Remarks and Comments on Some Recent Results

Vladimir Pavlovića ${ }^{\mathbf{a}}$
${ }^{a}$ Faculty of Sciences and Mathematics, University of Niš, P.O. Box 224, 18000 Niš, Serbia

Abstract

In this note we give shorter proofs of some recent results on star and left star orders on $\mathcal{B}(\mathcal{H})$ and correct a proof of one that was incomplete.

1. Remarks and Corrections

On $\mathbb{C}^{n \times n}$ many partial orders are defined. One such order is the rank subtractivity order (also known as the minus order) which was introduced by Hartwig [5] in the following way:

$$
\begin{equation*}
A \leq^{-} B \Leftrightarrow \mathrm{r}(A-B)=\mathrm{r}(A)-\mathrm{r}(B) . \tag{1}
\end{equation*}
$$

In [7] Šemrl considered the question of generalizing this order to $\mathcal{B}(\mathcal{H})$ and succeeded in finding an equivalent definition of the rank subtractivity partial order on $\mathbb{C}^{n \times n}$ that makes sense for elements of $\mathcal{B}(\mathcal{H})$:

Definition 1.1. [7] Let $A, B \in \mathcal{B}(\mathcal{H})$. Then $A \leq^{-} B$ if and only if there exist projections $P, Q \in \mathcal{B}(\mathcal{H})$ such that
(i) $\mathcal{R}(P)=\overline{\mathcal{R}(A)}$,
(ii) $\mathcal{N}(Q)=\mathcal{N}(A)$,
(iii) $P A=P B$,
(iv) $A Q=B Q$.

It was proved in [7] that the orders given by Definition 1.1 and by (1) coincide. This motivated Dolinar et al. [3] and Dolinar et al. [4] to, using the same approach as in [7], define partial orders on $\mathcal{B}(\mathcal{H})$ by modifying Definition 1.1.
More precisely, in [3] they introduced the following order
Definition 1.2. Let $A, B \in \mathcal{B}(\mathcal{H})$. Then $A \stackrel{*}{\leq} B$ if and only if the following two conditions are satisfied:
(1) $P B=A$ where P is the orthogonal projection onto $\overline{\mathcal{R}(A)}$,

[^0](2) $B Q=A$ where Q is the orthogonal projection onto $\overline{\mathcal{R}\left(A^{*}\right)}$.

In the same paper they showed that this definition gives the usual star order on $\mathcal{B}(\mathcal{H})$ previously introduced by Drazin [2] as

$$
\begin{equation*}
A \leq^{*} B \Leftrightarrow A^{*} A=A^{*} B \text { and } A A^{*}=B A^{*} . \tag{2}
\end{equation*}
$$

Now, we will give a very short proof of this fact (Theorem 5 [3]) without using the polar decompositions of operators, which is the case in Theorem 5 in [3].

Theorem 1.3. Let $A, B \in \mathcal{B}(\mathcal{H})$. Then $A \leq$ 解 if and only if $A^{*} A=A^{*} B$ and $A A^{*}=B A^{*}$.
Proof. We have $A^{*}(B-A)=0 \Leftrightarrow \mathcal{R}(B-A) \subseteq \mathcal{N}\left(A^{*}\right)=\mathcal{R}(A)^{\perp} \Leftrightarrow \mathcal{R}(A) \perp \mathcal{R}(B-A)$. Similarly $(B-A) A^{*}=0 \Leftrightarrow$ $\mathcal{R}\left(B^{*}-A^{*}\right) \subseteq \mathcal{N}(A)=\mathcal{R}\left(A^{*}\right)^{\perp} \Leftrightarrow \mathcal{R}\left(A^{*}\right) \perp \mathcal{R}\left(B^{*}-A^{*}\right)$. By Lemma 3 from [3] theorem follows.ם

In [4] Dolinar et al. further introduced the following order:
Definition 1.4. [7] For $A, B \in \mathcal{B}(\mathcal{H})$ we define $A * \leq B$ if and only the following two conditions are satisfied:
(1) $P B=A$ where P is the orthogonal projection onto $\overline{\mathcal{R}(A)}$,
(2) $B Q=A$ for some projection $Q \in \mathcal{B}(\mathcal{H})$ such that $\mathcal{N}(Q)=\mathcal{N}(A)$.

In the same paper, they note in Theorem 5 that the order given by Definition 1.4 is the same as the left star order in the sense of Baksalary and Mitra. When showing that the conditions $A^{*} A=A^{*} B$ and $\mathcal{R}(A) \subseteq \mathcal{R}(B)$ imply that $A * \leq B$, the authors observe that "the left-star partial order implies minus partial order", meaning that the left star partial order as given by Definition 1.4 implies the minus partial order, which is indeed a trivial fact, but to prove that $A * \leq B$ as defined in Definition 1.4 is the goal there, not an assumption. Here, we will give a complete proof of this result:

Theorem 1.5. Let $A, B \in \mathcal{B}(\mathcal{H})$. Then $A * \leq B$ if and only if $A^{*} A=A^{*} B$ and $\mathcal{R}(A) \subseteq \mathcal{R}(B)$.
Proof. (\Leftarrow) : Let

$$
B=\left[\begin{array}{cc}
B_{0} & 0 \\
0 & 0
\end{array}\right]:\left[\begin{array}{c}
\overline{\mathcal{R}\left(B^{*}\right)} \\
\mathcal{N}(B)
\end{array}\right] \rightarrow\left[\begin{array}{c}
\overline{\mathcal{R}(B)} \\
\mathcal{N}\left(B^{*}\right)
\end{array}\right]
$$

where $B_{0} \in \mathcal{B}\left(\overline{\mathcal{R}\left(B^{*}\right)}, \overline{\mathcal{R}(B)}\right)$ is injective. Since $\mathcal{R}(A) \subseteq \mathcal{R}(B)$ we have that

$$
A=\left[\begin{array}{cc}
A_{0} & A_{00} \\
0 & 0
\end{array}\right]:\left[\begin{array}{c}
\overline{\mathcal{R}\left(B^{*}\right)} \\
\mathcal{N}(B)
\end{array}\right] \rightarrow\left[\begin{array}{c}
\overline{\mathcal{R}(B)} \\
\mathcal{N}\left(B^{*}\right)
\end{array}\right]
$$

for some $A_{0} \in \mathcal{B}\left(\overline{\mathcal{R}\left(B^{*}\right)}, \overline{\mathcal{R}(B)}\right)$. From $A^{*} A=A^{*} B$ it follows that $A_{00}=0$ and $A_{0}^{*} A_{0}=A_{0}^{*} B_{0}$. If $A_{1} \in$ $\mathcal{B}\left(\overline{\mathcal{R}\left(A_{0}^{*}\right)}, \overline{\mathcal{R}\left(A_{0}\right)}\right)$ is (the injective operator) such that

$$
A_{0}=\left[\begin{array}{cc}
A_{1} & 0 \\
0 & 0
\end{array}\right]:\left[\begin{array}{c}
\overline{\mathcal{R}\left(A_{0}^{*}\right)} \\
\mathcal{N}\left(A_{0}\right)
\end{array}\right] \rightarrow\left[\begin{array}{c}
\overline{\mathcal{R}\left(A_{0}\right)} \\
\mathcal{N}\left(A_{0}^{*}\right)
\end{array}\right]
$$

then $A_{0}^{*} A_{0}=B_{0}^{*} A_{0}$ implies that

$$
B_{0}^{*}=\left[\begin{array}{cc}
A_{1}^{*} & B_{1} \\
0 & B_{2}
\end{array}\right]:\left[\begin{array}{c}
\overline{\mathcal{R}\left(A_{0}\right)} \\
\mathcal{N}\left(A_{0}^{*}\right)
\end{array}\right] \rightarrow\left[\begin{array}{c}
\overline{\mathcal{R}\left(A_{0}^{*}\right)} \\
\mathcal{N}\left(A_{0}\right)
\end{array}\right]
$$

for some $B_{1} \in \mathcal{B}\left(\mathcal{N}\left(A_{0}^{*}\right), \overline{\mathcal{R}\left(A_{0}^{*}\right)}\right), B_{2} \in \mathcal{B}\left(\mathcal{N}\left(A_{0}^{*}\right), \mathcal{N}\left(A_{0}\right)\right)$. The inclusion $\mathcal{R}\left(A_{0}\right)=\mathcal{R}(A) \subseteq \mathcal{R}(B)=\mathcal{R}\left(B_{0}\right)$ means that for every $x \in \overline{\mathcal{R}\left(A_{0}^{*}\right)}$ there are $x^{\prime} \in \overline{\mathcal{R}\left(A_{0}^{*}\right)}$ and $y \in \mathcal{N}\left(A_{0}\right)$ such that

$$
\left[\begin{array}{c}
A_{1} x \\
0
\end{array}\right]=\left[\begin{array}{c}
A_{1} x^{\prime} \\
B_{1}^{*} x^{\prime}+B_{2}^{*} y
\end{array}\right]
$$

The operator A_{1} being injective, this further implies $\mathcal{R}\left(B_{1}^{*}\right) \subseteq \mathcal{R}\left(B_{2}^{*}\right)$, which gives us an operator $S \in$ $\mathcal{B}\left(\mathcal{N}\left(A_{0}\right), \overline{\mathcal{R}\left(A_{0}^{*}\right)}\right)$ such that $B_{1}=S B_{2}$.

We will show that $\overline{\mathcal{R}\left(B^{*}\right)}=\overline{\mathcal{R}\left(A^{*}\right)} \oplus \overline{\mathcal{R}\left(B^{*}-A^{*}\right)}$. Note that $\mathcal{R}\left(B^{*}\right)=\mathcal{R}\left(B_{0}^{*}\right), \mathcal{R}\left(A^{*}\right)=\mathcal{R}\left(A_{0}^{*}\right)=\mathcal{R}\left(A_{1}^{*}\right)$ and $\mathcal{R}\left(B^{*}-A^{*}\right)=\mathcal{R}\left(B_{0}^{*}-A_{0}^{*}\right)=\mathcal{R}\left(\left[\begin{array}{l}B_{1} \\ B_{2}\end{array}\right]\right)$.

Suppose that $\left[\begin{array}{c}A_{1}^{*} x_{n}+B_{1} y_{n} \\ B_{2} y_{n}\end{array}\right] \rightarrow\left[\begin{array}{l}u \\ v\end{array}\right]$ for some $x_{n} \in \overline{\mathcal{R}\left(A_{0}\right)}, y_{n} \in \mathcal{N}\left(A_{0}^{*}\right)$ for $n \in \mathbb{N}$. Then $B_{1} y_{n}=S B_{2} y_{n} \rightarrow$ $S v$ so $A_{1}^{*} x_{n} \rightarrow u-S v \in \overline{\mathcal{R}\left(A_{1}^{*}\right)}$. Hence $\left[\begin{array}{l}B_{1} y_{n} \\ B_{2} y_{n}\end{array}\right] \rightarrow\left[\begin{array}{c}S v \\ v\end{array}\right]$ so

$$
\left[\begin{array}{l}
u \\
v
\end{array}\right]=\left[\begin{array}{c}
u-S v \\
0
\end{array}\right]+\left[\begin{array}{c}
S v \\
v
\end{array}\right]
$$

finally implies $\left[\begin{array}{l}u \\ v\end{array}\right] \in \overline{\mathcal{R}\left(A^{*}\right)}+\overline{\mathcal{R}\left(B^{*}-A^{*}\right)}$.
To see that the sum is direct let $u \in \overline{\mathcal{R}\left(A_{0}^{*}\right)}, v \in \mathcal{N}\left(A_{0}\right)$ be such that $\left[\begin{array}{c}A_{1}^{*} x_{n} \\ 0\end{array}\right] \rightarrow\left[\begin{array}{l}u \\ v\end{array}\right],\left[\begin{array}{l}B_{1} y_{n} \\ B_{2} y_{n}\end{array}\right] \rightarrow\left[\begin{array}{l}u \\ v\end{array}\right]$ for some $x_{n} \in \overline{\mathcal{R}\left(A_{0}\right)}, y_{n} \in \mathcal{N}\left(A_{0}^{*}\right)$ for $n \in \mathbb{N}$. From $v=0$ it follows $B_{1} y_{n}=S B_{2} y_{n} \rightarrow S v=0$. Thus $u=0$ and we are done.

From $A^{*}(B-A)=0$ we have $\mathcal{R}(B-A) \subseteq \mathcal{N}\left(A^{*}\right)=\mathcal{R}(A)^{\perp}$ so $\mathcal{R}(A) \perp \mathcal{R}(B-A)$. By Lemma 2 from [4] we conclude that $A * \leq B$.
(\Rightarrow) : Suppose that $A * \leq B$. From Lemma 2 [4] it immediately follows that $\mathcal{R}(A) \subseteq \mathcal{R}(B)$, and also that $\mathcal{R}(A) \perp \mathcal{R}(B-A)$. Now, for every $x \in \mathcal{H}$ we have that $\langle(B-A) x, A x\rangle=0$, implying that $A^{*}(B-A)=0 . \square$

We end the note by a remark about the proof of Theorem 15 [4] in which the authors presented a very interesting result in which they characterized all the bijective additive maps on $\mathcal{B}(\mathcal{H})$ which preserve the left (right) star order in both directions. Taking into account that ϕ is additive and using the fact that a bijective map $\phi: \mathcal{P}(\mathcal{H}) \rightarrow \mathcal{P}(\mathcal{H})$, where $\mathcal{P}(\mathcal{H})$ is the set of all orthogonal projections, preserves the usual order $P \leq Q \Leftrightarrow P Q=Q P=P$ in both directions and satisfies $\phi(I-P)=I-\phi(P)$, if and only if there is an operator $U: \mathcal{H} \rightarrow \mathcal{H}$ either unitary or antiunitary, such that $\phi(P)=U P U^{*}$ for all $P \in \mathcal{P}(\mathcal{H})$ (see [6], page 13), we can eliminate the items 10 and 11 of the proof and skip directly to the conclusion reached in item 12.

References

[1] J. K. Baksalary, S. K. Mitra, Left-star and right-star partial orderings, Linear Algebra Appl. 149 (1991), 7389.
[2] M.P. Drazin, Natural structures on semigroups with involution, Bull. Amer. Math. Soc. 84 (1978) 139-141.
[3] G. Dolinar and J. Marovt, Star partial order on $\mathcal{B}(\mathcal{H})$, Linear Algebra and its Applications 434 (2011) 319-326.
[4] G. Dolinar, A. Guterman, J. Marovt, Monotone transformations on $\mathcal{B}(\mathcal{H})$ with respect to the left-star and the right-star partial order, Math. Inequal. Appl., 17 (2) (2014) 573-589.
[5] R.E. Hartwig, How to partially order regular elements, Math. Japon. 25 (1980) 1-13.
[6] L. Molnar, (2007), Selected Preserver Problems on Algebraic Structures of Linear Operators and on Function Spaces, Lecture Notes in Mathematics 1895, 236, Springer.
[7] P. Šemrl, Automorphisms of $\mathcal{B}(\mathcal{H})$ with respect to minus partial order, J. Math. Anal. Appl. 369 (2010) 205-213.

[^0]: 2010 Mathematics Subject Classification. Primary 06A06, 15A03, 15A04, 15A86
 Keywords. partial order, star order, Hilbert space
 Received: 11.03.2014; Accepted: 15.06.2014
 Communicated by V. Rakočević
 The author is supported by Grant No. 174025 of the Ministry of Science, Technology and Development, Republic of Serbia.
 Email address: vlada@pmf.ni.ac.rs (Vladimir Pavlović)

