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Abstract. Let G be an undirected connected graph with n vertices and m edges. If µ1 ≥ µ2 ≥ · · · ≥

µn−1 > µn = 0 and ρ1 ≥ ρ2 ≥ · · · ≥ ρn−1 > ρn = 0 are the Laplacian and the normalized Laplacian

eigenvalues of G, then the Kirchhoff and the degree Kirchhoff indices obey the relations K f (G) = n
n−1∑
i=1

1/µi

and DK f (G) = 2m
n−1∑
i=1

1/ρi , respectively. Upper bounds for K f (G) and DK f (G) are obtained.

1. Introduction

In 1993 Klein and Randić [15] introduced a new distance function, named resistance distance, based
on the theory of electrical networks. They viewed the graph G as an electrical network N by replacing
each edge of G with a unit resistor. The resistance distance between the vertices u and v of the graph G,
denoted by R(u, v) = R(u, v|G), is then defined to be the effective resistance between the nodes u and v in N.
Similar to the long recognized shortest–path distance, the resistance distance is also intrinsic to the graph,
not only with some nice purely mathematical properties, but also with a substantial potential for chemical
applications.

The Wiener index is the sum of ordinary distances between all pairs of vertices of a (connected) graph;
for details and further references see [26]. The Kirchhoff index is defined in analogy to the Wiener index as
[4, 15]:

K f (G) =
∑

{u,v}⊆V(G)

R(u, v|G) .

In 2007 a closely related graph invariant, named degree Kirchhoff index, was put forward by Chen and
Zhang [5], defined as

DK f (G) =
∑

{u,v}⊆V(G)

du dv R(u, v|G)

where dv is the degree of the vertex v.
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The graph invariants K f and DK f are currently much studied in the mathematical and mathematico–
chemical literature; see the recent papers [2, 8, 11, 12, 17, 25] and [10, 14, 21], and the references cited
therein.

Denote by A the adjacency matrix of the (connected) (n,m)-graph G, and by D the diagonal matrix
of its vertex degrees. Then L = D − A is the Laplacian matrix of the G. Let the eigenvalues of L be
µ1 ≥ µ2 ≥ · · · ≥ µn−1 > µn = 0.

A long time known result for the Kirchhoff index is [13]:

K f (G) = n
n−1∑
i=1

1
µi
.

The transition matrix P of connected graph G is defined as [3, 22, 23]

P = D−1A = I −D−1L.

Its eigenvalues are 1 = µ̄1(P) > µ̄2(P) ≥ . . . ≥ µ̄n(P) ≥ −1.
Because the graph G is assumed to be connected, it has no isolated vertices and therefore the matrix D−1/2

is well–defined. Then L∗ = D−1/2LD−1/2 is the normalized Laplacian matrix of the graph G. Its eigenvalues
are ρ1 ≥ ρ2 ≥ · · · ≥ ρn−1 > ρn = 0. For details on the spectral theory of the normalized Laplacian matrix see
[6]. A remarkable analogy between the Kirchhoff and degree Kirchhoff indices is the formula [5]:

DK f (G) = 2m
n−1∑
i=1

1
ρi
.

In earlier works [3, 8, 16, 20, 27, 29, 30], several bounds for the Kirchhoff index were reported. These
depend on usual structural parameters (number of vertices, number of edges, vertex degrees, and sim-
ilar). The bounds offered in the present work are of different nature: they reveal connections between
the resistance-distance-based Kirchhoff index and the extremal (greatest, second-greatest, and smallest
non-zero) Laplacian eigenvalues. For this reason, our bounds have not been designed to ”compete with”
or ”outperform in accuracy” the previous ones. Neither is the purpose of our bounds to gain (approxi-
mate) numerical values of Kf of particular graphs, since their exact values are easily obtainable by direct
calculation.

2. Preliminaries

In this section we recall some results from spectral graph theory, and state a few analytical inequalities
needed for our work.

Let G be undirected, connected graph with n vertices and m edges and let ∆ = d1 ≥ d2 ≥ · · · ≥ dn > 0 be
the sequence of vertex degrees of G.

Lemma 2.1. [18] Let G be a graph of order n with at least one edge. Then µ1 ≥ ∆ + 1. Moreover, if G is connected,
then the equality µ1 = ∆ + 1 holds if and only if ∆ = n − 1.

Lemma 2.2. [16] Let G be a graph of order n. Then µ1 ≤ n, with equality holding if and only if Ḡ is disconnected,
where Ḡ stands for the complement of G.

Lemma 2.3. [7, 18] Let G be a simple graph of order n. Then µ1 = µ2 = · · · = µn−1 holds if and only if G � Kn or
G � K̄n .

Lemma 2.4. [7, 18, 28] Let G be a connected graph on n vertices. Then µ2 = µ3 = · · · = µn−1 if and only if G � K1,n−1
or G � Kn or G � K n

2 ,
n
2

.

Lemma 2.5. [6] Let G be a graph of order n. Then ρ1 ≥ n/(n − 1).
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Lemma 2.6. Let

α(n − 1) :=
1

n − 1

⌊n − 1
2

⌋ (
1 −

1
n − 1

⌊n − 1
2

⌋)
. (1)

Then α(n − 1) ≤ 1/4 holds for each natural number n , n ≥ 3. Equality holds if and only if n is odd.

Proof. Lemma 2.6 is obtained from the inequality between arithmetic and geometric means. �

Lemma 2.7. [1]. Let p1, p2, . . . , pn and a1, a2, . . . , an be non-negative real numbers for which there exist real constants
r and R so that 0 < r ≤ ai ≤ R < +∞, i = 1, 2, . . . ,n. In addition, let S be a subset of I = {1, 2, . . . ,n} that minimizes
the expression∣∣∣∣∣∣∣∑i∈S pi −

1
2

n∑
i=1

pi

∣∣∣∣∣∣∣ . (2)

Then  n∑
i=1

pi ai


 n∑

i=1

pi

ai

 −
 n∑

i=1

pi


2

≤
(R − r)2

rR

∑
i∈S

pi

 n∑
i=1

pi −
∑
i∈S

pi

 . (3)

Lemma 2.8. [19, 24] Let p1, p2, . . . , pn be non-negative real numbers with the property
n∑

i=1
pi = 1. Further, let

a1, a2, . . . , an be real numbers for which there exist real constants r and R so that for each i , i = 1, 2, . . . ,n, the
inequalities 0 < r ≤ ai ≤ R < +∞ hold. Then

n∑
i=1

pi ai + rM
n∑

i=1

pi

ai
≤ r + R . (4)

Equality in (4) is attained if and only if a1 = a2 = · · · = ak = R and ak+1 = ak+2 = · · · = an = r for some k , 1 ≤ k ≤ n.

The complete split graph CS(n, k) , 1 ≤ k ≤ n − 1, is a graph on n vertices consisting of a clique on k
vertices and a stable set on the remaining n − k vertices, in which each vertex of the clique is adjacent to
each vertex of the stable set. Thus, CS(n, k) has 1

2 k(k − 1) + (n − k)k = nk − 1
2 k(k + 1) edges.

Note that the complete graph Kn and the star K1,n−1 are complete split graphs for k = n − 1, and k = 1,
respectively.

Lemma 2.9. [9] The Laplacian spectrum of CS(n, k) , 1 ≤ k ≤ n − 1, satisfies the conditions: µ1 = · · · = µk = n and
µk+1 = · · · = µn−1 = k, i.e.,

Spec(CS(n, k)) = {n,n, . . . ,n︸     ︷︷     ︸
k−times

, k, k, . . . , k︸    ︷︷    ︸
(n−k−1)−times

, 0} .

This spectrum is unique to CS(n, k).

Lemma 2.10. [18, 28] The Laplacian spectrum of the complete bipartite graph K n
2 ,

n
2

is

Spec(K n
2 ,

n
2
) = {n , n/2,n/2, . . . ,n/2︸              ︷︷              ︸

(n−2)−times

, 0} .

This spectrum is unique to K n
2 ,

n
2

.
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Proposition 2.11. [23] Let G be a connected d-regular graph with n vertices and m edges, then

K f (G) ≤
n(n − 1)

d(1 − µ2(P))
(5)

Proposition 2.12. [3] For any simple connected graph G

KF(G) ≤
n
dn

(
n − k − 2
1 − µ2(P)

+
k
2

+
1
θ

)
, (6)

where k =
⌊
µ2(P)(n−1)+1
µ2(P)+1

⌋
and θ = µ2(P)(n − k − 2) − k + 2.

3. Main Results

3.1. On Kirchhoff index
We now obtain an upper bound for K f (G) in terms of the parameters n, m, µ1 , and µn−1 .

Theorem 3.1. Let G be an undirected connected graph with n , n ≥ 3, vertices and m edges. Then

K f (G) ≤
n(n − 1)2

2m

(
1 +

(µ1 − µn−1)2

µ1 µn−1
α(n − 1)

)
(7)

where α(n − 1) is given by Eq. (1). Equality in (7) holds if and only if G � Kn .

Proof. Let n := n − 1, pi := 1, i = 1, 2, . . . ,n − 1, and S = {1, 2, . . . , k}, 1 ≤ k ≤ n − 1. Then the minimum in (2)
is reached for k =

⌊
n−1

2

⌋
. Therefore S = {1, 2, . . . ,

⌊
n−1

2

⌋
}. Now for n := n − 1, pi := 1, ai := µi, i = 1, 2, . . . ,n − 1,

R := µ1, r := µn−1 and S = {1, 2, . . . ,
⌊

n−1
2

⌋
}, inequality (3) becomesn−1∑

i=1

µi


n−1∑

i=1

1
µi

 − (n − 1)2
≤

(µ1 − µn−1)2

µ1 µn−1

⌊n − 1
2

⌋ (
(n − 1) −

⌊n − 1
2

⌋)
. (8)

Since
∑n−1

i=1 µi = 2m and
⌊

n−1
2

⌋ (
n − 1 −

⌊
n−1

2

⌋)
= (n − 1)2 α(n − 1), inequality (8) becomes

n−1∑
i=1

1
µi
≤

(n − 1)2

2m
+

(n − 1)2

2m
(µ1 − µn−1)2

µ1 µn−1
α(n − 1) .

By multiplying the above inequality with n, we obtain (7). Equality in (7) holds if and only if µ1 = µ2 =
· · · = µn−1 . Since G is connected, according to Lemma 2.3, equality in (7) holds if and only if G � Kn . �

Corollary 3.2. Let G be an undirected connected graph with n , n ≥ 3, vertices and m edges. Then

K f (G) ≤
n(n − 1)2

8m

(√
µ1

µn−1
+

√
µn−1

µ1

)2

. (9)

Equality holds if and only if G � Kn .

Proof. Inequality (9) is obtained from inequality (7) and Lemma 2.6. �
Our next result is an upper bound for K f (G) in terms of n, m, ∆, µ2 , and µn−1 .
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Theorem 3.3. Let G be undirected connected graph with n ,n ≥ 4, vertices and m edges. Then

K f (G) ≤
n

1 + ∆
+

n(n − 2)2

2m − n

(
1 +

(µ2 − µn−1)2

µ2 µn−1
α(n − 2)

)
. (10)

Equality holds if and only if G � Kn or G � K1,n−1.

Proof. For n := n − 1 and pi := 1, i = 2, 3, . . . ,n − 1, according to Lemma 2.7,n−1∑
i=2

ai


n−1∑

i=2

1
ai

 − (n − 2)2
≤

(R − r)2

mM

⌊n − 2
2

⌋ (
(n − 2) −

⌊n − 2
2

⌋)
.

For ai := µi , i = 2, 3, . . . ,n − 1, R = µ2 , and r = µn−1 , the above inequality becomes

n−1∑
i=2

1
µi
≤

(n − 2)2

2m − µ1
+

(n − 2)2

2m − µ1

(µ2 − µn−1)2

µ2 µn−1
α(n − 2) .

Accordingly, we have that

K f (G) =

n−1∑
i=1

n
µi

=
n
µ1

+

n−1∑
i=2

n
µi

≤
n
µ1

+
(n − 2)2

2m − µ1

(
1 +

(µ2 − µn−1)2

µ2 µn−1
α(n − 2)

)
.

Since by Lemma 2.1, µ1 ≥ ∆ + 1, i.e., 1
µ1
≤

1
∆+1 , whereas by Lemma 2.2, µ1 ≤ n, i.e., 1

2m−µ1
≤

1
2m−n , from the

above inequality, (10) follows.
Since the graph G is connected, by Lemma 2.1, if µ1 = 1 + ∆, then ∆ = n − 1, i.e., µ1 = n. Equality in (10)

holds if and only if µ1 = n and µ2 = µ3 · · · = µn−1 . Then by Lemmas 2.4, 2.9, and 2.10, equality in (10) holds
if and only if G � Kn or G � K1,n−1. �

Bearing in mind Lemma 2.4 and inequality (10), the following result can be derived.

Corollary 3.4. Let G be an undirected connected graph with n , n ≥ 4, vertices and m edges. Then

K f (G) ≤
n

1 + ∆
+

n(n − 2)2

4(2m − n)

(√
µ2

µn−1
+

√
µn−1

µ2

)2

. (11)

Equality holds if and only if G � Kn or G � K1,n−1.

Theorem 3.5. Let G be an undirected connected graph with n , n ≥ 3, vertices and m edges. Then

K f (G) ≤ n
(µ1 + µn−1)(n − 1) − 2m

µ1 µn−1
(12)

Equality holds if and only if G is a complete split graph or G � K n
2 ,

n
2

.

Proof. For n := n − 1, pi := 1
n−1 , ai := µi , i = 1, 2, . . . ,n − 1, R := µ1 , and r := µn−1 , from inequality (4) it

follows that
1

n − 1

n−1∑
i=1

µi +
µ1 µn−1

n − 1

n−1∑
i=1

1
µi
≤ µ1 + µn−1
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i.e.,

2mn + µ1 µn−1 K f (G) ≤ n(n − 1)(µ1 + µn−1) . (13)

Inequality (12) follows directly from (13).
Since the equality in (4) holds if and only if a1 = · · · = ak = R and ak+1 = · · · = an = r for some

k , 1 ≤ k ≤ n − 1, it means that equality in (12) holds if and only if µ1 = · · · = µk and µk+1 = · · · = µn−1
for some k , 1 ≤ k ≤ n − 1. Bt Lemmas 2.9 and 2.10, equality in (12) holds if and only if G � CS(n, k) for
1 ≤ k ≤ n − 1, or G � K n

2 ,
n
2

. �

Corollary 3.6. Inequality (12) includes the inequality (9), i.e., it is stronger than (9).

Proof. If on the left side of (13), the inequality between arithmetic and geometric means of two positive real
numbers is applied, then

2
√

2mnµ1 µn−1 K f (G) ≤ 2mn + µ1 µn−1 K f (G) ≤ n(n − 1)(µ1 + µn−1)

is obtained. From the left and the right terms of the above inequality, we arrive at (9). �

Theorem 3.7. Let G be an undirected connected graph with n , n ≥ 4, vertices and m edges. Then

K f (G) ≤
n

1 + ∆
+ n

(µ2 + µn−1)(n − 2) − (2m − n)
µ2 µn−1

. (14)

Equality holds if and only if G � Kn or G � K1,n−1.

Proof. Rewriting the inequality (4) as

n−1∑
i=2

pi ai + rR
n−1∑
i=2

pi

ai
≤ r + R (15)

for pi := 1
n−2 , ai := µi , i = 2, . . . ,n − 1, R := µ2 , and r := µn−1 , we obtain

n−1∑
i=2

n
µi
≤

n((µ2 + µn−1)(n − 2) − (2m − µ1))
µ2 µn−1

.

This implies

K f (G) =
n
µ1

+

n−1∑
i=2

n
µi
≤

n
µ1

+
n((µ1 + µn−1)(n − 2) − (2m − µ1))

µ2 µn−1
.

Since 1 + ∆ ≤ µ1 ≤ n, we arrive at (14).
Equality in (14) holds if and only if µ1 = n and µ2 = · · · = µn−1 . By Lemmas 2.4, 2.9, and 2.10, this

happens if and only if G � Kn or G � K1,n−1. �

Corollary 3.8. The upper bound (14) includes inequality (11), i.e., it is stronger than (11).

Proof. Inequality (14) can be rewritten in the form

µ2 µn−1

(
K f (G) −

n
1 + ∆

)
+ n(2m − n) ≤ n(n − 2)(µ2 + µn−1) .

By applying the inequality between arithmetic and geometric means for two positive real numbers, on the
left side of the above inequality, we obtain

2

√
µ2 µn−2

(
K f (G) −

1
1 + ∆

)
n(2m − n) ≤ n(n − 2)(µ1 + µn−1)

which is equivalent with (11). �
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3.2. On degree Kirchhoff index
In the following theorem we establish an uper bound for DK f (G) depending on the parameters n, m,

ρ1 , ρn−1 , and α(n − 1).

Theorem 3.9. Let G be an undirected connected graph with n , n ≥ 3, vertices and m edges. Then

DK f (G) ≤
2m(n − 1)2

n

(
1 +

(ρ1 − ρn−1)2

ρ1 ρn−1
α(n − 1)

)
. (16)

Equality in (16) holds if and only if G � Kn .

Proof. Similarly as in the proof of Theorem 3.1, for n := 1, pi := 1, ai := µi , i = 1, 2, . . . ,n − 1, R := ρ1 ,
r := ρn−1 , and S = {1, 2, . . . ,

⌊
n−1

2

⌋
}, the inequality (3) yieldsn−1∑

i=1

ρi


n−1∑

i=1

1
ρi

 − (n − 1)2
≤

(ρ1 − ρn−1)2

ρ1 ρn−1

⌊n − 1
2

⌋ (
n − 1 −

⌊n − 1
2

⌋)
.

Since
n−1∑
i=1
ρi = n and

⌊
n−1

2

⌋ (
n − 1 −

⌊
n−1

2

⌋)
= (n − 1)2 α(n − 1), the above inequality becomes

n−1∑
i=1

1
ρi
≤

(n − 1)2

n

(
1 +

(ρ1 − ρn−1)2

ρ1 ρn−1
α(n − 1)

)
.

By multiplying the above inequality with 2m, inequality (16) is obtained. Equality in (16) holds if and only
if ρ1 = ρ2 = · · · = ρn−1 = n

n−1 , i.e., if and only if G � Kn . �
Since α(n − 1) ≤ 1

4 , we obtain:

Corollary 3.10. Let G be undirected connected graph with n , n ≥ 3, vertices and m edges. Then

DK f (G) ≤
m(n − 1)2

2n

(√
ρ1

ρn−1
+

√
ρn−1

ρ1

)2

. (17)

Equality in (17) holds if and only if G � Kn .

Theorem 3.11. Let G be an undirected connected graph with n , n ≥ 3, vertices and m edges. Then

DK f (G) ≤ 2m
(n − 1)(ρ1 + ρn−1) − n

ρ1 ρn−1
. (18)

Equality in (18) holds if and only if G is a (connected) graph with normalized Laplacian spectrum
{ρ1, . . . , ρ1︸     ︷︷     ︸

k−times

, ρn−1, . . . , ρn−1︸          ︷︷          ︸
(n−k−1)−times

, 0}, for some k, 1 ≤ k ≤ n − 1.

Corollary 3.12. The upper bound (18) includes inequality (17), i.e., it is stronger than (17).

Proof is analogous to the proof of Corollary 3.6. �

Theorem 3.13. Let G be an undirected connected graph with n , n ≥ 4, vertices and m edges. Then

DK f (G) ≤ m +
2m(n − 2)(ρ2 + ρn−1 − 1)

ρ2 ρn−1
. (19)

Equality in (19) holds if and only if G � K1,n or G � K n
2 ,

n
2

.
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Proof. Using the inequality (15), for pi := 1
n−2 , ai := ρi , i = 1, 2, . . . ,n − 1, R := ρ2 , and r := ρn−1 , we arrive at

n−1∑
i=2

2m
ρi
≤ 2m

(ρ2 + ρn−1)(n − 2) − (n − ρ1)
ρ2 ρn−1

resulting in

DK f (G) =
2m
ρ1

+

n−1∑
i=2

2m
ρi
≤

2m
ρ1

+ 2m
(ρ2 + ρn−2)(n − 2) − (n − ρ1)

ρ2 ρn−1
.

Since ρ1 ≤ 2 and 2ρ1 ≥ ρ2 ρn−2 , from the above inequality it follows that

2m
ρ1

+
2m((ρ2 + ρn−1)(n − 2) − (n − ρ1))

ρ2 ρn−1
≤

2m
2

+ 2m
(ρ2 + ρn−1)(n − 2) − (n − 2)

ρ2 ρn−1

which is the desired result. Equality in (19) holds if and only if ρ1 = 2 and ρ2 = · · · = ρn−1 . Since
n−1∑
i=1
ρi = n,

equality in (19) holds if and only if ρ1 = 2 and ρ2 = · · · = ρn−1 = 1, i.e., if and only if G � K1,n−1 or G � K n
2 ,

n
2

.
�

By a similar argument as in the case of Corollary 3.8, the following result can be proved:

Corollary 3.14. Let G be an undirected connected graph with n , n ≥ 4, vertices and m edges. Then

DK f (G) ≤ m

1 +
n − 2

2

(√
ρ2

ρn−1
+

√
ρn−1

ρ2

)2 . (20)

Equality holds if and only if G � K1,n−1 or G � K n
2 ,

n
2

.

Corollary 3.15. The inequality (19) includes the inequality (20), i.e. it is stronger than (20).

Proof. The proof is similar to the proof of Corollary 3.6. �

Note that the bounds obtained in (7), (10), (12) and (14), are, generally, incomparable. According to the
numerical results,which are omitted for brevity, the following can be concluded:

• If G � K n
2 ,

n
2
, where n is even, bound in (12) is exact, while bounds (7), (10) and (14) are not. Con-

sequently, bound (12) is better than the others. Bounds obtained by (10) and (14) are equal, and for
n ≥ 8 are stronger than the one obtained by (7).

• If G � Kn − e, bounds (12) and (14) are exact, but bounds (7) and (10) are not. On the other hand,
bound (10) is stronger than (7) for each n ≥ 4.

• If G � Pn, for n ≥ 4, bound (7) is stronger than bounds obtained by (10), (12) and (14). Bound (12) is
stronger than bounds (10) and (14), while (14) is stronger than (10).

Similarly, in general, bounds (7), (10), (12) and (14) are incomparable with (5) and (6). Thus, for example

• If G � K1,n−1, bounds (10), (12) and (14) are exact, while (5), (6) and (7) are not. Bound (6) is stronger
than (7).

• If G � Cn, bound (6) is stronger than bound (7) when n ≥ 6, stronger than (10) and (14) when n ≥ 4,
and stronger than (12) when n ≥ 8.
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[30] B. Zhou, N. Trinajstić, On resistance–distance and Kirchhoff index, J. Math. Chem. 46 (2009) 283–289.


