e4πmod(A) as n→∞. �
Let a curve γ be defined on [0, 2π] and γ ∼

∑
∞

n=−∞ γ̂n e−inθ. If γ is of bounded variation, closed and
continuous curve, then the sign area A(γ) = i

2

∫ 2π

0 γ dγ. Then

A(γ) = π
∞∑
−∞

n|γ̂n|
2 < ∞ (6)

Set 1 = P[γ]. For 0 ≤ r < 1, B(γr) = i
2

∫ 2π

0 γr dγ = π
∞∑
−∞

nr|n||γ̂n|
2 and B(γr) → A(γ) when r → 1−. Hence

the series 6 is Abel summable. Since n|γ̂n|
2
→ 0, by Tauber’s convergence theorem it is convergent in the

ordinary sense as well.

6.3. Extremal length
In the theory of conformal and quasiconformal mappings, the extremal length of a collection of curves

Γ is a conformal invariant of Γ. More specifically, suppose that D is an open set in the complex plane and Γ
is a collection of paths in D and f : D→ D′ is a conformal mapping. Then the extremal length of Γ is equal
to the extremal length of the image of Γ under f . For this reason, the extremal length is a useful tool in the
study of conformal mappings. Extremal length can also be useful in dimensions greater than two, but the
following deals primarily with the two dimensional setting.

To define extremal length, we need to first introduce several related quantities. Let D be an open
set in the complex plane. Suppose that Γ is a collection of rectifiable curves in D. If ρ : D → [0,∞] is
Borel-measurable, then for any rectifiable curve γ we let

Lρ(γ) :=
∫
γ
ρ |dz|
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denote the ρ-length of γ, where |dz| denotes the Euclidean element of length. (It is possible that Lρ(γ) = ∞.)
What does this really mean? If γ : I → D is parameterized in some interval I = [a, b], then

∫
γ
ρ |dz| is

the integral of the Borel-measurable function ρ(γ(t)) with respect to the Borel measure on I for which the
measure of every subinterval J ⊂ I is the length of the restriction of γ to J. In other words, it is the
Lebesgue-Stieltjes integral

∫
I ρ(γ(t)) dsγ(t), where sγ(t) = lengthγ(t) is the length of the restriction of γ to

[a, t] = {s ∈ I : s ≤ t}. Also set
Lρ(Γ) := inf

γ∈Γ
Lρ(γ).

The area of ρ is defined as

A(ρ) :=
∫

D
ρ2 dx dy,

and the extremal length of Γ is

EL(Γ) := sup
ρ

Lρ(Γ)2

A(ρ)
,

where the supremum is over all Borel-measureable ρ : D → [0,∞] with 0 < A(ρ) < ∞. If Γ contains some
non-rectifiable curves and Γ0 denotes the set of rectifiable curves in Γ, then EL(Γ) is defined to be EL(Γ0).
The term modulus of Γ refers to 1/EL(Γ).
Let r1 and r2 be two radii satisfying 0 < r1 < r2 < ∞. Let A be the annulus A = A(r1, r2) := {z ∈ C : r1 < |z| < r2}

and let C1 and C2 be the two boundary components of A: C1 := {z : |z| = r1} and C2 := {z : |z| = r2}. Then one
can show

EL(Γ∗) =
2π

log(r2/r1)
= EL(Γ)−1,

where Γ = ΓA and Γ∗ = Γ∗A.
A domain A is ring if Ac has exactly two components. By topology, ∂A has also two components C1

and C2. Recall we denote by Γ = ΓA the collection of curves γ ⊂ A connecting C1 and C2. Let Γ∗ = Γ∗A
be the collection of all curves that wind once around the annulus, separating C1 from C2. If ring A is
conformally equivalent to a circular ring A = A(r1, r2), since the modulus and the extremal length are
conformal invariants, we find M(A) = M(A). Hence
M(A) = EL(ΓA) = EL(Γ∗A)−1 =

log(r2/r1)
2π .

The extremal distance in D between two sets D1 and D2 in D (notation dD(D1,D2)) is the extremal length of
the collection of curves in D with one endpoint in one set and the other endpoint in the other set.

6.4. Potential
Let D be simply-connected domain f , z0 ∈ D be conformal of D onto U. Then the function 1(z, z0) =

− ln | f | is called Green’s function of D. Let E be a continum and D = C \ E. By Riemann’s mapping theorem
there is a conformal mapping

F(z) = λ z +
a1

z
+ · · · +

ak

zk
+ · · · (1)

of E on D. Then d∞(E) = |λ|. Let E be a compact connected set, let G = E∞ denote the unbounded
component of its complement Ec = C \ E and E0 = Ec

∞. By Riemann’s mapping theorem there is a conformal
mapping

φ(w) =
w
λ

+
b1

w
+ · · · +

bk

wk
+ · · · (2)

of E∞ onto E. Set 1(w,∞) = ln |φ(w)|. Then 1(w,∞) = ln |w| − ln |λ| + o(1).
We call 1(w,∞) the Green function, γ = γ(E) = − ln |λ| the Robin’s constant and cap(E) = |λ| the capacity

of E. Note that |λ| = e−γ.
We will adapt the above definitions to more general case. We first consider plane case.
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Definition 6.1. Let D be a domain in the extended z-plane. A function 1(z, z0) is called Green’s function of D if it
has the following properties:

1. 1(z, z0) is harmonic in D, except at the point z0

2. 1(z, z0) + ln |z − z0| = γ + ε(z) is harmonic in a neighborhood of z0, where γ is a constant and ε(z) → 0 for
z→ z0. The constant γ is known as the Robin constant.

3. As z tends to any point on the boundary of D, 1(z, z0)→ 0

If z0 = ∞ ∈ D, we adapt definition such that 1(z,∞) − ln |z| is harmonic in a neighborhood of z0 = ∞.

1. If D is a bounded domain for which the Dirichlet problem is solvable, then the Green’s function for D
exists. Let G be the solution with boundary data h(ζ) = ln |ζ − z0|. Then 1(z, z0) = G − ln |z − z0| is the
Green’s function for D.

2. If D is a domain bounded by a finite number of Jordan arcs, then the Green’s function for D exists.
3. We consider now the case of an arbitrary compact set E.

We assume first that the complement of E is bounded by finite number of piecewise analytic Jordan
curves and denote the unbounded component by G = E∞. It is known that G has a Green function 1which
is harmonic in G, vanishes on ∂G and has asymptotic behavior at∞ of the form

1(z) = ln |z| + γ + ε(z),

where γ is a constant and ε(z) → 0 for z → ∞. The constant γ is known as the Robin constant. In general,
we can find an ”exhaustion” of G by regular domains G1 ⊂ G2 ⊂ G3 ⊂ . . .Gn . . . ; such that Gn → G. Each
Gn has a Green’s function 1n and a Robin’s constant γn. By the maximum principle, 1n(z, z0) ≤ 1n+1(z, z0),
z, z0 ∈ Gn and therefore γn ≤ γn+1. Hence, for a given pair z, z0, limn→∞ 1n(z, z0) = 1(z, z0) (possibly= ∞) and
limn→∞ γn = γ exist.

The constant γ is known as the Robin constant.
For the moment we shall call cap(E) = e−γ the Robin-capacity of E.
We write P(E) for the class of measures µ ≥ 0 with support contained in E and by P0(E) we denote

subclass of it consisting of µ with µ(E) = 1.
Consider a positive mass distribution µ on the compact set E. We define the logarithmic potential of µ

p(z) =

∫
E

ln
1
|z − ζ|

dµ(ζ) (7)

We set Vµ = supz p(z). Note that p is a supperharmonic and harmonic on Ec. If ν is another mass distribution,
we define

I(µ, ν) =

∫
E

p(z)dν(z)

and write I(µ) instead of I(µ, µ); it is the energy integral of µ.
Define γ0(E) = in f I(µ) and γ∗(E) = in f Vµ, (µ ∈ P(E); µ(E) = 1).
For the moment we shall call e−γ0 the energy-capacity of E.
Suppose that µ ∈ P(E) and µ(E) = 1.
There is a > 0 such that

∣∣∣ ln |1 − ζ/z|∣∣∣ ≤ a/|z| for every ζ ∈ E.
Since − ln |z − ζ| = − ln |z| − ln |1 − ζ/z|, we find pµ(z) = − ln |z| + o(1).
If also ν ∈ P(E) and ν(E) = 1, then h(z) = pµ(z) − pν(z) is harmonic function at∞ and h(∞) = 0.
We assume first that the complement of E is bounded by finite number of piecewise analytic Jordan

curves and denote the unbounded component by G.
If we set h(∞) = 0 function h is harmonic on G0 = G∪∞ and it follows by an application of the maximum

principle on G0 that max h ≥ 0 on ∂G.
If there is a positive mass distribution µ∗ on the compact set E such that the logarithmic potential p∗ of

µ∗ is a constant V on E, then µ∗ minimizes Vµ.
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Theorem 6.3. Among all distribution with total mass µ(E) = 1, there is one µ∗ ∈ P0(E) that minimizes Vµ.
If the complement of E is bounded by finite number of piecewise analytic Jordan curves, then the logarithmic

potential p∗ of µ∗ is equal Robin’s constant γ on E.

The distribution µ∗ is known as the equilibrium distribution and its logarithmic potential p∗ as the equilib-
rium potential.

Theorem 6.4 ( [1, 20]). Among all distribution with total mass µ(E) = 1, there is one that minimizes Vµ. The same
distributions minimizes I(µ), and two minima are equal.

In particular, the Robin capacity equal to the energy capacity.

Definition 6.2. If min Vµ = V, we call cap(E) = e−V the capacity (logarithmic) of E.

Proof. We assume first that the complement is bounded by finite number of piecewise analytic Jordan curves
and denote the unbounded component by G = E∞. It is known that G has a Green function 1 which is
harmonic in G, vanishes on ∂G and has asymptotic behavior at∞ of the form

1(z) = ln |z| + γ + ε(z),

where γ is a constant and ε(z)→ 0 for z→∞. The constant γ is known as the Robin constant.
Define a positive mass distribution µ∗ by setting

µ∗(e) = −
1

2π

∫
e∩∂G

∂1

∂n
|dz|

for any Borel set e.
For ζ ∈ G, Green’s formula yields

1(ζ) − γ =
1

2π

∫
∂G

ln
1
|z − ζ|

∂1

∂n
|dz| (8)

formula shows that potential p∗ of µ∗ satisfies p∗(ζ) = γ − 1(ζ) for ζ ∈ G. Since Green’s formula can also
be applied when ζ is an exterior point of G, we find that p∗(ζ) = γ on E.

Let µ be another positive mass distribution with total mass 1 and let p be its potential and h = p − p∗.
If we set h(∞) = 0 function h is harmonic on G ∪ ∞ and it follows by the maximum principle that

Vµ ≥ Vµ∗ = γ.

We give a physical interpretation: Professor R. Shankar, Department of Physics, Yale University, elec-
trodinamic, gave comments (explained why the equilibrium potential is constant on E): If the potential
varied, there would be a field (which is its gradient) and current would flow. That is not equilibrium. So
what happens is that current flows till there is no reason to flow, i.e when the field is zero and hence V is
constant.

The logarithmic capacity of a compact set E in the complex plane is given by γ(E) = e−V(E), (1) where

V(E) = inf
ν

∫
E×E

ln
1

|u − v|
dν(u)dν(v), (2)

and ν runs over each probability measure on E. The quantity V(E) is called the Robin’s constant of E and
the set E is said to be polar if V(E) = +∞ or equivalently, γ(E) = 0.
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6.5. The transfinite diameter

Let E be compact set in C. We define

V(z1, z2, · · · , zn) =

n∏
k, j=1,k< j

(zk − z j),

where z1, z2, · · · , zn ∈ E, and Vn as maximum modula of |V(z1, z2, · · · , zn)|, when z1, z2, · · · , zn ∈ E. The
diameter of order n is defined as

dn = V
2

n(n−1)
n .

dn is not increasing; d2 is diameter of E. The number d = d∞(E) = limn→∞ dn is called the transfinite diameter
of E.

Note that d∞ ≤ d2 and the transfinite diameter of a set is equal to that of its boundary.

Theorem 6.5. The capacity of a closed bounded set is equal to its transfinite diameter.

Let I = [a, b]. Then d(I) = |a−b|
4 .

Theorem 6.6. Let E be a compact in C and d∞ the transfinite diameter of E. Then

m(E) ≤ πd2
∞ .

Let E be a compact and E′ orthogonal projection on a line. Then |E′| ≤ 4d∞(E).

Theorem 6.7. Let E be a compact connected set, let G = E∞ denote the unbounded component of its complement
Ec = C \ E and E0 = Ec

∞. By Riemann’s mapping theorem there is a conformal mapping

F(z) = λ z +
a1

z
+ · · · +

ak

zk
+ · · · (4)

of E on G. Then d∞(E) = d∞(E0) = |λ|.

Proof. Let φ = F−1. Then

φ(w) =
w
λ

+
b1

w
+ · · · +

bk

wk
+ · · · (?4)

and 1(w,∞) = ln |φ(w)| is Green function. Since 1(w,∞) = ln |w| − ln |λ| + o(1), the Robin’s constant
γ = γ(E) = − ln |λ| and therefore cap(E) = |λ|. Hence Theorem 6.5 gives the desired result.

φ(z) = 1
2 (z + 1/z) maps E onto C \ I, where I = [−1, 1]. Hence d∞(I) = 1/2. The analytic capacity γ(K).

Let K be a compact set in C and let Ω(K) = K∞ be the connected component of C \K containing the point at
infinity. The analytic capacity γ(K) is defined by γ(K) = sup

| f |∞≤1 | f
′(∞)|. Here f is a holomorphic function

in Ω(K) whose expansion at infinity is given by f (z) = f ′(∞)/z + a2/z2 + . . . and | f |∞ denotes the supnorm
of f .

Hayman proved (see [20], Chapther VIII) the following: Let F be meromorphic in E, and

F(z) = λ z +
b1

z
+ · · · +

bk

zk
+ · · · (4)

near∞, λ , 0. If E is the omitted set of F, then

cap(E) ≤ |λ| .



Miodrag Mateljević / Filomat 29:3 (2015), 629–650 642

7. Multiplicity and isoperimetric inequality

RecallUr = {|z| < r}. Suppose that f is analytic inU and D(r, f ) = f (Ur).
Let D∞(r, f ) denote the unbounded component of Dc(r, f ) and C(r) = C(r, f ) the boundary of D∞(r, f ).

By a(r) = a(r, f ) and l(r) = l(r, f ) we denote the area of the set D(r, f ) and the length of the curve C(r, f ); the
length of multiply covered arcs of C(r) are counted only once. As a corollary of the isoperimetric inequality,
we have

A-1 4πa(r) ≤ l2(r) .
In [3, 27] it is proved:
A-2 If f (z) =

∑
∞

k=1 akzk inU and 0 < r < 1, then π
∑
∞

k=1 |ak|
2r2k
≤ a(r).

By A-1 and A-2, we find
A-3 4π2 ∑

∞

k=1 |ak|
2r2k
≤ 4πa(r) ≤ l2(r), 0 < r < 1.

In [33] it is proved:
A-4 Suppose that f is analytic inU. Then
(a) π|an|

2r2n
≤ a(r, f ), n ≥ 1.

(b) 2π|an|rn
≤ l(r, f ), n ≥ 1.

The isoperimetric inequality A-1 shows that (a) implies (b).
Note that A-3 gives a significant improvement of A-4 (a).
By L(r) = L(r, f ) and A(r) = A(r, f ) we denote the length of the curve K(r) = K(r, f ) : w = f (reit), 0 ≤ t ≤ 2π,

and the area of the set D(r) counting multiplicity, respectively.
It is known that

L(r) = r
∫ 2π

0
| f ′(reit)|dt, A(r) =

∫
Ur

| f ′(z)|2dx dy , (9)

A-5 4πA(r) ≤ L2(r), r ∈ (0, 1), and
A-6 L2(r) − 4πA(r) is non-decreasing in r ∈ (0, 1).

Question 1. Are there several-dimension generalization of the above statements?
Question 2. Let f0 : T→ C be a curve and C = C( f0) the family of all reparametrization of f0
and H = H( f0) = {P[ f ] : f ∈ C} the corresponding family of harmonic mappings. Describe solutions of

the problem
(A) inf f∈H(

∫
U
|∇ f |2dxdy).

Are the solutions holomorphic functions ?
An extension of the area theorem
E∗ = E( f ) = C \ f (E)

Theorem 7.1 ( [37]). Let

f (z) = λz +
b1

z
+ · · · +

bk

zk
+ · · · (2a)

be analytic on E
a) area(E∗) ≥ π (|λ|2 −

∑
∞

1 k |bk|
2 ).

b) area(E∗) ≤ π |λ|2 Equaliy holds in (a) iff f is univalent. Equaliy holds in (b) iff f (z) = λz.

Finally we state a generalization of the area theorem to analytic functions.

Theorem 7.2 ( [37]). Let w = f (z) = λz + a1
z + · · · + an

zn + · · · be an analytic function on E = {z : |z| > 1} and let
G = C\ f (E) be the omitted set. Then

π
(
|λ|2 −

∞∑
k=1

k|ak|
2
)
≤ area(G). (B1)

Equality holds if and only if f is a univalent function on E.
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Proof. Let Kρ be the circle |z| = ρ with positive orientation and let γρ be the curve defined by the equation
w = fρ(eit) = f (ρeit), 0 ≤ t ≤ 2π.

For given w , ∞ let n(w) be the number of roots of f (z) = w in |z| > ρ. Assume that f , w on Kρ and
λ , 0.Since f has a pole of order 1 at ∞, we have f (z) , w in |z| ≥ r for a large r and consequently, by the
argument principle,

n(w) =
1

2πi

∫
Kr−Kρ

f ′(z)
f (z) − w

dz = 1 − χ(γρ,w), (B2)

where χ = χ(γρ,w) is the winding number (or index ) of the curve γρ with respect to the point w. By the
analytic Green’s theorem (see, for example [Po]), the area

Iρ =
1

2πi

∫
γρ

w̄dw =
1
π

∫ ∫
R2
χ(γρ,w)dudv. (B3)

Let Gρ be the set omitted by f on Eρ = {|z| > ρ}. By (1) w ∈ Gρ if and only if χ(γρ,w) = 1. Also, it follows
from (1) that χ(γρ,w) is an integer less than or equal to zero if w < Ḡρ. This together with (B3) gives

πIρ ≤ area(Gρ). (B4)

Direct calculation as in the proof of area theorem gives (B1).
By the isoperimetric inequality area(G) ≤ πcap2(G). By Hayman cap(E) ≤ |λ| and therefore (b).
For the case of equality see [37].
Let K ⊂ C be compact and let M(K) denote the class of all meromorphic functions f of U into K∞. Let

f0 be the Ahlfors function of K. For 1 ∈ M(K) and h = f0 ◦ 1. Since h′(0) = f ′0(∞)/λ, where λ = 1̂(−1), by
Schwarz’s lemma | f ′0(∞)| ≤ |λ|. There is a branch 10 of f−1

0 ; then f ′0(∞) = 1̂0(−1). Hence
inf{|1̂(−1)| : 1 ∈M(K)} = | f ′0(∞)| = cap(K)
There is a covering map f of E∞ onto K∞, which is locally univalent. Hence

f (z) = λz +
b1

z
+ · · · +

bk

zk
+ · · · (2a)

and

A(γρ) = π
(
|λ|2ρ2

−

∞∑
k=1

k|ak|
2ρ−2k

)
≤ area(G). (B1)

Hayman (see [20], Chapther VIII), proved:

Theorem 7.3. Let F be meromorphic in E, and

F(z) = λ z +
b1

z
+ · · · +

bk

zk
+ · · · (4)

near∞, λ , 0. If E is the omitted set of F, then

cap(E) ≤ |λ| .

Let f0 : E(F) → U be analytic. Set J(z) = 1/z, 1 = F ◦ J and h = f0 ◦ 1. Since h′(0) = f ′0(∞)/λ, by Schwarz’s
lemma
| f ′0(∞)| ≤ |λ|.
Let K ⊂ C be compact andH0(Kc) = { f : f ∈ H∞(C \ K), ‖ f ‖∞ ≤ 1, f (∞) = 0}. Then its analytic capacity is
defined to be

γ(K) = sup{| f ′(∞)| : f ∈ H∞(C \ K), ‖ f ‖∞ ≤ 1, f (∞) = 0} . (10)

Here f ′(∞) := limz→∞ z
(

f (z) − f (∞)
)
, f (∞) := limz→∞ f (z). For each compact K ⊂ C, there exists a unique

extremal function, i.e. f ∈ H0(Kc) such that f ′(∞) = γ(K). This function is called the Ahlfors function of K.
Its existence can be proved by using a normal family argument involving Montel’s theorem.
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We close this section with short discussion concerning Removable sets and Painlevé’s problem.
The compact set K is called removable if, whenever G is an open set containing K, every function which
is bounded and holomorphic on the set G \ K has an analytic extension to all of G. By Riemann’s theorem
for removable singularities, every singleton is removable. This motivated Painlevé to pose a more general
question in 1880: ”Which subsets of C are removable?” It is easy to see that K is removable if and only if
γ(K) = 0. However, analytic capacity is a purely complex-analytic concept, and much more work needs to
be done in order to obtain a more geometric characterization.

7.1. The oriented area

In topology, a curve is defined as follows. Let I be an interval of real numbers (i.e. a non-empty
connected subset of R). Then a curve γ is a continuous mapping γ : I→ X , where X is a topological space,
and tr(γ) = {γ(t) : t ∈ I}. Suppose we are given a closed, oriented curve in the xy- plane. We can imagine the
curve as the path of motion of some object, with the orientation indicating the direction in which the object
moves. Then the winding number of the curve is equal to the total number of counterclockwise turns that
the object makes around the origin.

When counting the total number of turns, counterclockwise motion counts as positive, while clockwise
motion counts as negative. For example, if the object first circles the origin four times counterclockwise,
and then circles the origin once clockwise, then the total winding number of the curve is three.

The winding number of a closed curve γ in the plane around a given point z < tr(γ), nγ(z), is an
integer representing the total number of times that curve travels counting orientation around the point.
The winding number depends on the orientation of the curve, and is negative if the curve travels around
the point clockwise.

Let γ be a rectifiable closed curve of length L given by equation z = z(t), −π ≤ t ≤ π. We define the
oriented area enclosed by γ with

A(γ) =
1
2 i

∫
γ
γ dγ =

1
2 i

∫ π

−π
z′(t) z(t) dt .

If Dk = {z : nγ(z) = k}, then
A-7 A(γ) =

∑
kA(Dk) and

∑
|k|A(Dk) ≤ L2/4π. Let F = F(γ) be a family of all curves γ1 such that

tr(γ1) = tr(γ) and nγ1 (z) ≤ |nγ(z)| for every z < tr(γ). We can define a curve γ0 such that tr(γ0) = tr(γ) and
nγ0 (z) = |nγ(z)| for every z < tr(γ).

We announce the following result:

Theorem 7.4. Let f : U → C be harmonic, continuous on U and γ curve defined by f (eit), 0 ≤ t ≤ 2π. If γ is
rectifiable curve of length L, then

∫
U

(|1′|2 − |h′|2)dxdy =

∫
C

nγ(w)dyudv = A(γ) ≤
L2

4π
. (11)

M. Pavlović has informed me that he also proved this result independently. In [29], D.Kalaj, M. Marković
and M. Mateljević proved:

Theorem 7.5. (i.1) If Σ is a simply-connected harmonic surface which allows a regular harmonic parametrization,
then the Gaussian curvature of Σ is nonpositive.
(i.2) (Isoperimetric inequality for harmonic surfaces). If Σ ⊂ Rn is a harmonic Jordan surface with the
rectifiable boundary γ, then the classical isoperimetric inequality holds:

4πA(Σ) ≤ L2(γ) . (12)

Using the Wirtinger inequality, we prove:
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Theorem 7.6. Let
f (z) = z +

a1

z
+ · · · +

ak

zk
+ · · ·, 1(z) = z +

b1

z
+ · · · +

bk

zk
+ · · ·. (2)

be holomorphic function on B′ and h = ( f , 1) and S ⊂ C2 surface such that S ∪ h(U
′

) is simple connected. Then
area(S) ≥ π (|a1|

2 + |b1|
2
−

∑
∞

1 k (|ak|
2 + |bk|

2) ).

7.2. the duality relation and Hardy spaces
In [35, 36], we study applications of the isoperimetric inequality to some extremal problem in Hardy

spaces. Applying the duality relation in some cases we get better estimates from those which were obtained
by the isoperimetric inequality. In this subsection we present some results obtained in [35, 36]. For given
f , h ∈ H1 we define L( f , h) = Lh( f ) = π−1

∫
D

f h dxdy. For given h ∈ H1 we can consider Lh as linear functional
on H1. In [36], we prove that

1) L( f , h) ≤ || f ||1||h||1 with equality if and only if f = α(1 − az)−2, h = λ f (α, λ ∈ C, |a| < 1).
2) |Lh| ≤ |h|1 and
3) if f ∈ Hp and |a| < 1, then f (a) ≤ (1 − |a|2)−1/p

| f |p, cf. also [30, 31, 47].
4) If f ′ ∈ H1 and F = f ′, then |LF(F)| ≤ |F|1| f |∞ with equality if and only if f is a finite Blaschke product.

Lemma 7.1. If f , h ∈ H1 and k is function defined by k(z) =
∫ z

0 h(w)dw, z ∈ D, then

L( f , h) = π−1
∫
D

f h dxdy =
1

2πi

∫
C

f k dz, (13)

where C is positively oriented boundary of the unit disk.

Combining Lemma 7.1 and the duality relation( [17], p.130) with the inequality 1) we obtain:
If f ∈ H1 and k =

∫ z

0 h, then

sup
f∈H1, || f ||1≤1

π−1
|

∫
D

f h dxdy| = min
1∈H∞
||k − 1||∞ ≤ ||h||1 (14)

It is clear that that this inequality improves 1).
Let γ(t) = u(t) + i v(t), α ≤ t ≤ β, be an absolutely continuous path with u(α) = u(β) = 0. Then (see [39])

min
x∈R

∫ β

α
|u(t) − x||v′(t)| dt ≤

1
4π

L2 (15)

8. Appendix 1

In this section, for the sake of convenience of the reader we sketch a proof of the following theorem
about geodesics on a sphere and Fenchel’s Theorem about total curvature.

Theorem 8.1. The geodesics on Sn are precisely the great circles, that is, the intersections of Sn with the planes
through the center of Sn.

Proof. Reflection through a plane E2 is an isometry I : Sn
→ Sn whose fixed point set is C = Sn

∩ E2. Let
x and y be two points of C with a unique geodesic C′ of minimal length between them. Then, since I is an
isometry, the curve I(C′) is a geodesic of the same length as C′ between I(x) = x and I(y) = y. Therefore
C′ = I(C′). This implies that C′ ⊂ C. Finally, since there is a great circle through any point of Sn in any
given direction, these are all the geodesics. Antipodal points on the sphere have a continium of geodesics of
minimal length between them. All other pairs of points have a unique geodesic of minimal length between
them, but an infinite family of non-minimal geodesics, depending on how many times the geodesic goes
around the sphere and in which direction it starts. By the same reasoning every meridian line on a surface
of revolution is a geodesic. The geodesics on a right circular cylinder Z are the generating lines, the circles
cut by planes perpendicular to the generating lines, and the helices on Z.
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8.1. Fenchel’s Theorem

If X is a topological space, a path (curve) in X is a continuous mapping f of a compact interval [α, β] ⊂ R
(here α < β) into X. Strictly speaking, a curve γ = [ f ] is class of equivalence of path f . Often, it is convenient
to identify γwith a parametrization f . We call [α, β] the parameter interval of f ( γ) and denote the range of
γ by tr(γ). Thus γ is a mapping, and tr(γ) is the set of all points γ(t), for α ≤ t ≤ β. Suppose γ is a rectifiable,
oriented curve in Rn and f a parameterization of γ on I = [0, 1]. Then the function s = s f , defined for
ϕ ∈ I = [0, 1] by s(ϕ) to be the length of the restriction γ|[0, ϕ], is called the arc-length (natural) parameter;
and function f̄ , defined by f̄ (s) = f (t), is called arc-length (natural) parameterization of f . Note that s = s f
is an increasing continuous function from [0, 1] onto [0, l], where l is the length of γ. In addition, if γ is
differentiable, then s(ϕ) =

∫ ϕ
0 | f

′(t)|dt.
Now, suppose that γ is a rectifiable, oriented, differentiable curve given by its arc-length parame-

terization 1 = f̄ . We define the tangent T f (t) = f ′(t) and the unit tangent (the tangential indicatrix)

I f (t) =
T f (t)
|T f (t)| =

f ′(t)
| f ′(t)| , and for p = 1(s) = f (t), T(p) = T1(s) = 1′(s). Since I f (t) and T1(s) are the unit vector, we

have I f (t) = T(s), where we write shortly T(s) for T1(s).
Hence I′f (t) = T′(s)s′(t).

Then |1′(s)| = 1 and s =
∫ s

0 |1
′(t)|dt, for all s ∈ [0, l].

If γ is a twice-differentiable curve, then the curvature of γ at a point p = 1(s) is given by κγ(p) = |1′′(s)|;
when it is convenient we write κ(s) instead of κγ(p).

Since |1′(s)| = 1 then < 1′′(s), 1′(s) >= 0. In particular, if γ is in C, we find

1′(s) = αi1′′(s), α ∈ R, and |α| = κ−1
γ (p). (16)

For a C1 curve c in Rn of length L we define the total curvature by κtot = κtot(c) =
∫ L

0 κ(s)ds and the
average curvature by κav = κtot/L.

Recall, the unit tangent vectors emanating from the origin form a curve Ic, given by Ic(t) = Tc(t)/|Tc(t)|,
on the unit sphere called the tangential indicatrix of the curve c. To calculate the length of the tangent
indicatrix, we form the integral of κc(t) = |T′(t)| = κ(s(t))s′(t), where s is the arc-length parameter, with

respect to t; |Ic| =
∫ 1

0 |I
′
c(t)|dt.

Since κ(s)ds = κ(s(t))s′(t)dt, |Ic| =
∫ L

0 |T
′(s)|ds =

∫ 1

0 κ(s(t))s′(t)dt =
∫ L

0 κ(s)ds, so the length of curve Ic is κtot.
Thus, this significant integral is the total curvature of the curve c.

Theorem 8.2 (Fenchel’s Theorem). The total curvature of a closed space curve c is greater than or equal to 2π.

Thus, Fenchel’s theorem (Werner Fenchel, 1929) states that the average curvature of any closed convex
plane curve is 2π

L , where L is the perimeter.
More generally, for an arbitrary closed curve in space the average curvature is ≥ 2π

L with equality
holding only for convex plane curves. The proof of Fenchel’s Theorem given by R. Horn in 1971, depends
on Lemma 8.1.

Lemma 8.1. Let 1 be a closed curve on the unit sphere with length L < 2π. Then there is a point m on the sphere
that is the north pole of a hemisphere containing 1.

Proof of Fenchel’s Theorem. Let m ∈ S2 be an arbitrary point. Set f (t) = c(t) · m. Then 0 = f ′(t) =
c′(t) ·m = s′(t)T(t) ·m, so there are at least two points (maximum and minimum of f ) on the curve such that
the tangential image is perpendicular to m. Therefore the tangential indicatrix of the closed curve c is not
contained in a hemisphere, so by the lemma, the length of any such indicatrix is greater than 2π. Therefore
the total curvature of the closed curve c is also greater than or equal to 2π.

Corollary 1. If, for a closed curve c, we have
(i) κc(t) ≤ 1/R for all t, then
(ii) the curve has length L ≥ 2πR.
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By Fenchel’s Theorem, 2π ≤ |Ic|. On the other hand |Ic| =
∫ 1

0 |T
′(t)|dt =

∫ 1

0 κ(s(t))s′(t)dt =
∫ L

0 κ(s)ds and
therefore by the hypothesis (i), |Ic| ≤ L/R. Hence, we get (ii).

There is a generalization of Lemma 8.1:

Lemma 8.2. Any closed loop of length strictly less than 2π in the sphere S2n−1 must lie inside an open hemisphere,
and so cannot be the boundary of any minimal surface spanning the unit ball and containing the origin.

Gauss’s integral definition
Given two non-intersecting differentiable curves γ1, γ2 : S1

→ R3, define the Gauss map Γ from the torus
to the sphere by

Γ(s, t) =
γ1(s) − γ2(t)
|γ1(s) − γ2(t)|

.

Pick a point in the unit sphere, v, so that orthogonal projection of the link to the plane perpendicular
to v gives a link diagram. Observe that a point (s, t) that goes to v under the Gauss map corresponds to a
crossing in the link diagram where γ1 is over γ2. Also, a neighborhood of (s, t) is mapped under the Gauss
map to a neighborhood of v preserving or reversing orientation depending on the sign of the crossing. Thus
in order to compute the linking number of the diagram corresponding to v it suffices to count the signed
number of times the Gauss map covers v. Since v is a regular value, this is precisely the degree of the
Gauss map (i.e. the signed number of times that the image of Γ covers the sphere). Isotopy invariance of
the linking number is automatically obtained as the degree is invariant under homotopic maps. Any other
regular value would give the same number, so the linking number doesn’t depend on any particular link
diagram.

This formulation of the linking number of γ1 and γ2 enables an explicit formula as a double line integral,
the Gauss linking integral:

linking number =
1

4π

∮
γ1

∮
γ2

r1 − r2

|r1 − r2|
3 · (dr1 × dr2). (17)

This integral computes the total signed area of the image of the Gauss map (the integrand being the Jacobian
of Γ) and then divides by the area of the sphere (which is 4π).

8.2. Minimal surfaces
Minimal surfaces can be defined in several equivalent ways in R3. The fact that they are equivalent

serves to demonstrate how minimal surface theory lies at the crossroads of several mathematical disciplines,
especially differential geometry, calculus of variations, potential theory, complex analysis and mathematical
physics.

Local least area definition: A surface M ⊂ R3 is minimal if and only if every point p ∈ M has a
neighborhood with least-area relative to its boundary.

Note that this property is local: there might exist other surfaces that minimize area better with the same
global boundary.

Variational definition:A surface M ⊂ R3 is minimal if and only if it is a critical point of the area functional
for all compactly supported variations.

This definition makes minimal surfaces a 2-dimensional analogue to geodesics.
Soap film definition: A surface M ⊂ R3 is minimal if and only if every point p ∈ M has a neighborhood

Dp which is equal to the unique idealized soap film with boundary ∂Dp.
Mean curvature definition: A surface M ⊂ R3 is minimal if and only if its mean curvature vanishes

identically.
A direct implication of this definition is that every point on the surface is a saddle point with equal and

opposite principal curvatures.
Differential equation definition: A surface M ⊂ R3 is minimal if and only if it can be locally expressed

as the graph of a solution of
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(1 + u2
x)uyy − 2uxuyuxy + (1 + u2

y)uxx = 0 .

Douglas and simultaneously Rado solved the famous problem of Plateau,namely, that every Jordan
wire in Rn bounds at least one disc-type surface of least area.

9. Appendix 2

9.1. Borromean rings, the Gehring Link Problem and the IMU logo
The Borromean rings consist of three topological circles which are linked and form a Brunnian link (i.e.,

removing any ring results in two unlinked rings). In other words, no two of the three rings are linked with
each other as a Hopf link, but nonetheless all three are linked.

As you can see, it consists of three circles, linked so that they cannot be pulled apart. But no individual
circle links with any one other, it is only the figure as a whole which cannot be disentangled.

This is an example of what mathematicians call a ”link with three strands”. The study of such links is
part of Knot Theory, a mathematical topic which studies the form of knots and links. At the present time
it does not study some matters of interest to a practical user such as the size of the knot when made up of
string or rope, or its suitability as a knot for a particular and practical task. Nonetheless, the theory has
amazing relations with topics such as polymer theory and theoretical physics. For more information try
looking at the Knot Plot Site (outside link). The article [9] shows how Borromean squares exist, and have
been made by Robinson (sculptor), who has also given other forms of this structure, see [50] for further
information and literature, and [46] for visualization. Although the typical picture of the Borromean rings
(above right picture) may lead one to think the link can be formed from geometrically ideal circles, they
cannot be. (Freedman & Skora 1987) proves that a certain class of links, including the Borromean links,
cannot be exactly circular. Alternatively, this can be seen from considering the link diagram: if one assumes
that circles 1 and 2 touch at their two crossing points, then they either lie in a plane or a sphere. In either case,
the third circle must pass through this plane or sphere four times, without lying in it, which is impossible;
see [28],(Lindström & Zetterström 1991). A realization of the Borromean rings as ellipses 3D image of
Borromean Rings It is, however, true that one can use ellipses (right picture). These may be taken to be of
arbitrarily small eccentricity; i.e. no matter how close to being circular their shape may be, as long as they
are not perfectly circular, they can form Borromean links if suitably positioned; as an example, thin circles
made from bendable elastic wire may be used as Borromean rings.

This article explains why Borromean links cannot be exactly circular.
B.Lindström and H.O.Zetterström, cf. [28], proved that ”Borromean circles are impossible”: three

flat circles cannot construct them, but by triangles they can. The Australian sculptor J.Robinson assembled
three flat hollow triangles to form a structure (called Intuition), topologically equivalent to Borromean rings.
Their cardboard model collapses under its own weight, to form a planar pattern. The Borromean rings are
a hyperbolic link: the complement of the Borromean rings in the 3-sphere admits a complete hyperbolic
metric of finite volume. The canonical (Epstein-Penner) polyhedral decomposition of the complement
consists of two regular ideal octahedra. The volume is 16Λ(π/4) = 7.32772... where Λ is the Lobachevsky
function.

The International Mathematical Union (IMU) has adopted the new logo above, see [49], as announced
on 22 August 2006 at the opening ceremony of the International Congress of Mathematicians (ICM 2006) in
Madrid. It was the winner of an international competition announced by the IMU in 2004.

The logo was designed by John Sullivan, Professor of Mathematical Visualization at the Technical
University of Berlin (TU Berlin) and at the DFG Research Center MATHEON, and adjunct professor at
the University of Illinois, Urbana (UIUC), with help from Prof. Nancy Wrinkle of Northeastern Illinois
University.

The logo design is based on the Borromean rings, a famous topological link of three components. The
rings have the surprising property that if any one component is removed, the other two can fall apart (while
all three together remain linked). This so-called Brunnian property has led the rings to be used over many
centuries in many cultures as a symbol of interconnectedness, or of strength in unity.
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Although the Borromean rings are most often drawn as if made from three round circles, such a
construction is mathematically impossible.

The IMU logo instead uses the tight shape of the Borromean rings, as would be obtained by tying them
in rope pulled as tight as possible. Mathematically, this is the length-minimizing configuration of the link
subject to the constraint that unit-diameter tubes around the three components stay disjoint. This problem
and its solution are described in the paper [11].

Although this critical configuration is quite close to one made of convex and concave circular arcs, its
actual geometry is surprisingly intricate. Each component is planar and piecewise smooth, with the shapes
of many of the 14 pieces described by elliptic integrals. The improvement over the similar piecewise circular
configuration leads to a savings of length of less than one tenth of one percent! (The paper cited above
first noticed a similar surprise in the simple clasp: one rope attached to the floor clasped around another
attached to the ceiling. There as well, the minimizing shapes for the ropes are quite complicated, leaving a
small gap between the thick tubes right at the tip.)

The tight configuration of the Borromean rings has pyritohedral symmetry (3*2 in the Conway/Thurston
orbifold notation), and the IMU logo uses a view along a three-fold axis of rotation symmetry. Instead of
the thick tubes, which would touch one another all along their lengths, thinner tubes are drawn, allowing
a better view of the link.

Sullivan says the new logo ”represents the interconnectedness not only of the various fields of mathe-
matics, but also of the mathematical community around the world. ” Together with Charles Gunn of TU
Berlin, he has made a 5-minute computer-graphics video The Borromean Rings: a new logo for the IMU
for presentation at the ICM opening ceremony, see [50] ICM 2006.

The video, also viewable online, includes other views of the tight Borromean rings, rendered for instance
as woven rope or transparent soap film.

9.2. Connections with physics

A quantum-mechanical analog of Borromean rings is called a halo state or an Efimov state (the existence
of such states was predicted by physicist Vitaly Efimov, in 1970). A team of physicists led by Randy Hulet of
Rice University in Houston finally achieved the trio of particles, and published their findings in the online
journal Science Express.

”It’s an amazing effect, really,” Hulet said. ”A lot of people didn’t believe [Efimov] at first. It was a very
strange prediction.”

The theory is unique because it’s a solution to a special case of what’s called the ”three-body” problem.
Scientists have solved the ”two-body” problem - that is, they have calculated exactly how two objects should
move based on their starting positions, masses and velocities. Scientists can also calculate this scenario for
many masses, but a pure solution to the general three-body problem has been elusive.

”Physicists can handle two-body problems quite well, and many-body problems fairly well, but when
there are just a few objects, like the three bodies in these Efimov trimers, there are just too many variables,”
Hulet said. The Efimov calculation is not the solution to the general case, but rather a solution to a specific
case of three bodies. Thus, discovering a real-life example of three particles fulfilling his prediction is an
important step to learning more about few-body physics. See also papers by C.Moskowitz and K. Tanaka
cited in [50].
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[30] M. Marković, A Sharp inequality for holomorphic functions on the polydisc, Proc. Amer. Math. Soc. 141 (2013), 1693-1704
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[34] M. Mateljević, Nejednakosti u Hp prostorima i njihova ekstremalna svojstva, Magistarski rad, 1976.
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