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Abstract. For a graph G, let D(G) be the set of all strong orientations of G. The orientation number of G is
~d(G) = min{d(D)|D ∈ D(G)},where d(D) denotes the diameter of the digraph D. In this paper, we determine
the orientation number for some complete tripartite graphs.

1. Introduction

Let G be a finite undirected simple graph with vertex set V(G) and edge set E(G). For v ∈ V(G), the
eccentricity of v is eG(v) =max {dG(v, x) | x ∈ V(G)},where dG(v, x) denotes the length of a shortest (v, x)-path
in G. The diameter of G is d(G) =max{eG(v) | v ∈ V(G)}.

Let D be a digraph with vertex set V(D) and arc set A(D) which has no loops and no two of its arcs have
same tail and same head. The notions eD(v), for v ∈ V(D), and d(D) are defined as in the undirected graph.

An orientation of a graph G is a digraph D obtained from G by assigning a direction to each of its edge. A
vertex v is reachable from a vertex u of a digraph D if there is a directed path in D from u to v.An orientation
D of G is strong if any pair of vertices in D are mutually reachable in D. Robbins’ one-way street theorem
[7] states that a connected graph G has a strong orientation if and only if G is 2-edge-connected. For a
2-edge-connected graph G, let D(G) denote the set of all strong orientations of G. The orientation number of G

is ~d(G) =min {d(D) |D ∈ D(G)}. Any orientation D in D(G) with d(D) = ~d(G) is called an optimal orientation
of G.

Given positive integers n, p1, p2, . . . , pn, let Kn denote the complete graph of order n, and K(p1, p2, . . . , pn)
denote the complete n-partite graph having pi vertices in the ith partite set, i ∈ {1, 2, . . . , n}. The n partite sets
of K(p1, p2, . . . , pn) are denoted by V1,V2, . . . ,Vn so that |Vi| = pi, i ∈ {1, 2, . . . , n}. If p1 = p2 = . . . = pn = p,
denote K(p1, p2, . . . , pn) by Kn(p).

Boesch and Tindell [2] and independently Maurer [5] proved that: ~d(Kn) = 2 if n ≥ 3 and n , 4, and
~d(K4) = 3. Soltés [8] proved that ~d(Kp,q) is 3 if 2 ≤ p ≤ q ≤

( p

⌊
p
2 ⌋

)
and it is 4 if q >

( p

⌊
p
2 ⌋

)
, where ⌊x⌋ denotes

the greatest integer not exceeding the real x.
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A pair {p, q} of integers is called a co-pair if 1 ≤ p ≤ q ≤
( p

⌊
p
2 ⌋

)
or 1 ≤ q ≤ p ≤

( q

⌊
q
2 ⌋

)
. A multiset {p, q, r} of

positive integers is called a co-triple if {p, q} and {p, r} are co-pairs.
Koh and Tan proved, in [3], that:

• if {p, q} is a co-pair with q ≥ p ≥ 2, then ~d(K(2, p, q)) = 2;

• if {p, q, r} is a co-triple with q ≥ p ≥ r ≥ 2, then ~d(K(2, p, q, r)) = 2;
• if k ≥ 2, {pi, qi} is a co-pair for each i ∈ {1, 2, . . . , k} and (k, p1, p2) , (2, 1, 1), then

~d(K(p1, q1, p2, q2, . . . , pk, qk)) = 2; and,
• if k ≥ 2, {pi, qi} is a co-pair for each i ∈ {1, 2, . . . , k} and {r, ph} is a co-pair for some h ∈ {1, 2, . . . , k},

then ~d(K(p1, q1, p2, q2, . . . , pk, qk, r)) = 2;
and, in [4], that:

• 2 ≤ ~d(K(p1, p2, . . . , pn)) ≤ 3 if n ≥ 3;

• ~d(Kn(p)) = 2 if n ≥ 3 and p ≥ 2;

• ~d(K(

r
︷     ︸︸     ︷

p, p, . . . , p, q)) = 2 if p ≥ 3, r ≥ 3 and 1 ≤ q ≤ 2p; and

•with h =
n∑

i= 1
pi, n ≥ 3, if pi >

( h−pi

⌊
h−pi

2 ⌋

)
for some i ∈ {1, 2, . . . , n}, then ~d(K(p1, p2, . . . , pn)) = 3.

In [4], Koh and Tan mentioned that the problem of determining whether a given G = K(p1, p2, . . . , pn)

is such that ~d(G) = 2 or ~d(G) = 3 is very difficult. In this paper, we shall extend the known results on the

computation of ~d(K(p1, p2, p3)).
The subdigraph of a digraph D induced by A ⊆ V(D) is denoted by D[A].We refer to [1] for notations

and terminology not described here.

2. Results

Recall that known results on ~d(K(p1, p2, p3)) are:

2 ≤ ~d(K(p1, p2, p3)) ≤ 3;
~d(K3(p)) = 2;

if {p, q} is a co-pair with q ≥ p ≥ 2, then ~d(K(2, p, q)) = 2; and

with h = p1 + p2 + p3, if pi >
( h−pi

⌊
h−pi

2 ⌋

)
for some i ∈ {1, 2, 3}, then ~d(K(p1, p2, p3)) = 3.

The results obtained in this paper are the following.

Theorem 2.1. For p ≥ 2 and q ≥ 2, ~d(K(1, p, q)) = 3.

Theorem 2.2. For p ≥ 3, ~d(K(2, 2, p)) = 3.

Theorem 2.3. For p ≥ 4, ~d(K(2, 3, p)) = 3.

Theorem 2.4. For p ≥ 4 and 4 ≤ q ≤ 2p, ~d(K(p, p, q)) = 2.

3. Proofs

Proof of Theorem 2.1. Let V1 = {x},V2 = {y1, y2, . . . , yp} and V3 = {z1, z2, . . . , zq} be the partite sets of K(1, p, q),

where p ≥ 2 and q ≥ 2. Suppose K(1, p, q) has an orientation D with d(D) = 2, then we consider the fol-
lowing four exhaustive cases to obtain the required contradiction.
Case 1. yi → z j → yk for some i, k ∈ {1, 2, . . . , p} and j ∈ {1, 2, . . . , q}.

dD(z j, yi) ≤ 2 implies that z j → x → yi, and so dD(yk, z j) ≥ 3, a contradiction.
Case 2. zi → y j → zk for some j ∈ {1, 2, . . . , p} and i, k ∈ {1, 2, . . . , q}.

Similar to Case 1.
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Case 3. V2 → V3.
For any i ∈ {1, 2, . . . , p} and j ∈ {1, 2, . . . , q}, dD(z j, yi) ≤ 2 implies that z j → x → yi. Consequently,

dD(y1, y2) ≥ 3, a contradiction.
Case 4. V3 → V2.

Similar to Case 3.
This completes the proof. �

Proof of Theorem 2.2. Let V1 = {x1, x2}, V2 = {y1, y2} and V3 = {z1, z2, . . . , zp} be the partite sets of K(2, 2, p),

where p ≥ 3. Suppose K(2, 2, p) has an orientation D with d(D) = 2, then we consider the following four
exhaustive cases to obtain the required contradiction.
Case 1. x1 → y1 → x2 → y2 → x1.

dD(y1, x1) ≤ 2, dD(y2, x2) ≤ 2, dD(x1, y2) ≤ 2, and dD(x2, y1) ≤ 2 implies, respectively, that y1 → zi →

x1, y2 → z j → x2, x1 → zk → y2, and x2 → zℓ → y1 for some i, j, k, ℓ ∈ {1, 2, . . . , p}. Note that i may be
equal to j, k may be equal to ℓ, but {i, j} ∩ {k, ℓ} = φ.We consider three subcases.
Subcase 1.1. i = j and k = ℓ.

Suppose for some m ∈ {1, 2, . . . , p} \ {i, k}, zm → x1 holds. Then dD(x1, zm) ≤ 2 implies that y1 → zm;
and hence dD(zm, zi) ≤ 2 implies that zm → y2.Now dD(y2, zm) ≥ 3, a contradiction.

Consequently, for every m ∈ {1, 2, . . . , p} \ {i, k}, x1 → zm. dD(zm, x1) ≤ 2 implies that zm → y2; and
hence dD(zk, zm) ≤ 2 implies that y1 → zm. Now dD(zm, y1) ≥ 3, a contradiction.
Subcase 1.2. i , j.

dD(zi, x2) ≤ 2 implies that zi → x2; and dD(y1, z j) ≤ 2 implies that y1 → z j. Now dD(z j, zi) ≥ 3, a
contradiction.
Subcase 1.3. k , ℓ.

Similar to Subcase 1.2.
Case 2. x1 → V2 and y1 → x2 → y2.

For i ∈ {1, 2, . . . , p}, dD(zi, x1) ≤ 2 and dD(y2, zi) ≤ 2 implies, respectively, that zi → x1 and y2 → zi.
dD(x2, x1) ≤ 2 implies that x2 → zi for some i ∈ {1, 2, . . . , p}. For any j ∈ {1, 2, . . . , p} \ {i}, dD(zi, z j) ≤ 2
implies that zi → y1 → z j, and therefore dD(z j, zi) ≤ 2 implies that z j → x2.Thus for j1, j2 ∈ {1, 2, . . . , p}\{i}
with j1 , j2, dD(z j1 , z j2) ≥ 3, a contradiction.
Case 3. x1 → V2 → x2.

For i ∈ {1, 2, . . . , p}, dD(zi, x1) ≤ 2 and dD(x2, zi) ≤ 2 implies, respectively, that zi → x1 and x2 → zi.
dD(y1, y2) ≤ 2 and dD(y2, y1) ≤ 2 implies, respectively, that y1 → zi → y2 and y2 → z j → y1 for some
i, j ∈ {1, 2, . . . , p}. Clearly, i , j. For k ∈ {1, 2, . . . , p} \ {i, j}, dD(zk, z j) ≤ 2 implies that zk → y2. Now
dD(zi, zk) ≥ 3, a contradiction.
Case 4. V1 → V2.

For i, j ∈ {1, 2} and k ∈ {1, 2, . . . , p}, dD(y j, zk) ≤ 2 and dD(zk, xi) ≤ 2 implies, respectively, that y j → zk

and zk → xi.Now dD(y1, y2) ≥ 3, a contradiction.
This completes the proof. �

Proof of Theorem 2.3. Let V1 = {x1, x2}, V2 = {y1, y2, y3}, V3 = {z1, z2, . . . , zp} be the partite sets of K(2, 3, p),

where p ≥ 4. Suppose K(2, 3, p) has an orientation D with d(D) = 2, then we consider the following exhaus-
tive cases to obtain the required contradiction. Without loss of generality assume that one of the following
holds: (1) x1 → V2, (2) y1 → x1 → {y2, y3}, (3) {y2, y3} → x1 → y1, (4) V2 → x1. As the subdigraphs (3)
and (4) are, respectively, the converse subdigraphs of (1) and (2), we consider (1) and (2) only. In each of
(1) and (2) one of the following holds: (a) x2 → V2, (b) y1 → x2 → {y2, y3}, (c) y2 → x2 → {y1, y3}, (d)
y3 → x2 → {y1, y2}, (e) {y2, y3} → x2 → y1, (f) {y1, y3} → x2 → y2, (g) {y1, y2} → x2 → y3, (h) V2 → x2.
Case 1a. V1 → V2.

For every i ∈ {1, 2, . . . , p}, dD(zi, x1) ≤ 2 and dD(zi, x2) ≤ 2 implies, respectively, that zi → x1 and
zi → x2. Now dD(x1, x2) ≥ 3, a contradiction.
Case 2a. y1 → x1 → {y2, y3} and x2 → V2 or Case 2b. y1 → V1 → {y2, y3}.

For every i ∈ {1, 2, . . . , p}, dD(y2, zi) ≤ 2 and dD(y3, zi) ≤ 2 implies, respectively, that y2 → zi and
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y3 → zi.Now dD(y2, y3) ≥ 3, a contradiction.
Case 2c. y1 → x1 → {y2, y3} and y2 → x2 → {y1, y3}.

dD(y3, y1) ≤ 2 implies that y3 → zi → y1 for some i ∈ {1, 2, . . . , p}. dD(y1, zi) ≤ 2 implies that x1 → zi,
dD(zi, y3) ≤ 2 implies that zi → x2, and dD(zi, y2) ≤ 2 implies that zi → y2. Now dD(y2, zi) ≥ 3, a contra-
diction.
Case 2e. x1 → {y2, y3} → x2 → y1 → x1.

dD(y2, y3) ≤ 2 implies that y2 → zi → y3 for some i ∈ {1, 2, . . . , p}. dD(y3, zi) ≤ 2 implies that x2 → zi,
dD(zi, y2) ≤ 2 implies that zi → x1, and dD(zi, y1) ≤ 2 implies that zi → y1. Now dD(y1, zi) ≥ 3, a contra-
diction.
Case 2f. y1 → x1 → {y2, y3} and {y1, y3} → x2 → y2.

For every i ∈ {1, 2, . . . , p}, dD(zi, y1) ≤ 2 implies that zi → y1 and dD(y2, zi) ≤ 2 implies that y2 → zi.
dD(x2, x1) ≤ 2 implies that x2 → zi → x1 for some i ∈ {1, 2, . . . , p}. dD(y3, y1) ≤ 2 implies that y3 → z j

for some j ∈ {1, 2, . . . , p}. If i , j, then dD(z j, y3) ≤ 2 implies that z j → x1, and dD(z j, zi) ≤ 2 implies
that z j → x2; consequently, dD(y1, z j) ≥ 3, a contradiction. Thus i = j. For every k ∈ {1, 2, . . . , p} \ {i},
dD(zi, zk) ≤ 2 implies that x1 → zk, dD(zk, y3) ≤ 2 implies that zk → y3, and dD(y3, zk) ≤ 2 implies that
x2 → zk. Now dD(zk, y2) ≥ 3, a contradiction.
Case 1h. x1 → V2 → x2.

For every i ∈ {1, 2, . . . , p}, dD(x2, zi) ≤ 2 and dD(zi, x1) ≤ 2 implies, respectively, that x2 → zi and
zi → x1. dD(y1, y2) ≤ 2 and dD(y2, y1) ≤ 2 implies, respectively, that y1 → zi → y2 and y2 → z j → y1 for
some i, j ∈ {1, 2, . . . , p} with i , j. dD(y1, y3) ≤ 2 implies that either zi → y3 or y1 → zk → y3 for some
k ∈ {1, 2, . . . , p} \ {i, j}.

First assume that zi → y3. For any k ∈ {1, 2, . . . , p}\{i, j}, dD(zk, zi) ≤ 2 implies that zk → y1, dD(z j, zk) ≤ 2
implies that z j → y3 → zk, and dD(zk, z j) ≤ 2 implies that zk → y2.Now for k1, k2 ∈ {1, 2, . . . , p} \ {i, j}with
k1 , k2, dD(zk1

, zk2
) ≥ 3, a contradiction.

Next assume that y1 → zk → y3 for some k ∈ {1, 2, . . . , p} \ {i, j}. dD(zk, zi) ≤ 2 implies that y3 → zi,
dD(zi, zk) ≤ 2 implies that y2 → zk, and dD(zk, z j) ≤ 2 implies that y3 → z j. Choose ℓ ∈ {1, 2, . . . , p} \ {i, j, k}.
dD(zi, zℓ) ≤ 2 implies that y2 → zℓ, dD(z j, zℓ) ≤ 2 implies that y1 → zℓ, and dD(zk, zℓ) ≤ 2 implies that
y3 → zℓ.Now dD(zℓ, z j) ≥ 3, a contradiction.
Case 2h. y1 → x1 → {y2, y3} and V2 → x2.

For every i ∈ {1, 2, . . . , p}, dD(x2, zi) ≤ 2 and dD(zi, y1) ≤ 2 implies, respectively, that x2 → zi and
zi → y1. dD(x1, y1) ≤ 2 implies that x1 → zi for some i ∈ {1, 2, . . . , p}. dD(zi, y2) ≤ 2 implies that
zi → y2, and dD(zi, y3) ≤ 2 implies that zi → y3. For every j ∈ {1, 2, . . . , p} \ {i}, dD(z j, zi) ≤ 2 implies
that z j → x1. dD(y2, x1) ≤ 2 and dD(y3, x1) ≤ 2 implies, respectively, that y2 → z j and y3 → zk for some
j, k ∈ {1, 2, . . . , p}\{i}. If j = k, then for any ℓ ∈ {1, 2, . . . , p}\{i, j}, dD(z j, zℓ) ≥ 3, a contradiction. Hence j , k.
dD(zk, z j) ≤ 2 implies that zk → y2 and dD(z j, zk) ≤ 2 implies that z j → y3. For every ℓ ∈ {1, 2, . . . , p}\{i, j, k},
dD(z j, zℓ) ≤ 2 implies that y3 → zℓ.Now dD(zℓ, zk) ≥ 3, a contradiction.
Case 1b. y1 → x2 → {y2, y3} and x1 → V2.

Similar to Case 2a. Permute x1 and x2.
Case 1c. y2 → x2 → {y1, y3} and x1 → V2.

Similar to Case 2a. Apply the permutation (x1, x2)(y1, y2).
Case 1d. y3 → x2 → {y1, y2} and x1 → V2.

Similar to Case 2a. Apply the permutation (x1, x2)(y1, y3).
Case 1e. {y2, y3} → x2 → y1 and x1 → V2.

Similar to Case 2h. Permute x1 and x2, and consider the converse digraph.
Case 1f. {y1, y3} → x2 → y2 and x1 → V2.

Similar to Case 1e. Permute y1 and y2.
Case 1g. {y1, y2} → x2 → y3 and x1 → V2.

Similar to Case 1e. Permute y1 and y3.
Case 2d. y1 → x1 → {y2, y3} and y3 → x2 → {y1, y2}.

Similar to Case 2c. Permute y2 and y3.
Case 2g. y1 → x1 → {y2, y3} and {y1, y2} → x2 → y3.

Similar to Case 2f. Permute y2 and y3.
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This completes the proof. �

Proof of Theorem 2.4. Let V1 = {x1, x2, . . . , xp}, V2 = {y1, y2, . . . , yp}, and V3 = {z1, z2, . . . , zq} be the partite sets

of K(p, p, q), p ≥ 4 and 4 ≤ q ≤ 2p.Orient K(p, p, q) as follows:
(i) For i ∈ {1, 2, . . . , p},

{yi, yi+1} → xi → [V2\{yi, yi+1}];

(ii) For i ∈ {1, 2, . . . , q} and i is odd,

{x i+1
2
} ∪ [V2 \{y i+1

2
}] → zi → {y i+1

2
} ∪ [V1 \ {x i+1

2
}];

(iii) For i ∈ {1, 2, . . . , q} and i is even,

{y i−2
2
} ∪ [V1 \ {x i

2
}] → zi → {x i

2
} ∪ [V2 \ {y i−2

2
}];

where suffixes under x and y are reduced modulo p with residues 1, 2, . . . , p− 1, p instead of 1, 2, . . . , p− 1, 0
and that of z are reduced modulo q with residues 1, 2, . . . , q − 1, q instead of 1, 2, . . . , q − 1, 0. (Note that
x0 = xp, y0 = yp and z0 = zq.)

Let D be the resulting digraph. See Fig. 1. Now, we verify that d(D) = 2.
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Fig. 1. The optimal orientation D described in the proof of Theorem 2.4 for K6,6,12.
Missing arcs, of Fig. 1:

from V1 to V2 are of the form xi → y j;
from V1 to V3 are of the form xi → z j when j is even and z j → xi when j is odd;
from V2 to V3 are of the form yi → z j when j is odd and z j → yi when j is even.

Claim 1. For every distinct i, j ∈ {1, 2, . . . , p}, dD(xi, x j) ≤ 2.
Let i ∈ {1, 2, . . . , p} be arbitrary. The existence of the paths xi → y j → x j for j ∈ {1, 2, . . . , p}\{i, i+ 1} (for

i = p, i + 1 = 1), and xi → yi+2 → xi+1, in D, proves Claim 1.
Claim 2. For every distinct i, j ∈ {1, 2, . . . , p}, dD(yi, y j) ≤ 2.
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Let i ∈ {1, 2, . . . , p} be arbitrary. The existence of the paths yi → xi → y j for j ∈ {1, 2, . . . , p}\{i, i+ 1} (for
i = p, i + 1 = 1), and yi → xi−1 → yi+1, in D, proves Claim 2.
Claim 3. For every distinct i, j ∈ {1, 2, . . . , q}, dD(zi, z j) ≤ 2.

If i, j are both odd, the existence of the path zi → y i+1
2
→ z j, in D, proves Claim 3.

If i, j are both even, the existence of the path zi → x i
2
→ z j, in D, proves Claim 3.

If i is odd and j is even, the existence of the paths:
zi → x1 → z j for i , 1 and j , 2,
z1 → x2 → z j for j , 4,
z1 → x3 → z4,
zi → x2 → z2 for i , 3,
z3 → x3 → z2,

in D, proves Claim 3.
If i is even and j is odd, the existence of the paths:

zi → y1 → z j for i , 4 and j , 1,
z4 → y2 → z j for j , 3,
z4 → y3 → z3,
zi → y2 → z1 for i , 6 and q ≥ 6,
z6 → y3 → z1 for q ≥ 6,
zi → y2 → z1 for q ∈ {4, 5},

in D, proves Claim 3.
Claim 4. For every i, j ∈ {1, 2, . . . , p}, dD(xi, y j) ≤ 2.

Let i ∈ {1, 2, . . . , p} be arbitrary. For j ∈ {1, 2, . . . , p}\{i, i + 1}, the existence of the arc xi → y j, in D,
together with the existence of the paths:

xi → z4 → yi for i < {1, 2},
x1 → z1 → y1,
x2 → z2 → y2,
xi → z4 → yi+1 for i < {2, p},
x2 → z2 → y3,
xp → z2 → y1,

in D, proves Claim 4.
Claim 5. For every i, j ∈ {1, 2, . . . , p}, dD(yi, x j) ≤ 2.

The existence of the paths:
yi → z1 → x j for i, j ∈ {2, 3, . . . , p},
y1 → z3 → x j for j , 2,
y1 → z4 → x2,
yi → z3 → x1 for i , 2,

and the arc y2 → x1, in D, proves Claim 5.
Claim 6. For every i ∈ {1, 2, . . . , p} and j ∈ {1, 2, . . . , q}, dD(xi, z j) ≤ 2.

Let i ∈ {1, 2, . . . , p} be arbitrary.
First assume that j is odd. The existence of the paths:

xi → y1 → z j for i < {1, p} and j , 1,
x1 → y3 → z j for either q = 4 or q ≥ 5 and j , 5,
x1 → y4 → z5 for q ≥ 5,
xp → y2 → z j for j , 3,
xp → y3 → z3,
xi → y2 → z1 for i < {1, 2},
x1 → yp−1 → z1, and
x2 → y4 → z1,

in D, proves Claim 6.

Next assume that j is even. The existence of the arc xi → z j for i ,
j

2 and the existence of the path
x j

2
→ y j−2

2
→ z j, in D, proves Claim 6.
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Claim 7. For every i ∈ {1, 2, . . . , q} and j ∈ {1, 2, . . . , p}, dD(zi, x j) ≤ 2.
Let j ∈ {1, 2, . . . , p} be arbitrary.
First assume that i is odd. For j , i+1

2 , the existence of the arc zi → x j, in D, together with the existence
of the path zi → y i+1

2
→ x i+1

2
, in D, proves Claim 7.

Next assume that i is even. For j , i−2
2 , the existence of the path zi → y j → x j, in D, together with the

existence of the path zi → y i
2
→ x i−2

2
, in D, proves Claim 7.

Claim 8. For every i ∈ {1, 2, . . . , p} and j ∈ {1, 2, . . . , q}, dD(yi, z j) ≤ 2.
Let i ∈ {1, 2, . . . , p} be arbitrary.

First assume that j is odd. For i ,
j+1

2 , the existence of the arc yi → z j, in D, together with the existence
of the path y j+1

2
→ x j+1

2
→ z j, in D, proves Claim 8.

Next assume that j is even. For i ,
j

2 , the existence of the path yi → xi → z j, in D, together with the
existence of the path y j

2

→ x j−2

2

→ z j, in D, proves Claim 8.

Claim 9. For every i ∈ {1, 2, . . . , q} and j ∈ {1, 2, . . . , p}, dD(zi, y j) ≤ 2.
Let j ∈ {1, 2, . . . , p} be arbitrary.
First assume that i is odd. For j mod p < { i+3

2 mod p, i+5
2 mod p}, the existence of the path zi →

x i+3
2
→ y j, in D, together with the existence of the paths zi → x i+7

2
→ y i+3

2
and zi → x i+7

2
→ y i+5

2
, in D,

proves Claim 9.
Next assume that i is even. For j , i−2

2 , the existence of the arc zi → y j, in D, together with the existence
of the path zi → x i

2
→ y i−2

2
, in D, proves Claim 9.

By Claims 1-9, d(D) = 2. �

4. Conclusion

Based on the results of Koh and Tan, Theorems 2.2 and 2.3, and the result “for p ≥ 7, ~d(K(2, 4, p)) = 3”

of [6], we conjecture that ~d(K(2, p, q)) = 3 when p ≥ 5 and q >
( p

⌊
p

2 ⌋

)
.
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