Optimal Orientations of Some Complete Tripartite Graphs

G. Rajasekaran ${ }^{\text {a }}$, R. Sampathkumar ${ }^{\text {b }}$
${ }^{a}$ Department of Mathematics, Annamalai University, Annamalainagar 608 002, India.
${ }^{b}$ Mathematics Section, Faculty of Engineering and Technology, Annamalai University,
Annamalainagar 608 002, India.

Abstract

For a graph G, let $\mathscr{D}(G)$ be the set of all strong orientations of G. The orientation number of G is $\vec{d}(G)=\min \{d(D) \mid D \in \mathscr{D}(G)\}$, where $d(D)$ denotes the diameter of the digraph D. In this paper, we determine the orientation number for some complete tripartite graphs.

1. Introduction

Let G be a finite undirected simple graph with vertex set $V(G)$ and edge set $E(G)$. For $v \in V(G)$, the eccentricity of v is $e_{G}(v)=\max \left\{d_{G}(v, x) \mid x \in V(G)\right\}$, where $d_{G}(v, x)$ denotes the length of a shortest (v, x)-path in G. The diameter of G is $d(G)=\max \left\{e_{G}(v) \mid v \in V(G)\right\}$.

Let D be a digraph with vertex set $V(D)$ and arc set $A(D)$ which has no loops and no two of its arcs have same tail and same head. The notions $e_{D}(v)$, for $v \in V(D)$, and $d(D)$ are defined as in the undirected graph.

An orientation of a graph G is a digraph D obtained from G by assigning a direction to each of its edge. A vertex v is reachable from a vertex u of a digraph D if there is a directed path in D from u to v. An orientation D of G is strong if any pair of vertices in D are mutually reachable in D. Robbins' one-way street theorem [7] states that a connected graph G has a strong orientation if and only if G is 2-edge-connected. For a 2-edge-connected graph G, let $\mathscr{D}(G)$ denote the set of all strong orientations of G. The orientation number of G is $\vec{d}(G)=\min \{d(D) \mid D \in \mathscr{D}(G)\}$. Any orientation D in $\mathscr{D}(G)$ with $d(D)=\vec{d}(G)$ is called an optimal orientation of G.

Given positive integers $n, p_{1}, p_{2}, \ldots, p_{n}$, let K_{n} denote the complete graph of order n, and $K\left(p_{1}, p_{2}, \ldots, p_{n}\right)$ denote the complete n-partite graph having p_{i} vertices in the $i^{\text {th }}$ partite set, $i \in\{1,2, \ldots, n\}$. The n partite sets of $K\left(p_{1}, p_{2}, \ldots, p_{n}\right)$ are denoted by $V_{1}, V_{2}, \ldots, V_{n}$ so that $\left|V_{i}\right|=p_{i}, i \in\{1,2, \ldots, n\}$. If $p_{1}=p_{2}=\ldots=p_{n}=p$, denote $K\left(p_{1}, p_{2}, \ldots, p_{n}\right)$ by $K_{n}(p)$.

Boesch and Tindell [2] and independently Maurer [5] proved that: $\vec{d}\left(K_{n}\right)=2$ if $n \geq 3$ and $n \neq 4$, and $\vec{d}\left(K_{4}\right)=3$. Soltés [8] proved that $\vec{d}\left(K_{p, q}\right)$ is 3 if $2 \leq p \leq q \leq\binom{ p}{\left\lfloor\frac{p}{2}\right\rfloor}$ and it is 4 if $q>\binom{p}{\left\lfloor\frac{p}{2}\right\rfloor}$, where $\lfloor x\rfloor$ denotes the greatest integer not exceeding the real x.

[^0]A pair $\{p, q\}$ of integers is called a co-pair if $1 \leq p \leq q \leq\binom{ p}{\left\lfloor\frac{p}{2}\right\rfloor}$ or $1 \leq q \leq p \leq\binom{ q}{\left\lfloor\frac{q}{2}\right\rfloor}$. A multiset $\{p, q, r\}$ of positive integers is called a co-triple if $\{p, q\}$ and $\{p, r\}$ are co-pairs.

Koh and Tan proved, in [3], that:

- if $\{p, q\}$ is a co-pair with $q \geq p \geq 2$, then $\overrightarrow{d(}(K(2, p, q))=2$;
- if $\{p, q, r\}$ is a co-triple with $q \geq p \geq r \geq 2$, then $\vec{d}(K(2, p, q, r))=2$;
- if $k \geq 2,\left\{p_{i}, q_{i}\right\}$ is a co-pair for each $i \in\{1,2, \ldots, k\}$ and $\left(k, p_{1}, p_{2}\right) \neq(2,1,1)$, then $\vec{d}\left(K\left(p_{1}, q_{1}, p_{2}, q_{2}, \ldots, p_{k}, q_{k}\right)\right)=2$; and,
- if $k \geq 2,\left\{p_{i}, q_{i}\right\}$ is a co-pair for each $i \in\{1,2, \ldots, k\}$ and $\left\{r, p_{h}\right\}$ is a co-pair for some $h \in\{1,2, \ldots, k\}$, then $\vec{d}\left(K\left(p_{1}, q_{1}, p_{2}, q_{2}, \ldots, p_{k}, q_{k}, r\right)\right)=2$;
and, in [4], that:
- $2 \leq \vec{d}\left(K\left(p_{1}, p_{2}, \ldots, p_{n}\right)\right) \leq 3$ if $n \geq 3$;
- $\vec{d}\left(K_{n}(p)\right)=2$ if $n \geq 3$ and $p \geq 2$;
- $\vec{d}(K(\overbrace{p, p, \ldots, p}, q))=2$ if $p \geq 3, r \geq 3$ and $1 \leq q \leq 2 p$; and
- with $h=\sum_{i=1}^{n} p_{i}, n \geq 3$, if $p_{i}>\binom{h-p_{i}}{\frac{-p p_{i}}{2}}$ for some $i \in\{1,2, \ldots, n\}$, then $\vec{d}\left(K\left(p_{1}, p_{2}, \ldots, p_{n}\right)\right)=3$.

In [4], Koh and Tan mentioned that the problem of determining whether a given $G=K\left(p_{1}, p_{2}, \ldots, p_{n}\right)$ is such that $\vec{d}(G)=2$ or $\vec{d}(G)=3$ is very difficult. In this paper, we shall extend the known results on the computation of $\vec{d}\left(K\left(p_{1}, p_{2}, p_{3}\right)\right)$.

The subdigraph of a digraph D induced by $A \subseteq V(D)$ is denoted by $D[A]$. We refer to [1] for notations and terminology not described here.

2. Results

Recall that known results on $\vec{d}\left(K\left(p_{1}, p_{2}, p_{3}\right)\right)$ are:

$$
\begin{aligned}
& 2 \leq \vec{d}\left(K\left(p_{1}, p_{2}, p_{3}\right)\right) \leq 3 ; \\
& \vec{d}\left(K_{3}(p)\right)=2 ;
\end{aligned}
$$

if $\{p, q\}$ is a co-pair with $q \geq p \geq 2$, then $\vec{d}(K(2, p, q))=2$; and
with $h=p_{1}+p_{2}+p_{3}$, if $p_{i}>\binom{h-p_{i}}{\left.\frac{h-p_{i}}{2}\right\rfloor}$ for some $i \in\{1,2,3\}$, then $\vec{d}\left(K\left(p_{1}, p_{2}, p_{3}\right)\right)=3$.
The results obtained in this paper are the following.
Theorem 2.1. For $p \geq 2$ and $q \geq 2, \vec{d}(K(1, p, q))=3$.
Theorem 2.2. For $p \geq 3, \vec{d}(K(2,2, p))=3$.
Theorem 2.3. For $p \geq 4, \vec{d}(K(2,3, p))=3$.
Theorem 2.4. For $p \geq 4$ and $4 \leq q \leq 2 p, \vec{d}(K(p, p, q))=2$.

3. Proofs

Proof of Theorem 2.1. Let $V_{1}=\{x\}, V_{2}=\left\{y_{1}, y_{2}, \ldots, y_{p}\right\}$ and $V_{3}=\left\{z_{1}, z_{2}, \ldots, z_{q}\right\}$ be the partite sets of $K(1, p, q)$, where $p \geq 2$ and $q \geq 2$. Suppose $K(1, p, q)$ has an orientation D with $d(D)=2$, then we consider the following four exhaustive cases to obtain the required contradiction.
Case 1. $y_{i} \rightarrow z_{j} \rightarrow y_{k}$ for some $i, k \in\{1,2, \ldots, p\}$ and $j \in\{1,2, \ldots, q\}$.
$d_{D}\left(z_{j}, y_{i}\right) \leq 2$ implies that $z_{j} \rightarrow x \rightarrow y_{i}$, and so $d_{D}\left(y_{k}, z_{j}\right) \geq 3$, a contradiction.
Case 2. $z_{i} \rightarrow y_{j} \rightarrow z_{k}$ for some $j \in\{1,2, \ldots, p\}$ and $i, k \in\{1,2, \ldots, q\}$.
Similar to Case 1.

Case 3. $V_{2} \rightarrow V_{3}$.
For any $i \in\{1,2, \ldots, p\}$ and $j \in\{1,2, \ldots, q\}, d_{D}\left(z_{j}, y_{i}\right) \leq 2$ implies that $z_{j} \rightarrow x \rightarrow y_{i}$. Consequently, $d_{D}\left(y_{1}, y_{2}\right) \geq 3$, a contradiction.
Case 4. $V_{3} \rightarrow V_{2}$.
Similar to Case 3.
This completes the proof.

Proof of Theorem 2.2. Let $V_{1}=\left\{x_{1}, x_{2}\right\}, V_{2}=\left\{y_{1}, y_{2}\right\}$ and $V_{3}=\left\{z_{1}, z_{2}, \ldots, z_{p}\right\}$ be the partite sets of $K(2,2, p)$, where $p \geq 3$. Suppose $K(2,2, p)$ has an orientation D with $d(D)=2$, then we consider the following four exhaustive cases to obtain the required contradiction.
Case 1. $x_{1} \rightarrow y_{1} \rightarrow x_{2} \rightarrow y_{2} \rightarrow x_{1}$.
$d_{D}\left(y_{1}, x_{1}\right) \leq 2, d_{D}\left(y_{2}, x_{2}\right) \leq 2, d_{D}\left(x_{1}, y_{2}\right) \leq 2$, and $d_{D}\left(x_{2}, y_{1}\right) \leq 2$ implies, respectively, that $y_{1} \rightarrow z_{i} \rightarrow$ $x_{1}, y_{2} \rightarrow z_{j} \rightarrow x_{2}, x_{1} \rightarrow z_{k} \rightarrow y_{2}$, and $x_{2} \rightarrow z_{\ell} \rightarrow y_{1}$ for some $i, j, k, \ell \in\{1,2, \ldots, p\}$. Note that i may be equal to j, k may be equal to ℓ, but $\{i, j\} \cap\{k, \ell\}=\phi$. We consider three subcases.
Subcase 1.1. $i=j$ and $k=\ell$.
Suppose for some $m \in\{1,2, \ldots, p\} \backslash\{i, k\}, z_{m} \rightarrow x_{1}$ holds. Then $d_{D}\left(x_{1}, z_{m}\right) \leq 2$ implies that $y_{1} \rightarrow z_{m} ;$ and hence $d_{D}\left(z_{m}, z_{i}\right) \leq 2$ implies that $z_{m} \rightarrow y_{2}$. Now $d_{D}\left(y_{2}, z_{m}\right) \geq 3$, a contradiction.

Consequently, for every $m \in\{1,2, \ldots, p\} \backslash\{i, k\}, x_{1} \rightarrow z_{m} . d_{D}\left(z_{m}, x_{1}\right) \leq 2$ implies that $z_{m} \rightarrow y_{2}$; and hence $d_{D}\left(z_{k}, z_{m}\right) \leq 2$ implies that $y_{1} \rightarrow z_{m}$. Now $d_{D}\left(z_{m}, y_{1}\right) \geq 3$, a contradiction.
Subcase 1.2. $i \neq j$.
$d_{D}\left(z_{i}, x_{2}\right) \leq 2$ implies that $z_{i} \rightarrow x_{2}$; and $d_{D}\left(y_{1}, z_{j}\right) \leq 2$ implies that $y_{1} \rightarrow z_{j}$. Now $d_{D}\left(z_{j}, z_{i}\right) \geq 3$, a contradiction.
Subcase 1.3. $k \neq \ell$.
Similar to Subcase 1.2.
Case 2. $x_{1} \rightarrow V_{2}$ and $y_{1} \rightarrow x_{2} \rightarrow y_{2}$.
For $i \in\{1,2, \ldots, p\}, d_{D}\left(z_{i}, x_{1}\right) \leq 2$ and $d_{D}\left(y_{2}, z_{i}\right) \leq 2$ implies, respectively, that $z_{i} \rightarrow x_{1}$ and $y_{2} \rightarrow z_{i}$. $d_{D}\left(x_{2}, x_{1}\right) \leq 2$ implies that $x_{2} \rightarrow z_{i}$ for some $i \in\{1,2, \ldots, p\}$. For any $j \in\{1,2, \ldots, p\} \backslash\{i\}, d_{D}\left(z_{i}, z_{j}\right) \leq 2$ implies that $z_{i} \rightarrow y_{1} \rightarrow z_{j}$, and therefore $d_{D}\left(z_{j}, z_{i}\right) \leq 2$ implies that $z_{j} \rightarrow x_{2}$. Thus for $j_{1}, j_{2} \in\{1,2, \ldots, p\} \backslash\{i\}$ with $j_{1} \neq j_{2}, d_{D}\left(z_{j_{1}}, z_{j_{2}}\right) \geq 3$, a contradiction.
Case 3. $x_{1} \rightarrow V_{2} \rightarrow x_{2}$.
For $i \in\{1,2, \ldots, p\}, d_{D}\left(z_{i}, x_{1}\right) \leq 2$ and $d_{D}\left(x_{2}, z_{i}\right) \leq 2$ implies, respectively, that $z_{i} \rightarrow x_{1}$ and $x_{2} \rightarrow z_{i}$. $d_{D}\left(y_{1}, y_{2}\right) \leq 2$ and $d_{D}\left(y_{2}, y_{1}\right) \leq 2$ implies, respectively, that $y_{1} \rightarrow z_{i} \rightarrow y_{2}$ and $y_{2} \rightarrow z_{j} \rightarrow y_{1}$ for some $i, j \in\{1,2, \ldots, p\}$. Clearly, $i \neq j$. For $k \in\{1,2, \ldots, p\} \backslash\{i, j\}, d_{D}\left(z_{k}, z_{j}\right) \leq 2$ implies that $z_{k} \rightarrow y_{2}$. Now $d_{D}\left(z_{i}, z_{k}\right) \geq 3$, a contradiction.
Case 4. $V_{1} \rightarrow V_{2}$.
For $i, j \in\{1,2\}$ and $k \in\{1,2, \ldots, p\}, d_{D}\left(y_{j}, z_{k}\right) \leq 2$ and $d_{D}\left(z_{k}, x_{i}\right) \leq 2$ implies, respectively, that $y_{j} \rightarrow z_{k}$ and $z_{k} \rightarrow x_{i}$. Now $d_{D}\left(y_{1}, y_{2}\right) \geq 3$, a contradiction.

This completes the proof.

Proof of Theorem 2.3. Let $V_{1}=\left\{x_{1}, x_{2}\right\}, V_{2}=\left\{y_{1}, y_{2}, y_{3}\right\}, V_{3}=\left\{z_{1}, z_{2}, \ldots, z_{p}\right\}$ be the partite sets of $K(2,3, p)$, where $p \geq 4$. Suppose $K(2,3, p)$ has an orientation D with $d(D)=2$, then we consider the following exhaustive cases to obtain the required contradiction. Without loss of generality assume that one of the following holds: (1) $x_{1} \rightarrow V_{2}$, (2) $y_{1} \rightarrow x_{1} \rightarrow\left\{y_{2}, y_{3}\right\}$, (3) $\left\{y_{2}, y_{3}\right\} \rightarrow x_{1} \rightarrow y_{1}$, (4) $V_{2} \rightarrow x_{1}$. As the subdigraphs (3) and (4) are, respectively, the converse subdigraphs of (1) and (2), we consider (1) and (2) only. In each of (1) and (2) one of the following holds: (a) $x_{2} \rightarrow V_{2}$, (b) $y_{1} \rightarrow x_{2} \rightarrow\left\{y_{2}, y_{3}\right\}$, (c) $y_{2} \rightarrow x_{2} \rightarrow\left\{y_{1}, y_{3}\right\}$, (d) $y_{3} \rightarrow x_{2} \rightarrow\left\{y_{1}, y_{2}\right\},(\mathrm{e})\left\{y_{2}, y_{3}\right\} \rightarrow x_{2} \rightarrow y_{1},(\mathrm{f})\left\{y_{1}, y_{3}\right\} \rightarrow x_{2} \rightarrow y_{2},(\mathrm{~g})\left\{y_{1}, y_{2}\right\} \rightarrow x_{2} \rightarrow y_{3},(\mathrm{~h}) V_{2} \rightarrow x_{2}$. Case 1a. $V_{1} \rightarrow V_{2}$.

For every $i \in\{1,2, \ldots, p\}, d_{D}\left(z_{i}, x_{1}\right) \leq 2$ and $d_{D}\left(z_{i}, x_{2}\right) \leq 2$ implies, respectively, that $z_{i} \rightarrow x_{1}$ and $z_{i} \rightarrow x_{2}$. Now $d_{D}\left(x_{1}, x_{2}\right) \geq 3$, a contradiction.
Case 2a. $y_{1} \rightarrow x_{1} \rightarrow\left\{y_{2}, y_{3}\right\}$ and $x_{2} \rightarrow V_{2}$ or Case 2b. $y_{1} \rightarrow V_{1} \rightarrow\left\{y_{2}, y_{3}\right\}$.
For every $i \in\{1,2, \ldots, p\}, d_{D}\left(y_{2}, z_{i}\right) \leq 2$ and $d_{D}\left(y_{3}, z_{i}\right) \leq 2$ implies, respectively, that $y_{2} \rightarrow z_{i}$ and
$y_{3} \rightarrow z_{i}$. Now $d_{D}\left(y_{2}, y_{3}\right) \geq 3$, a contradiction.
Case 2c. $y_{1} \rightarrow x_{1} \rightarrow\left\{y_{2}, y_{3}\right\}$ and $y_{2} \rightarrow x_{2} \rightarrow\left\{y_{1}, y_{3}\right\}$.
$d_{D}\left(y_{3}, y_{1}\right) \leq 2$ implies that $y_{3} \rightarrow z_{i} \rightarrow y_{1}$ for some $i \in\{1,2, \ldots, p\} . d_{D}\left(y_{1}, z_{i}\right) \leq 2$ implies that $x_{1} \rightarrow z_{i}$, $d_{D}\left(z_{i}, y_{3}\right) \leq 2$ implies that $z_{i} \rightarrow x_{2}$, and $d_{D}\left(z_{i}, y_{2}\right) \leq 2$ implies that $z_{i} \rightarrow y_{2}$. Now $d_{D}\left(y_{2}, z_{i}\right) \geq 3$, a contradiction.
Case 2e. $x_{1} \rightarrow\left\{y_{2}, y_{3}\right\} \rightarrow x_{2} \rightarrow y_{1} \rightarrow x_{1}$.
$d_{D}\left(y_{2}, y_{3}\right) \leq 2$ implies that $y_{2} \rightarrow z_{i} \rightarrow y_{3}$ for some $i \in\{1,2, \ldots, p\} . d_{D}\left(y_{3}, z_{i}\right) \leq 2$ implies that $x_{2} \rightarrow z_{i}$, $d_{D}\left(z_{i}, y_{2}\right) \leq 2$ implies that $z_{i} \rightarrow x_{1}$, and $d_{D}\left(z_{i}, y_{1}\right) \leq 2$ implies that $z_{i} \rightarrow y_{1}$. Now $d_{D}\left(y_{1}, z_{i}\right) \geq 3$, a contradiction.
Case 2f. $y_{1} \rightarrow x_{1} \rightarrow\left\{y_{2}, y_{3}\right\}$ and $\left\{y_{1}, y_{3}\right\} \rightarrow x_{2} \rightarrow y_{2}$.
For every $i \in\{1,2, \ldots, p\}, d_{D}\left(z_{i}, y_{1}\right) \leq 2$ implies that $z_{i} \rightarrow y_{1}$ and $d_{D}\left(y_{2}, z_{i}\right) \leq 2$ implies that $y_{2} \rightarrow z_{i}$. $d_{D}\left(x_{2}, x_{1}\right) \leq 2$ implies that $x_{2} \rightarrow z_{i} \rightarrow x_{1}$ for some $i \in\{1,2, \ldots, p\} . d_{D}\left(y_{3}, y_{1}\right) \leq 2$ implies that $y_{3} \rightarrow z_{j}$ for some $j \in\{1,2, \ldots, p\}$. If $i \neq j$, then $d_{D}\left(z_{j}, y_{3}\right) \leq 2$ implies that $z_{j} \rightarrow x_{1}$, and $d_{D}\left(z_{j}, z_{i}\right) \leq 2$ implies that $z_{j} \rightarrow x_{2}$; consequently, $d_{D}\left(y_{1}, z_{j}\right) \geq 3$, a contradiction. Thus $i=j$. For every $k \in\{1,2, \ldots, p\} \backslash\{i\}$, $d_{D}\left(z_{i}, z_{k}\right) \leq 2$ implies that $x_{1} \rightarrow z_{k}, d_{D}\left(z_{k}, y_{3}\right) \leq 2$ implies that $z_{k} \rightarrow y_{3}$, and $d_{D}\left(y_{3}, z_{k}\right) \leq 2$ implies that $x_{2} \rightarrow z_{k}$. Now $d_{D}\left(z_{k}, y_{2}\right) \geq 3$, a contradiction.
Case 1h. $x_{1} \rightarrow V_{2} \rightarrow x_{2}$.
For every $i \in\{1,2, \ldots, p\}, d_{D}\left(x_{2}, z_{i}\right) \leq 2$ and $d_{D}\left(z_{i}, x_{1}\right) \leq 2$ implies, respectively, that $x_{2} \rightarrow z_{i}$ and $z_{i} \rightarrow x_{1} . d_{D}\left(y_{1}, y_{2}\right) \leq 2$ and $d_{D}\left(y_{2}, y_{1}\right) \leq 2$ implies, respectively, that $y_{1} \rightarrow z_{i} \rightarrow y_{2}$ and $y_{2} \rightarrow z_{j} \rightarrow y_{1}$ for some $i, j \in\{1,2, \ldots, p\}$ with $i \neq j$. $d_{D}\left(y_{1}, y_{3}\right) \leq 2$ implies that either $z_{i} \rightarrow y_{3}$ or $y_{1} \rightarrow z_{k} \rightarrow y_{3}$ for some $k \in\{1,2, \ldots, p\} \backslash\{i, j\}$.

First assume that $z_{i} \rightarrow y_{3}$. For any $k \in\{1,2, \ldots, p\} \backslash\{i, j\}, d_{D}\left(z_{k}, z_{i}\right) \leq 2$ implies that $z_{k} \rightarrow y_{1}, d_{D}\left(z_{j}, z_{k}\right) \leq 2$ implies that $z_{j} \rightarrow y_{3} \rightarrow z_{k}$, and $d_{D}\left(z_{k}, z_{j}\right) \leq 2$ implies that $z_{k} \rightarrow y_{2}$. Now for $k_{1}, k_{2} \in\{1,2, \ldots, p\} \backslash\{i, j\}$ with $k_{1} \neq k_{2}, d_{D}\left(z_{k_{1}}, z_{k_{2}}\right) \geq 3$, a contradiction.

Next assume that $y_{1} \rightarrow z_{k} \rightarrow y_{3}$ for some $k \in\{1,2, \ldots, p\} \backslash\{i, j\} . d_{D}\left(z_{k}, z_{i}\right) \leq 2$ implies that $y_{3} \rightarrow z_{i}$, $d_{D}\left(z_{i}, z_{k}\right) \leq 2$ implies that $y_{2} \rightarrow z_{k}$, and $d_{D}\left(z_{k}, z_{j}\right) \leq 2$ implies that $y_{3} \rightarrow z_{j}$. Choose $\ell \in\{1,2, \ldots, p\} \backslash\{i, j, k\}$. $d_{D}\left(z_{i}, z_{\ell}\right) \leq 2$ implies that $y_{2} \rightarrow z_{\ell}, d_{D}\left(z_{j}, z_{\ell}\right) \leq 2$ implies that $y_{1} \rightarrow z_{\ell}$, and $d_{D}\left(z_{k}, z_{\ell}\right) \leq 2$ implies that $y_{3} \rightarrow z_{\ell}$. Now $d_{D}\left(z_{\ell}, z_{j}\right) \geq 3$, a contradiction.
Case 2h. $y_{1} \rightarrow x_{1} \rightarrow\left\{y_{2}, y_{3}\right\}$ and $V_{2} \rightarrow x_{2}$.
For every $i \in\{1,2, \ldots, p\}, d_{D}\left(x_{2}, z_{i}\right) \leq 2$ and $d_{D}\left(z_{i}, y_{1}\right) \leq 2$ implies, respectively, that $x_{2} \rightarrow z_{i}$ and $z_{i} \rightarrow y_{1} . d_{D}\left(x_{1}, y_{1}\right) \leq 2$ implies that $x_{1} \rightarrow z_{i}$ for some $i \in\{1,2, \ldots, p\} . d_{D}\left(z_{i}, y_{2}\right) \leq 2$ implies that $z_{i} \rightarrow y_{2}$, and $d_{D}\left(z_{i}, y_{3}\right) \leq 2$ implies that $z_{i} \rightarrow y_{3}$. For every $j \in\{1,2, \ldots, p\} \backslash\{i\}, d_{D}\left(z_{j}, z_{i}\right) \leq 2$ implies that $z_{j} \rightarrow x_{1} . d_{D}\left(y_{2}, x_{1}\right) \leq 2$ and $d_{D}\left(y_{3}, x_{1}\right) \leq 2$ implies, respectively, that $y_{2} \rightarrow z_{j}$ and $y_{3} \rightarrow z_{k}$ for some $j, k \in\{1,2, \ldots, p\} \backslash\{i\}$. If $j=k$, then for any $\ell \in\{1,2, \ldots, p\} \backslash\{i, j\}, d_{D}\left(z_{j}, z_{\ell}\right) \geq 3$, a contradiction. Hence $j \neq k$. $d_{D}\left(z_{k}, z_{j}\right) \leq 2$ implies that $z_{k} \rightarrow y_{2}$ and $d_{D}\left(z_{j}, z_{k}\right) \leq 2$ implies that $z_{j} \rightarrow y_{3}$. For every $\ell \in\{1,2, \ldots, p\} \backslash\{i, j, k\}$, $d_{D}\left(z_{j}, z_{\ell}\right) \leq 2$ implies that $y_{3} \rightarrow z_{\ell}$. Now $d_{D}\left(z_{\ell}, z_{k}\right) \geq 3$, a contradiction.
Case 1b. $y_{1} \rightarrow x_{2} \rightarrow\left\{y_{2}, y_{3}\right\}$ and $x_{1} \rightarrow V_{2}$.
Similar to Case 2a. Permute x_{1} and x_{2}.
Case 1c. $y_{2} \rightarrow x_{2} \rightarrow\left\{y_{1}, y_{3}\right\}$ and $x_{1} \rightarrow V_{2}$.
Similar to Case 2a. Apply the permutation $\left(x_{1}, x_{2}\right)\left(y_{1}, y_{2}\right)$.
Case 1d. $y_{3} \rightarrow x_{2} \rightarrow\left\{y_{1}, y_{2}\right\}$ and $x_{1} \rightarrow V_{2}$.
Similar to Case 2a. Apply the permutation $\left(x_{1}, x_{2}\right)\left(y_{1}, y_{3}\right)$.
Case 1e. $\left\{y_{2}, y_{3}\right\} \rightarrow x_{2} \rightarrow y_{1}$ and $x_{1} \rightarrow V_{2}$.
Similar to Case 2h. Permute x_{1} and x_{2}, and consider the converse digraph.
Case 1f. $\left\{y_{1}, y_{3}\right\} \rightarrow x_{2} \rightarrow y_{2}$ and $x_{1} \rightarrow V_{2}$.
Similar to Case 1e. Permute y_{1} and y_{2}.
Case 1g. $\left\{y_{1}, y_{2}\right\} \rightarrow x_{2} \rightarrow y_{3}$ and $x_{1} \rightarrow V_{2}$. Similar to Case 1e. Permute y_{1} and y_{3}.
Case 2d. $y_{1} \rightarrow x_{1} \rightarrow\left\{y_{2}, y_{3}\right\}$ and $y_{3} \rightarrow x_{2} \rightarrow\left\{y_{1}, y_{2}\right\}$.
Similar to Case 2c. Permute y_{2} and y_{3}.
Case 2g. $y_{1} \rightarrow x_{1} \rightarrow\left\{y_{2}, y_{3}\right\}$ and $\left\{y_{1}, y_{2}\right\} \rightarrow x_{2} \rightarrow y_{3}$.
Similar to Case 2f. Permute y_{2} and y_{3}.

This completes the proof.
Proof of Theorem 2.4. Let $V_{1}=\left\{x_{1}, x_{2}, \ldots, x_{p}\right\}, V_{2}=\left\{y_{1}, y_{2}, \ldots, y_{p}\right\}$, and $V_{3}=\left\{z_{1}, z_{2}, \ldots, z_{q}\right\}$ be the partite sets of $K(p, p, q), p \geq 4$ and $4 \leq q \leq 2 p$. Orient $K(p, p, q)$ as follows:
(i) For $i \in\{1,2, \ldots, p\}$,

$$
\left\{y_{i}, y_{i+1}\right\} \rightarrow x_{i} \rightarrow\left[V_{2} \backslash\left\{y_{i}, y_{i+1}\right\}\right] ;
$$

(ii) For $i \in\{1,2, \ldots, q\}$ and i is odd,

$$
\left\{x_{\frac{i+1}{2}}\right\} \cup\left[V_{2} \backslash\left\{y_{\frac{i+1}{2}}\right\}\right] \rightarrow z_{i} \rightarrow\left\{y_{\frac{i+1}{2}}\right\} \cup\left[V_{1} \backslash\left\{x_{\frac{i+1}{2}}\right\}\right] ;
$$

(iii) For $i \in\{1,2, \ldots, q\}$ and i is even,

$$
\left\{y_{\frac{i-2}{2}}\right\} \cup\left[V_{1} \backslash\left\{x_{\frac{i}{2}}\right\}\right] \rightarrow z_{i} \rightarrow\left\{x_{\frac{i}{2}}\right\} \cup\left[V_{2} \backslash\left\{y_{\frac{i-2}{2}}\right\}\right] ;
$$

where suffixes under x and y are reduced modulo p with residues $1,2, \ldots, p-1, p$ instead of $1,2, \ldots, p-1,0$ and that of z are reduced modulo q with residues $1,2, \ldots, q-1, q$ instead of $1,2, \ldots, q-1,0$. (Note that $x_{0}=x_{p}, y_{0}=y_{p}$ and $z_{0}=z_{q}$.)

Let D be the resulting digraph. See Fig. 1. Now, we verify that $d(D)=2$.

Fig. 1. The optimal orientation D described in the proof of Theorem 2.4 for $K_{6,6,12}$.
Missing arcs, of Fig. 1:
from V_{1} to V_{2} are of the form $x_{i} \rightarrow y_{j}$;
from V_{1} to V_{3} are of the form $x_{i} \rightarrow z_{j}$ when j is even and $z_{j} \rightarrow x_{i}$ when j is odd; from V_{2} to V_{3} are of the form $y_{i} \rightarrow z_{j}$ when j is odd and $z_{j} \rightarrow y_{i}$ when j is even.

Claim 1. For every distinct $i, j \in\{1,2, \ldots, p\}, d_{D}\left(x_{i}, x_{j}\right) \leq 2$.
Let $i \in\{1,2, \ldots, p\}$ be arbitrary. The existence of the paths $x_{i} \rightarrow y_{j} \rightarrow x_{j}$ for $j \in\{1,2, \ldots, p\} \backslash\{i, i+1\}$ (for $i=p, i+1=1$), and $x_{i} \rightarrow y_{i+2} \rightarrow x_{i+1}$, in D, proves Claim 1.
Claim 2. For every distinct $i, j \in\{1,2, \ldots, p\}, d_{D}\left(y_{i}, y_{j}\right) \leq 2$.

Let $i \in\{1,2, \ldots, p\}$ be arbitrary. The existence of the paths $y_{i} \rightarrow x_{i} \rightarrow y_{j}$ for $j \in\{1,2, \ldots, p\} \backslash\{i, i+1\}$ (for $i=p, i+1=1$), and $y_{i} \rightarrow x_{i-1} \rightarrow y_{i+1}$, in D, proves Claim 2.
Claim 3. For every distinct $i, j \in\{1,2, \ldots, q\}, d_{D}\left(z_{i}, z_{j}\right) \leq 2$.
If i, j are both odd, the existence of the path $z_{i} \rightarrow y_{\frac{i+1}{2}} \rightarrow z_{j}$, in D, proves Claim 3.
If i, j are both even, the existence of the path $z_{i} \rightarrow x_{\frac{i}{2}}^{2} \rightarrow z_{j}$, in D, proves Claim 3 .
If i is odd and j is even, the existence of the paths:

$$
\begin{aligned}
& z_{i} \rightarrow x_{1} \rightarrow z_{j} \text { for } i \neq 1 \text { and } j \neq 2, \\
& z_{1} \rightarrow x_{2} \rightarrow z_{j} \text { for } j \neq 4, \\
& z_{1} \rightarrow x_{3} \rightarrow z_{4} \\
& z_{i} \rightarrow x_{2} \rightarrow z_{2} \text { for } i \neq 3, \\
& z_{3} \rightarrow x_{3} \rightarrow z_{2}
\end{aligned}
$$

in D, proves Claim 3.
If i is even and j is odd, the existence of the paths:

$$
\begin{aligned}
& z_{i} \rightarrow y_{1} \rightarrow z_{j} \text { for } i \neq 4 \text { and } j \neq 1, \\
& z_{4} \rightarrow y_{2} \rightarrow z_{j} \text { for } j \neq 3, \\
& z_{4} \rightarrow y_{3} \rightarrow z_{3}, \\
& z_{i} \rightarrow y_{2} \rightarrow z_{1} \text { for } i \neq 6 \text { and } q \geq 6, \\
& z_{6} \rightarrow y_{3} \rightarrow z_{1} \text { for } q \geq 6, \\
& z_{i} \rightarrow y_{2} \rightarrow z_{1} \text { for } q \in\{4,5\},
\end{aligned}
$$

in D, proves Claim 3.
Claim 4. For every $i, j \in\{1,2, \ldots, p\}, d_{D}\left(x_{i}, y_{j}\right) \leq 2$.
Let $i \in\{1,2, \ldots, p\}$ be arbitrary. For $j \in\{1,2, \ldots, p\} \backslash\{i, i+1\}$, the existence of the arc $x_{i} \rightarrow y_{j}$, in D, together with the existence of the paths:

$$
\begin{aligned}
& x_{i} \rightarrow z_{4} \rightarrow y_{i} \text { for } i \notin\{1,2\}, \\
& x_{1} \rightarrow z_{1} \rightarrow y_{1}, \\
& x_{2} \rightarrow z_{2} \rightarrow y_{2}, \\
& x_{i} \rightarrow z_{4} \rightarrow y_{i+1} \text { for } i \notin\{2, p\}, \\
& x_{2} \rightarrow z_{2} \rightarrow y_{3}, \\
& x_{p} \rightarrow z_{2} \rightarrow y_{1},
\end{aligned}
$$

in D, proves Claim 4.
Claim 5. For every $i, j \in\{1,2, \ldots, p\}, d_{D}\left(y_{i}, x_{j}\right) \leq 2$.
The existence of the paths:

$$
\begin{aligned}
& y_{i} \rightarrow z_{1} \rightarrow x_{j} \text { for } i, j \in\{2,3, \ldots, p\}, \\
& y_{1} \rightarrow z_{3} \rightarrow x_{j} \text { for } j \neq 2 \\
& y_{1} \rightarrow z_{4} \rightarrow x_{2} \\
& y_{i} \rightarrow z_{3} \rightarrow x_{1} \text { for } i \neq 2
\end{aligned}
$$

and the arc $y_{2} \rightarrow x_{1}$, in D, proves Claim 5 .
Claim 6. For every $i \in\{1,2, \ldots, p\}$ and $j \in\{1,2, \ldots, q\}, d_{D}\left(x_{i}, z_{j}\right) \leq 2$.
Let $i \in\{1,2, \ldots, p\}$ be arbitrary.
First assume that j is odd. The existence of the paths:

$$
\begin{aligned}
& x_{i} \rightarrow y_{1} \rightarrow z_{j} \text { for } i \notin\{1, p\} \text { and } j \neq 1, \\
& x_{1} \rightarrow y_{3} \rightarrow z_{j} \text { for either } q=4 \text { or } q \geq 5 \text { and } j \neq 5, \\
& x_{1} \rightarrow y_{4} \rightarrow z_{5} \text { for } q \geq 5, \\
& x_{p} \rightarrow y_{2} \rightarrow z_{j} \text { for } j \neq 3, \\
& x_{p} \rightarrow y_{3} \rightarrow z_{3}, \\
& x_{i} \rightarrow y_{2} \rightarrow z_{1} \text { for } i \notin\{1,2\}, \\
& x_{1} \rightarrow y_{p-1} \rightarrow z_{1}, \text { and } \\
& x_{2} \rightarrow y_{4} \rightarrow z_{1},
\end{aligned}
$$

in D, proves Claim 6.
Next assume that j is even. The existence of the $\operatorname{arc} x_{i} \rightarrow z_{j}$ for $i \neq \frac{j}{2}$ and the existence of the path $x_{\frac{j}{2}} \rightarrow y_{\frac{i-2}{2}} \rightarrow z_{j}$, in D, proves Claim 6.

Claim 7. For every $i \in\{1,2, \ldots, q\}$ and $j \in\{1,2, \ldots, p\}, d_{D}\left(z_{i}, x_{j}\right) \leq 2$.
Let $j \in\{1,2, \ldots, p\}$ be arbitrary.
First assume that i is odd. For $j \neq \frac{i+1}{2}$, the existence of the $\operatorname{arc} z_{i} \rightarrow x_{j}$, in D, together with the existence of the path $z_{i} \rightarrow y_{\frac{i+1}{2}} \rightarrow x_{\frac{i+1}{2}}$, in D, proves Claim 7 .

Next assume that i is even. For $j \neq \frac{i-2}{2}$, the existence of the path $z_{i} \rightarrow y_{j} \rightarrow x_{j}$, in D, together with the existence of the path $z_{i} \rightarrow y_{\frac{i}{2}} \rightarrow x_{\frac{i-2}{2}}$, in D, proves Claim 7.
Claim 8. For every $i \in\{1,2, \ldots, p\}$ and $j \in\{1,2, \ldots, q\}, d_{D}\left(y_{i}, z_{j}\right) \leq 2$.
Let $i \in\{1,2, \ldots, p\}$ be arbitrary.
First assume that j is odd. For $i \neq \frac{j+1}{2}$, the existence of the arc $y_{i} \rightarrow z_{j}$, in D, together with the existence of the path $y_{\frac{j+1}{2}} \rightarrow x_{\frac{i+1}{2}} \rightarrow z_{j}$, in D, proves Claim 8 .

Next assume that j is even. For $i \neq \frac{j}{2}$, the existence of the path $y_{i} \rightarrow x_{i} \rightarrow z_{j}$, in D, together with the existence of the path $y_{\frac{j}{2}} \rightarrow x_{\frac{i-2}{2}} \rightarrow z_{j}$, in D, proves Claim 8 .
Claim 9. For every $i \in\{1,2, \ldots, q\}$ and $j \in\{1,2, \ldots, p\}, d_{D}\left(z_{i}, y_{j}\right) \leq 2$.
Let $j \in\{1,2, \ldots, p\}$ be arbitrary.
First assume that i is odd. For $j \bmod p \notin\left\{\frac{i+3}{2} \bmod p, \frac{i+5}{2} \bmod p\right\}$, the existence of the path $z_{i} \rightarrow$ $x_{\frac{i+3}{2}} \rightarrow y_{j}$, in D, together with the existence of the paths $z_{i} \rightarrow x_{\frac{i+7}{2}} \rightarrow y_{\frac{i+3}{2}}$ and $z_{i} \rightarrow x_{\frac{i+7}{2}} \rightarrow y_{\frac{i+5}{2}}$, in D, proves Claim 9.

Next assume that i is even. For $j \neq \frac{i-2}{2}$, the existence of the $\operatorname{arc} z_{i} \rightarrow y_{j}$, in D, together with the existence of the path $z_{i} \rightarrow x_{\frac{i}{2}} \rightarrow y_{\frac{i-2}{2}}$, in D, proves Claim 9 .

By Claims 1-9, $d(D)=2$.

4. Conclusion

Based on the results of Koh and Tan, Theorems 2.2 and 2.3, and the result "for $p \geq 7, \vec{d}(K(2,4, p))=3$ " of [6], we conjecture that $\vec{d}(K(2, p, q))=3$ when $p \geq 5$ and $q>\left(\begin{array}{c}\left\lfloor\frac{p}{2}\right\rfloor\end{array}\right)$.

Acknowledgments

We thank the referee for his/her valuable suggestions. The first author G. Rajasekaran would like to thank, UGC-BSR Fellowship, No. F. 4-1/2006(BSR)/7-254/2009 (BSR), Government of India, New Delhi, for partial financial assistance.

References

[1] J. Bang-Jensen and G. Gutin, Digraphs: Theory, Algorithms and Applications, Second Edition, Springer, London, 2009.
[2] F. Boesch and R. Tindell, Robbin's theorem for mixed multigraphs, Amer. Math. Monthly 87 (1980) 716-719.
[3] K.M. Koh and B.P. Tan, The minimum diameter of orientations of complete multipartite graphs, Graphs and Combin. 12 (1996) 333-339.
[4] K.M. Koh and B.P. Tan, The diameter of an orientation of a complete multipartite graph, Discrete Math. 149 (1996) 131-139.
[5] S.B. Maurer, The king chicken theorems, Math. Mag. 53 (1980) 67-80.
[6] G. Rajasekaran and R. Sampathkumar, The orientation number of the complete tripartite graph $K(2,4, p)$, Submitted.
[7] H. Robbins, A theorem on graphs with an application to a problem of traffic control, Amer. Math. Monthly 46 (1939) 281-283.
[8] L. Soltés, Orientations of graphs minimizing the radius or the diameter, Math. Slovaca 36 (1986) 289-296.

[^0]: 2010 Mathematics Subject Classification. Primary 05C20; Secondary 05C12
 Keywords. complete tripartite graph, orientation number
 Received: 06 November 2013; Accepted: 12 April 2014
 Communicated by Francesco Belardo
 Email addresses: mathsekar@gmail.com (G. Rajasekaran), sampathmath@gmail.com (R. Sampathkumar)

