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Abstract. In this paper we define and construct a new class of algebraic surfaces in three-dimensional
Euclidean space generated by a curve and a congruence of circles. We study their properties and visualize
them. For computing and plotting, we use the program Wolfram Mathematica.

1. Introduction

One of the most important places in the classical geometry belongs to the study of some classes of
surfaces with special properties in R3 such as developable surfaces and ruled surfaces - a smooth one-
parameter families of straight lines, valuable in many area like arhitecture, civil engineering and CAD. In
[6] the authors create a class of circular surfaces (a smooth one-parameter family of circles) assured in their
further applicability. The authors classify and investigate the properties of this family of standard circles
with a fixed radius by using the methods of differential geometry. In this paper we give certain extension
of their work by obtaining circular surfaces with variable radii of the generating circles.

A circular surface is (the image of) a map V : I ×R/2πZ −→ R3, I ⊆ R, defined by

V(t, θ) = γ(t) + r(t)(cosθa1(t) + sinθa2(t)), (1)

where γ, a1, a2 : I −→ R3 and r : I −→ R>0, (see [6]). It is assumed that 〈a1, a1〉 = 〈a2, a2〉 = 1 and 〈a1, a2〉 = 0
for all t ∈ I, where 〈, 〉 denotes the canonical inner product on R3. The curve γ is called a base curve and the
pair of curves a1, a2 is said to be a director frame. The standard circles θ 7→ r(t)(cosθa1(t) + cosθa2(t)) are
called generating circles. The base curve actually consists of the centers of the generating circles.

In this paper we construct one new class of circular surfaces. First we define three types of congruences
of circles and study their properties. Then, for a given congruence C(p) of a certain type and a given
curve α we define a circular surface as the system of circles from C(p) that intersect α. The main scientific
contribution of this paper is geometrical description of certain properties of circular surfaces when α is
an algebraic curve, which is stated in detail in Theorem 3.4. We use a relatively unusual method since
we combine two different approaches: one is the analytical and the other is the synthetic approach. The
analytical method is widely used and necessary when it comes to computer modeling and visualization.
On the other hand, the synthetic method is often considered to be obsolete but in many cases it is useful
and offers a short and elegant solution to the problem.
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2. Congruence of Circles C(p)

A congruence of curves is a set C of curves in a three-dimensional space (projective, affine or Euclidean)
depending on two parameters. According to [1], it can be defined by equations of the form

x = f1(t,u, v), y = f2(t,u, v), z = f3(t,u, v), (2)

where f1, f2, f3 are the functions of class C1 within a suitable region, u and v denote the parameters
determining the curve, and t is the parameter which determines the point on the curve.
In this paper we consider a congruence of circles C(p) that consists of circles in Euclidean space E3 passing
through two given points P1, P2. The points P1, P2 lie on the axis z and are given by the coordinates (0, 0,±p),
where p =

√
q, q ∈ R. If q is greater, equal or less than zero, i.e. the points P1, P2 are real and different,

coinciding (the axis z is the tangent line of all circles of the congruence) or imaginary, the congruence C(p)
is called an elliptic, parabolic or hyperbolic congruence, respectively (see Fig. 1).

a b c

Figure 1: Some circles of an elliptic, parabolic or hyperbolic congruence C(p) are shown in a, b and c, respectively.

Every plane ζ through the axis z cuts the congruence C(p) into one pencil of circles through the points P1
and P2 which is denoted (P1,P2). This pencil is elliptic, parabolic or hyperbolic if q is greater, equal or less
than 0, respectively. In the plane ζ(ϕ), where ϕ ∈ [0, 2π) is the angle between the plane ζ and the axis x, we
consider the Cartesian coordinate system O(ρ, z) (see Fig. 2).

a b c

Figure 2

For every circle c ∈ (P1,P2) in the plane ζ(ϕ), the ρ-coordinate of its center C is equal to
√

r2 − p2, where r is
the radius of the circle c.
Thus, the congruence C(p) is defined by the following equations:

x(θ, r, ϕ) = cosϕ(r cosθ +
√

r2 − p2),

y(θ, r, ϕ) = sinϕ(r cosθ +
√

r2 − p2),

z(θ, r, ϕ) = r sinθ, (3)
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where ϕ, θ ∈ [0, 2π), r ∈ R+ for q 6 0, and r > p for q > 0.

It follows from eq. (2) that the curves of a congruence are the intersections of two systems of surfaces when
u and v respectively are constants. We derive eqs. (3) on the basis that the circles of C(p) for constant ϕ lie
in the planes ζ(ϕ) (see Fig. 2). On the other hand, it is clear from eqs. (3) that for a constant r the circles of
C(p) lie on a torus τ(r). For a variable r, the system of τ(r) contains the spindle, horn or ring tori if C(p) is an
elliptic, parabolic or hyperbolic congruence, respectively (see Fig. 3).

a b c

Figure 3: Some tori of the system τ(r), for q greater, equal or less than 0, are shown in a, b and c, respectively. For q > 0,
τ(p) is a double sphere through the points P1 and P2 (a). For q < 0, τ(0) is a ruled surface with the isotropic rulings that
intersect on one real circle c(0) given by the equations x2 + y2 = −p2 and z = 0 (c).

For every point A with cylindrical coordinates (ρ0, ϕ0, z0), ρ0 , 0, there exists a unique circle cA(p) ∈ C(p)

passing through the points A, P1 and P2. The ρ-coordinate of the center C of this circle cA(p) is ρA
C =

ρ2
0+z2

0−p2

2ρ0
.

Therefore, if we convert the cylindrical coordinates to Cartesian coordinates, then ∀A = (x0, y0, z0), where
(x0, y0) , (0, 0), the parametric equations of the circle cA

∈ C(p) are the following:

x(θ) =
x0

2(x2
0 + y2

0)

(√
4p2(x2

0 + y2
0) + (x2

0 + y2
0 + z2

0 − p2)2 cosθ + x2
0 + y2

0 + z2
0 − p2

)
y(θ) =

y0

2(x2
0 + y2

0)

(√
4p2(x2

0 + y2
0) + (x2

0 + y2
0 + z2

0 − p2)2 cosθ + x2
0 + y2

0 + z2
0 − p2

)
z(θ) =

√
p2 +

(x2
0 + y2

0 + z2
0 − p2)2

4(x2
0 + y2

0)
sinθ, θ ∈ [0, 2π). (4)

For every point at infinity A∞ (A∞ < z), the circle cA∞ (p) splits into the axis z and the line at infinity in the
plane ζ through the axis z and the point A∞.

Singular points of C(p)
A point is the singular point of a congruence if infinitely many curves pass through it. The singular points
of C(p) are the points on the axis z and the absolute points of E3. Namely,

• for the points P1,P2 ∈ z, the circles cPi form the whole congruence C(p);

• if Z ∈ z, Z , Pi, cZ(p) form a singly infinite system of splitting circles. Every plane ζ cuts this system
into z and the line at infinity;

• if A1,A2 are the absolute points in the plane ζ, cA1,A2 (p) form a pencil of circles in the plane ζ.
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C(p) is a normal curve congruence
If all curves of a congruence are orthogonal to a singly infinite system of surfaces, the congruence is said to
be normal and its equations satisfy the differential conditions given in [9, p. 123]. From eqs. (4) it is not hard
to check that these conditions are fulfilled for the congruence C(p). Even easier, according to the properties
of Apollonian circles ([10]), it is clear that every circle of C(p) cuts orthogonally one singly infinite system of
spheres with the centers on the axis z (see Fig. 4).

Figure 4: The figure illustrates the following property: every circle of an elliptic, parabolic or hyperbolic congruence
C(p) is orthogonal to one hyperbolic, parabolic or elliptic pencil of spheres, respectively.

3. Circular Surface CS(α, p)

Definition 3.1. Let α : I → R3, I ⊆ R, be a piecewise-differentiable curve in E3 that does not contain any singular
point of C(p). The circular surface C(α, p) is a one-parametric system of circles c ∈ C(p) that intersect the curve α.

a b c

Figure 5: The figure illustrates Definition 3.1. Through every point on the curve α one and only one circle of the
congruence passes.

If α contains any singular point of C(p), the one-parametric system of circles c ∈ C(p) that intersect the curve
α contains circles that have to be excluded from our further consideration. For example, if α passes through
the point Pi, this system is the two-parametric set C(p). Thus, let us define a one-parametric setK (α, p) that
further in the text we will consider as the complete system of circles c ∈ C(p) that cut α.
If α is a piecewise-differentiable curve in E3, K (α, p) consists of all circles c ∈ C(p) that cut α at the points
that are regular points of C(p), and the following lines:
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- if α contains a point Z ∈ z, Z , Pi, K (α, p) contains the pencil of lines through the point (0 : 0 : 1 : 0) in
the plane at infinity ω. The line at infinity that lies in the plane ζ determined by the tangent line of α
at Z is denoted by lZ;

- if α passes through a pair of absolute points (A1,A2), K (α, p) contains all pairs of isotropic lines that
lie in isotropic planes ι1,2 through z and (A1,A2);

- if α passes through the point Pi, K (α, p) contains the pencil of lines at the plane at infinity ω and the
pencil of circles c ∈ C(p) in the plane π that passes through the axes z and the tangent line of α at Pi.
The circle of this pencil that has the same tangent line at P as the curve α is denoted by cP.

In the following notation,K (α, p), ω, ι1,2 and π are implied as the sets of lines.

Definition 3.2. Let α be a piecewise-differentiable curve in E3 that contains singular points of C(p). Then,

- if α contains a point Z on the axis z, Z , Pi, the circular surface CS(α, p) = (K (α, p) \ ω) ∪ {lZ};

- if α contains the pair of absolute points (A1,A2), the circular surface CS(α, p) = K (α, p) \ ι1,2;

- if α contains the point Pi, CS(α, p) = (K (α, p) \ (π ∪ ω)) ∪ {cP}.

3.1. Parametric equations of CS(α, p)

Let the curve α : I → R3, I ⊆ R, be given by α(t) = (α1(t), α2(t), α3(t)), where αi ∈ C1(I), and let its normal
projection on the plane z = 0 be denoted by αxy(t) = (α1(t), α2(t), 0).
If we substitute (α1(t), α2(t), α3(t)) for (x0, y0, z0) in (4), then after some calculations the following parametric
equations of CS(α, p) hold:

x(t, θ) =
α1(t)

2
∥∥∥αxy(t)

∥∥∥2

(√
4p2

∥∥∥αxy(t)
∥∥∥2

+ (‖α(t)‖2 − p2)2 cosθ + ‖α(t)‖2 − p2

)

y(t, θ) =
α2(t)

2
∥∥∥αxy(t)

∥∥∥2

(√
4p2

∥∥∥αxy(t)
∥∥∥2

+ (‖α(t)‖2 − p2)2 cosθ + ‖α(t)‖2 − p2

)

z(t, θ) =

√√
p2 +

(‖α(t)‖ − p2)2

4
∥∥∥αxy(t)

∥∥∥2 sinθ, (t, θ) ∈ I × [0, 2π). (5)

The equations above can be written in the following form:

CS
α p(t, θ) = γα p(t) + rα p(t)(cosθaα p

1 (t) + sinθaα p
2 (t)), (6)

where

γα p(t) =
‖α(t)‖2 − p2

2‖αxy(t)‖2
αxy(t), aα p

1 (t) =
αxy(t)
‖αxy(t)‖

,

rα p(t) =

√
p2 +

(‖α(t)‖2 − p2)2

4‖αxy(t)‖2
, aα p

2 (t) = (0, 0, 1) = k.

The equation (6) is obviously of the form (1) and therefore the surfaceCS(α, p) belongs to the class of circular
surfaces.

The equations (5) or (6) allow numerous visualizations of the circular surfaces CS(α, p). Some examples are
shown in Figures 6 and 7.
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a b c

Figure 6: Parts of CS(α, p) for α(t) = (9 cos t − 4 cos 9t
2 , 9 sin t − 4 cos 9t

2 , 0) and p = 4, 0, 4i are shown in a, b and c,
respectively.

a b c

d e f

Figure 7: Six surfaces CS(α, p) for α(t) = (4 cos t + cos 4t, 4 sin t− sin 4t, 0) and p = 0, 2i, 3i, 4i, 5i, 6i are shown in a, b, c, d,
e and f, respectively.

3.2. Properties of algebraic surfaces CS(α, p)

Lemma 3.3. If l is a straight line that does not intersect the axis z, CS(l, p) is a parabolic cyclide through the axis z.

Proof. Without loss of generality we can assume that the line l is given by

l(t) = (1, t, bt + c), t, b, c ∈ R.
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It follows from (5) that the parametric equations of CS(l, p) are

x(t, θ) =
1 − p2 + t2 + (c + bt)2 +

√
4 (1 + t2) p2 +

(
1 − p2 + t2 + (c + bt)2

)2
cosθ

2 (1 + t2)

y(t, θ) =
1 − p2 + t2 + (c + bt)2 +

√
4 (1 + t2) p2 +

(
1 − p2 + t2 + (c + bt)2

)2
cosθ

2 (1 + t2)
t

z(t, θ) =

√√
p2 +

(
1 − p2 + t2 + (c + bt)2

)2

4 (1 + t2)
sinθ, (t, θ) ∈ R × [0, 2π). (7)

After expressing cosθ from the first equation we obtain the following equalities:

y = tx, z2 = −p2 (−1 + x) +
(
1 + c2 + 2bct + t2

(
1 + b2

− x
)
− x

)
x.

If we eliminate the parameter t from the above equations, we obtain the following implicit equation of
CS(l, p):

x
(
x2 + y2 + z2

)
− x2(c2 + 1 − p2) − 2bcxy − y2(b2 + 1) − p2x = 0. (8)

It is clear from eq. (8) that CS(l, p) is an algebraic surface of the order 3 containing the absolute conic and
the axis z, i.e. CS(l, p) is a parabolic cyclide through z. �

Theorem 3.4. Let α be an mth order algebraic curve that cuts the axis z at z′ points, the absolute conic at a′ pairs
of the absolute points and with the points P1 and P2 as p′1-fold and p′2-fold points, respectively. Then, the following
statements hold:

1. CS(α, p) is an algebraic surfaces of the order 3m − (z′ + 2a′ + 2p′1 + 2p′2).
2. The absolute conic is an m − (z′ + p′1 + p′2)-fold curve of CS(α, p).
3. The axis z is an (m − 2a′ + z′)–fold line of CS(α, p).
4. The points P1, P2 are 2m − (2a′ + p′1 + p′2)–fold points of CS(α, p).

Proof.

1. The order of CS(α, p) equals the number of intersection points of CS(α, p) and any straight line l.
Through every such intersection point passes one circle c ∈ C(p) that cuts l and α. Since c must lie on
CS(l, p), the number of such circles is equal to the number of intersection points of α and CS(l, p) that
is, according to Lemma 3.3, 3m.

– If α intersects the axis z at z′ points different from Pi or at a certain number of such points where
the sum of their multiplicities is z′, the system K (α, p) contains the z′-ple plane ω. Thus, the
number of the intersection points of l and CS(α, p) is reduced by z′.

– If α passes through a′ pairs of absolute points, the system K (α, p) contains a′ pairs of isotropic
planes through the axis z. Thus, the number of intersection points of l and CS(α, p) is reduced
by 2a′.

– If Pi (i = 1, 2) is the p′i -fold point of α, the systemK (α, p) contains p′i planes through the axis z and
the p′i -ple plane ω. Thus, the number of intersection points of l and CS(α, p) is reduced by 2pi.

These observations lead to the conclusion that the order of SC(α, p) is 3m − (z′ + 2a′ + 2p′1 + 2p′2).
2. The plane at infinity cuts the system K (α, p) into m straight lines that pass through the points of α at

infinity and the absolute conic counted m times.

– If z′ , 0, K (α, p) contains the z′-ple plane ω. Thus, the multiplicity of the absolute conic as the
section of CS(α, p) and the plane ω is reduced by z′.
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– If a′ , 0, the number of straight lines at infinity on CS(α, p) is reduced by 2a′.
– If p′i , 0, the number of straight lines at infinity on CS(α, p) as well as the multiplicity of the

absolute conic as the section of CS(α, p) and the plane ω is reduced by p′i .
Therefore, SC(α, p) contains the absolute conic counted m − (z′ + p′1 + p′2) times.

3. In the general case (if α does not contain any singular point of C(p)), every plane ζ ∈ [z] cuts CS(α, p)
into m circles and the axis z. Thus, z is an m-fold line of CS(α, p).

– If z′ , 0, the z′-fold plane ω is excluded from K (α, p), but the z′-fold axis z (as the part of
degenerated circles in z′ planes through z and the tangent lines of α at its intersection points with
z) lie on CS(α, p).

– If a′ , 0, then 2a′ isotropic planes with the 2a′-fold axis z are excluded fromK (α, p).
– If p′i , 0, p′i planes with the p′i -fold axis z are excluded from K (α, p) but the p′i -fold axis z (as the

part of degenerated circles in p′i planes through z and the tangent lines of α at Pi) lie on CS(α, p).
Thus, the axis z is an (m − 2a′ + z′)-fold line of CS(α, p).

4. The order of an algebraic cone is equal to the number of its generators that lie in any plane through
its vertex. If a point A is the singular point of a surface S and lies on its n-fold straight line a, then the
tangent cone of S at A contains a as an n-fold generator.
Since every plane ζ ∈ [z] cuts CS(α, p) into the (m − 2a′ + z′)-fold line z, and m − (z′ + p′1 + p′2) circles
through Pi, this plane cuts the tangent cone of CS(α, p) at Pi into the (m − 2a′ + z′)-fold line z and
m− (z′ + p′1 + p′2) tangents of the intersection circles. Thus, the order of the tangent cone of CS(α, p) at
Pi is 2m − (2a′ + p′1 + p′2). �

Corollary 3.5. If α is a planar algebraic curve that lies in any plane ζ(ϕ), then CS(α, p) is identical to the plane ζ(ϕ)
counted 2m − (2a′ + p′1 + p′2) = m − 2a′ + z′ times.

Proof. The conclusion follows from the facts that for every point A ∈ α, the circle cA(p) ∈ C(p) lies in the
plane ζ(ϕ), and m = z′ + p′1 + p′2. �

Corollary 3.6. If α is an algebraic curve that lies on any torus τ(r), then CS(α, p) is identical to the torus τ(r)

counted
m − p′1 − p′2

2
times.

Proof. For every point A ∈ α, the circle cA(p) ∈ C(p) also lies on the torus τ(r). Since the torus is a surface of
the fourth order having double points in P1,P2, the numbers m, p′1, p

′

2 are even and z′ = 0, 2a′ = m.
Particularly, for q > 0, τ(p) is a double sphere S(O, p) through the points P1 and P2. Therefore, if α is
an algebraic curve that lies on the sphere S(O, p), then CS(α, p) is identical to the sphere S(O, p) counted
m − p′1 − p′2 times. �

Singular lines and singular points of CS(α, p)
Some of the singular lines and singular points of the circular surface CS(α, p) have already been mentioned
in this paper. Besides them, CS(α, p) can have some further singularities. Here we give the complete list of
singular lines and points of CS(α, p):

- The line z and the absolute conic are in the general case the singular lines of CS(α, p). All points lying
on z, the points P1,P2 and the absolute points are the singular points of CS(α, p).

- If different points of the curve α determine the same circle c ∈ C(p), this circle is a singular circle of
CS(α, p) and its multiplicity equals the number of intersection points of α and c. Through the singular
point of α, the singular circle of CS(α, p) passes.

- Let A ∈ C(p) be a point that does not lie on any singular line of C(p). The necessary condition for the
singularity of A is that the circle cA has the singular point at A. It is possible only if C(p) is a hyperbolic
congruence (q < 0) and A lies on the circle c(0) that is given by the equations x2 + y2 = −p2, z = 0.
Therefore, A is the singular point of C(p) only if it is the intersection of α and c(0).
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Remark
In the case of an elliptic congruence C(p), q > 0, a circular surface CS(p, α) can be obtained by a spherical
inversion, i.e. by a quadratic inversion with respect to a sphere and its center as a pole. Namely, if i is a
spherical inversion defined by the sphere S(P1,P1P2), then CS(p, α) is the inverse image ofB(P2, i(α)) that is
the cone with the vertex P2 and the base curve i(α) (see Fig. 8).

a b c

Figure 8: The figure illustrates the following: if i is a spherical inversion defined by the sphere S(P1,P1P2) and if α is
a curve, every generatrix 1 of the cone B(P2, i(α)) is transformed to a circle passing through the points P1 and P2 that
intersect a curve α, i.e. i(B(P2, i(α)) = CS(p, α). The statement is also valid for the changed positions of P1 and P2.

All properties of CS(p, α) listed in Theorem 3.4 follow as the properties of i(B(P1, i(α)) from the properties
of the spherical inversion i (see [8]).

3.3. Algebraic equation of CS(α, p)
Let the poynomial x2 + y2 + z2 be denoted by A. Let Fn = Fn(x, y, z) and Hn = Hn(x, y, z) denote the nth

degree polynomials in x, y and z with real coefficients, and let Hn be a homogeneous polynomial. Then, by
analogy with the equation of the s-circular planar curve given in [11], the implicit equation of a surface that
contains the absolute conic as an s-fold curve is the following:

Fn =

s−1∑
i=0

Hn−2s+iAs−i +

n−s∑
j=0

H j = 0, Hn−2s , 0, n > 2s. (9)

Further, according to the theorem given in [4, p. 251], if an n-th order surface in E3 which passes through
the origin is given by the equation

Fn = Hk + Hk+1 + · · · + Hn = 0, 1 6 k 6 n, (10)

then the tangent cone at the origin is given by Hk(x, y, z) = 0.

According to Theorem 3.4, for the circular surface CS(α, p), the numbers n and s from eq. (9) are equal to
3m − (z′ + 2a′ + 2p′1 + 2p′2) and m − (z′ + p′1 + p′2), respectively, and the multiplicity of the origin is at least
m + z′ − 2a′. Therefore, the implicit equation of CS(α, p) takes the following form:

m−(z′+p′1+p′2+1)∑
i=0

Hm+z′−2a+iAm−(z′+p′1+p′2+i) +

2m−(2a′+p′1+p′2)∑
j=m−2a′+z′

H j = 0. (11)

4. Examples

In this section we give some examples of the circular surfaces CS(α, p) when α is a line, a conic, a
twisted cubic or a cyclic harmonic curve. For a particular circular surface we obtain the implicit equation
(eliminating the parameters t and θ from the parametric equations (5)), check the properties given in
Theorem 3.4 and visualize the shape of the surface.
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4.1. α is a straight line
It was shown in Lemma 3.3 that if α is a straight line given by l(t) = (1, t, bt + c), t, b, c ∈ R, the implicit

equation of CS(l, p) is given by eq. (8), i.e. CS(l, p) is a parabolic cyclide. According to the theorem related
to (10), the tangent cone of CS(l, p) at P1 (P2), in the coordinate system with the origin at P1 (P2) is given by
the equation (1 + c2

− p2)x2 + 2bcxy + y2 + b2y2
∓ 2pxz = 0.

a b c

Figure 9: CS(l, p) for l(t) = (1, t, t + 2) and p = 1, 0, i are shown in a, b and c, respectively. In a the tangent cone at the
point P2 is also shown.

4.2. α is a conic
If α is a conic in the general position to the singular points of C(p), the circular surface CS(α, p) is a sextic

with the double axis z and the double absolute conic. The points Pi are the quadruple points of CS(α, p).
The directing curve for the circular surfaces in Figure 10 is a rectangular hyperbola h1(t) = (t, 1

t , 0), t ∈ R.
The implicit equation of CS(h1, p) is the following:

xyA2
− (x4 + 2x2y2 + p4x2y2 + y4 + 2p2xyz2) + p4xy = 0. (12)

Every point Z ∈ z, Z , Pi, is the biplanar point of CS(h1, p) with real tangent planes x = 0, y = 0. The
tangent cone of CS(h1, p) at Pi in the coordinate system with an origin at Pi is given by x4

− 2p2x3y + 2x2y2 +
p4x2y2

−2p2xy3 + y4
−4p2xyz2 = 0. For q > 0 this cone is a proper real quartic cone with the double generatrix

z (see Fig. 10a).

a b c

Figure 10: CS(h1, p) for p = 1, 0, i are shown in a, b, c, respectively.

If α is a conic that cuts the axis z at one point Z , Pi, the circular surface CS(p, α) is a quintic with a triple
axis z, quadruple points Pi and a simple absolute conic.
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The directing curve for the circular surfaces in Figure 11 is a rectangular hyperbola h2 that lies in the plane
x = 1 and cuts the axis z at the point at infinity, h2(t) = (1, t, 1

t ), t ∈ R. The implicit equation of CS(h2, p) is
the following:

xy2A − (x4 + x2y2
− p2x2y2 + y4) − p2xy2 = 0. (13)

The plane at infinity intersects CS(h2, p) at the absolute conic, the line in the plane y = 0 counted twice
and the simple line in the plane x = 0. The axis z is the triple line of CS(h2, p) with the splitting tangent
cone at every point (0, 0, z0), z0 , ±p. This tangent cone splits into the plane y = 0 counted twice and the
plane x = 0. In the coordinate system with an origin in Pi, the tangent cone of CS(h2, p) at Pi is given by
the equation x4 + x2y2

− p2x2y2 + y4
− 2pxy2z = 0. This equation presents a proper real quartic cone (see Fig.

11a) with a triple generatrix z, for q > 0, and two pairs of imaginary planes through z, for p = 0.

a b c

Figure 11: CS(h2, p) for p = 1, 0, i are shown in a, b, c, respectively.

In general, if α is a circle, CS(α, p) is a cyclide, i.e. a quartic passing two times through the absolute conic. Pi
are the double points of CS(α, p). Particularly, if a circle lies on any torus τ(r), its circular surface is τ(r). If a
circle cuts the axis z at any point Z , Pi, the circular surface is a parabolic cyclide. If a circle passes through
any point Pi, its circular surface is a sphere through P1 and P2. If a circle lies on any sphere through P1 and
P2, its circular surface is this sphere, or a part of it, counted twice. Therefore, for any circle that does not
lie in a plane ζ(ϕ), there exists a number p such that the circular surface of this circle is a double sphere or
a double part of a sphere. Namely, for any circle there exists a sphere that passes through it and with the
center in the plane z = 0. The axis z cuts this sphere at the points (0, 0,±p).

For q < 0 and a conic α, CS(α, p) can possess 1, 2, 3 or 4 double points that do not lie on its singular lines.
Some examples are shown in Figure 12.

a b c

Figure 12: CS(α, p) with 4, 3 and 2 double points out of the axis z are shown in a, b and c, respectively. In a,
α(t) = ( 1

2 cos t, 2 sin t, 0) and p = i. In b, α(t) = ( 3
2 cos t, 3 sin t − 1, 0) and p = 2i. In c, α = c1(t) = (

√
2

2 cos t, sin t,
√

2
2 cos t),

and p = i.
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4.3. α is a twisted cubic

In the general case, if α is a twisted cubic, CS(α, p) is a surface of the order 9 with 3-ple lines at the
absolute conic and axis z, and with 6-fold points at Pi. If α passes through the singular points of C(p), there
are many cases when the order of CS(α, p) decreases. The minimal order of such surfaces is 3 in the case
when α is a twisted cubic circle that passes through the points Pi.
The directing curve for the circular surfaces in Figure 13 is a twisted cubic circle ([2, pp. 69-76]) given by
the parametrization t(t) = ( t

1+t2 ,
t+t3

1+t2 ,
t2

1+t2 ), t ∈ R. By eliminating the parameters t and ϕ from eqs. (5) for
α = t, we obtain the following algebraic equation:

x(x − y)A2

+(x2
− y2)2

− p2(2x4
− 4x3y + 2x2y2 + 2x2z2

− 2xyz2) + p4x2y2

+p4x(x − y) = 0. (14)

For p , 0 this equation presents CS(t, p) that is a 6th order surface, with a double absolute conic and the
axis z, and with quadruple points at Pi. The quadruple tangent cones of CS(t, p) at real points Pi, in the
coordinate systems with the origin at Pi, are given by (x2

− y2)2 + p4(x2y2) + 2p2x(x − y)(xy + y2 + 2z2) = 0.
For p = 0, i.e. when t cuts the axis z at the point P, eq. (14) presents the splitting 6th order surface that splits
into the plane x = y and the circular surface CS(t, 0) that is a 5th order surface with a double absolute conic,
a torsal line through the axis z (the tangent plane is x = 0), and a triple point at the origin. The algebraic
equation of CS(t, 0) is the following:

xA2 + (x − y)(x + y)2 = 0. (15)

a b c

Figure 13: CS(t, p) for p = 1, 0, i are shown in a, b, c, respectively.

4.4. α is a cyclic-harmonic

The rose surfaces studied in [3] are circular surfaces CS(α, p) where α is a rose (rhodonea curve) given by
the polar equation ρ = cos n

dϕ, and C(p) is an elliptic or parabolic congruence. The rose lies in the plane
perpendicular to z having the directing point Pi as its multiple point.
If we extend α to all cyclic-harmonic curves ρ = cos n

dϕ+k, k ∈ R+
∪{0} (see [5],[7]), and include a hyperbolic

congruenceC(p), numerous forms of a new class of surfaces with nice visualizations and interesting algebraic
properties can be obtained. The authors suppose that it is worth studying a complete class of such surfaces
in a further work. Here, we show only one example for one of the simplest cyclic-harmonic curves.
The directing curve ch for the circular surfaces in Figure 14 is a curtate cyclic-harmonic curve in the plane
z = 0 given by the polar equation ρ = cos 3t + k, k > 1, which possesses an isolated 6-fold singularity at the
origin. According to the properties of cyclic harmonic curves and Theorem 3.4, they are 14th order surfaces
with a double absolute conic, 10-fold axis z and 12-fold imaginary points Pi.
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a b c

Figure 14: The surfaces CS(ch, i) for k = 3
2 , 2, 3 are shown in a, b and c, respectively.
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