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Abstract. The aim of this paper is to obtain general univalence conditions and quasiconformal exten-
sions to Cn of holomorphic mappings defined on the Euclidian unit ball B. The asymptotical case of the
quasiconformal extension results is also presented. We extend several results obtained by Hamada and
Kohr(2011) in [15] to a more general case. In particular our results improve certain univalence criteria and
quasiconformal extension results previously obtained by Pfaltzgraff [21], [22], Curt and Pascu [8], Curt [5],
Hamada and Kohr [16], Curt and Kohr [6], [7] and Răducanu [24]. As applications we present general
forms of the n-dimensional version of the well-known univalence criterion due to Lewandowski [19] and
its quasiconformal extension.

1. Introduction

In 1972, Becker [2] showed that if q ∈ [0, 1) and if f is a holomorphic function on the open unit disk
which satisfies the inequality

(1 − |z|2)
∣∣∣∣∣z f ′′(z)

f ′(z)

∣∣∣∣∣ ≤ q, z ∈ U (1)

then f is univalent in U and can be extended to a quasiconformal homeomorphism of R2 onto itself.
A generalization of the univalence criterion given in (1) was obtained by Becker in [3]. He proved the

following result.
Let a(t) be an absolutely continuous function on [0,∞) with a(0) = 1,<[a′(t)/a(t)] > 0 a.e. on [0,∞) and

lim
t→∞

a(t) = ∞. Let f be a normalized holomorphic function on the open unit disk. Suppose that

max
|z|=e−t

∣∣∣∣∣2 a(t) − e−t

a′(t) + a(t)
z f ′′(z)
f ′(z)

−
a′(t) − a(t)
a′(t) + a(t)

∣∣∣∣∣ ≤ q, a.e. t > 0, z ∈ U. (2)

Then
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(i) If q = 1 the function f is univalent in U.

(ii) If q < 1 the function f extends to a quasiconformal homeomorphism of R2 onto itself.

During the time, various extensions of the univalence criterion due to Becker ([2], [3]) have been obtained
(see [1], [25], [20], [26], [11], [27], [9]).

Recently, Hamada and Kohr [15] used the Loewner chains theory to obtain the n-dimensional version
of the above result due to Becker. In the same paper the authors also considered the asymptotical case of
their quasiconformal extension result.

In this paper we extend several results obtained in [15] to a more general case. In particular our
results improve certain univalence criteria and quasiconformal extension results previously obtained by
Pfaltzgraff [21], [22], Curt [5], Hamada and Kohr [16], Curt and Kohr [6], [7] and Răducanu [24]. As
applications we present general forms of the n-dimensional version of the well-known univalence criterion
due to Lewandowski [19] and its quasiconformal extension.

More results related to the problem of quasiconformal extensions for quasiregular holomorphic map-
pings on the unit ball of Cn can be found in [4], [14], [16], [22].

2. Preliminary Results

Let Cn denote the space of n-complex variables z = (z1, . . . , zn) with the usual inner product 〈z,w〉 =
n∑

j=1

z jw j and Euclidean norm ‖z‖ = 〈z, z〉1/2. Let B = {z ∈ Cn : ‖z‖ < 1} be the open unit ball in Cn and B be the

closed unit ball. In the case of one complex variable B will be denoted by U. Also denote byRm = Rm
∪ {∞}

the one point compactification of Rm.
Let L(Cn) be the space of continuous linear operators from Cn into Cn with the standard norm

‖A‖ = sup {‖Az‖ : ‖z‖ = 1} , A ∈ L(Cn) (3)

and let I be the identity in L(Cn).
Denote byH(B) the class of holomorphic mappings f from B into Cn.
If f ∈ H(B), let D f (z) denotes the Fréchet derivative of f at z ∈ B given by

D f (z) =

(
∂ f j(z)
∂zk

)
1≤ j,k≤n

. (4)

A mapping f ∈ H(B) is said to be locally biholomorphic in B if D f (z) is nonsingular at each point of B.
Also, we say that f ∈ H(B) is normalized if f (0) = 0 and D f (0) = I.

The second Fréchet derivative of f ∈ H(B) at z ∈ B, denoted by D2 f (z) is a symmetric bilinear operator
from Cn

×Cn into Cn. Clearly, D2 f (z)(z, .) is the linear operator obtained by restricting D2 f (z) to {z} ×Cn and
has the matrix representation

D2 f (z)(z, .) =

 n∑
m=1

∂2 fk(z)
∂z j∂zk

zm


1≤ j,k≤n

. (5)

Definition 2.1. Let k ≥ 1. A mapping f ∈ H(B) is said to be k-quasiregular if∥∥∥D f (z)
∥∥∥n
≤ k|J f (z)|, z ∈ B (6)

where J f (z) = det D f (z) is the complex jacobian determinant of f at z ∈ B.
If f ∈ H(B) is k-quasiregular for some k ≥ 1, then it is called quasiregular.

It is known that quasiregular holomorphic mappings are locally biholomorphic.
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Definition 2.2. Let G and G′ be two damains in Rm. A homeomorphism f : G→ G′ is said to be k-quasiconformal
(k > 0) if it is differentiable a.e., absolutely continuous on lines (ACL) and∥∥∥D f (x)

∥∥∥n
≤ k|det D f (x)| a.e., x ∈ G (7)

where D f (x) is the real jacobian matrix of f .

Note that k-quasiregular biholomorphic mappings are k2-quasiconformal.
A mapping v ∈ H(B) is called Schwarz mapping if ‖v(z)‖ ≤ ‖z‖ for all z ∈ B. If f , 1 ∈ H(B) we say that f

is subordinate to 1, written f ≺ 1, if there exists a Schwarz mapping v such that f (z) = 1(v(z)), z ∈ B.

Definition 2.3. A mapping L : B × [0,∞)→ Cn is called a subordination chain if the following two conditions are
satisfied:

(i) L(0, t) = 0 and L(., t) ∈ H(B) for all t ≥ 0.

(ii) L(z, s) ≺ L(z, t) whenever 0 ≤ s < t < ∞.

If a subordination chain L(z, t) is such that L(., t) is biholomorphic on B for all t > 0 then, L(z, t) is called
a univalent subordination chain or a Loewner chain. In this case, there exists a biholomorphic Schwarz
mapping v = v(z, s, t) such that

L(z, s) = L(v(z, s, t), t), z ∈ B, 0 ≤ s < t < ∞. (8)

The Schwarz mapping v = v(z, s, t) is called the transition mapping associated with L(z, t).
A univalent subordination chain L(z, t) is said to be normalized if DL(0, t) = etI.
The following two families of holomorphic mappings on B play an important role in our investigation:

N =
{
h ∈ H(B) : h(0) = 0, <〈h(z), z〉 > 0, z ∈ B \ {0}

}
M = {h ∈ N , Dh(0) = I} .

The next proposition was proved in [18], (see also [15]). Particular cases of it were obtained in [12], [13],
[22] and [23].

Proposition 2.1. ([18]) Let c0(t) : [0,∞) → C be a measurable function which is bounded a.e. on each interval
[0,T](T > 0) with<c0(t) > 0 a.e on [0,∞) and ∫

∞

0
<c0(t)dt = ∞.

Also let h = h(z, t) : B × [0,∞)→ Cn be a mapping which satisfies the following conditions:

(i) h(., t) ∈ N , Dh(0, t) = c0(t)I for t ≥ 0;

(ii) h(z, .) is measurable on [0,∞) for z ∈ B.

Then, for each s ≥ 0 and z ∈ B, the initial value problem

∂v
∂t

= −h(v, t), a.e. t ≥ s, v(z, s, s) = z (9)

has a unique solution v(z, s, t) such that v(., s, t) is a univalent Schwarz mapping, v(z, s, .) is locally absolutely
continuous on [0,∞), locally uniform with respect to z ∈ B, Dv(0, s, t) = exp

(
−

∫ t

s c0(τ)dτ
)

I for t ≥ s ≥ 0 and

exp
(∫ t

0
c0(τ)dτ

)
‖v(z, s, t)‖

(1 − ‖v(z, s, t)‖)2 ≤ exp
(∫ s

0
c0(τ)dτ

)
‖z‖

(1 − ‖z‖)2 . (10)
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In addition, the limit

lim
t→∞

e
∫ t

0 c0(τ)dτv(z, s, t) = f (z, s) (11)

exists locally uniformly on B for each s ≥ 0. Moreover, f (z, t) is a univalent subordination chain such that{
exp

(
−

∫ t

0
c0(τ)dτ

)
f (z, t)

}
t≥0

is a normal family,

D f (0, t) = exp
(∫ t

0
c0(τ)dτ

)
I

and f (z, s) = f (v(z, s, t), t) for z ∈ B, 0 ≤ s ≤ t < ∞. Also, f (z, .) is locally absolutely continuous on [0,∞), locally
uniformly with respect to z ∈ B and satisfies

∂ f
∂t

(z, t) = D f (z, t)h(z, t) a.e. t ≥ 0, z ∈ B. (12)

Definition 2.4. ([15])

(i) A mapping h(z, t) which satisfies the assumptions (i) and (ii) of Proposition 2.1 is called generating vector field
(cf. [10] ).

(ii) The univalent subordination chain f (z, t) given by (11) is called the canonical solution of the Loewner differential
equation (12).

(iii) Let 1 : B × [0,∞) → Cn be a mapping such that 1(., t) ∈ H(B), 1(0, t) = 0 for t ≥ 0 and 1(z, .) is locally
absolutely continuous on [0,∞), locally uniformly with respect to z ∈ B. Assume that 1(z, t) satisfies the
Loewner differential equation (12). Then, the mapping 1(z, t) is called standard solution of the Loewner
differential equation (12).

A sufficient condition for a standard solution 1(z, t) to be a canonical solution of the Loewner differential
equation (12) is provided in the next theorem.

Theorem 2.1. ([15]) Let c0(t) : [0,∞) → C be a measurable function which is bounded a.e. on each interval
[0,T](T > 0), <c0(t) > 0 a.e. [0,∞) and ∫

∞

0
<c0(t)dt = ∞.

Let h(z, t) be a generating vector field such that Dh(0, t) = c0(t)I, t ≥ 0. Then, the Loewner differential equation (12)
has a unique standard solution 1(z, t) such that

D1(0, t) = exp
(∫ t

0
c0(τ)dτ

)
I

and the family {
exp

(
−

∫ t

0
c0(τ)dτ

)
1(z, t)

}
t≥0

is a normal family.

In the following result is given a sufficient condition for a univalent subordination chain to be extended
to a quasiconformal homeomorphism of R2n onto itself. This result was obtained in [[15], Theorem2] (see
also [7]).
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Theorem 2.2. ([15]) Let a : [0,∞))→ C be an absolutely continuous function such that a(0) = 1, <(a′(t)/a(t)) > 0
a.e., limt→∞ a(t) = ∞ and a′(t)/a(t) is bounded a.e. on each interval [0,T](T > 0). Also, let h = h(z, t) : B× [0,∞)→
Cn be a mapping such that Dh(0, t) = (a′(t)/a(t))I a.e. on [0,∞) and h(z, .) is a measurable on [0,∞) for z ∈ B.

Let f (z, t) = a(t)z + . . . be a univalent subordination chain such that f (z, .) is locally absolutely continuous on
[0,∞), locally uniformly with respect to z ∈ B and f (z, t) satisfies the differential equation

∂ f
∂t

(z, t) = D f (z, t)h(z, t) a.e. t ∈ [0,∞), z ∈ B.

Suppose that the following conditions hold:

(i) There exist some constants M > 0 and α ∈ [0, 1) such that∥∥∥D f (z, t)
∥∥∥ ≤ M|a(t)|

(1 − ‖z‖)α
, z ∈ B, t ∈ [0,∞);

(ii) There exists a constant c1 > 0 such that

<〈h(z, t), z〉 ≥ c1 ‖z‖2 , z ∈ B, a.e. t ∈ [0,∞);

(iii) There exists a constant c2 > 0 such that

‖h(z, t)‖ ≤ c2, z ∈ B, a.e. t ∈ [0,∞);

(iv) There exists a constant k > 0 such that f (., t) is k-quasiregular for each t ∈ [0,∞).

Then, there exists a quasiconformal homeomorphism F of R2n onto itself such that F |B = f (., 0).

The asymptotical case of Theorem 2.2 was obtained in [[15], Theorem 3](see also [7]).

Theorem 2.3. ([15]) Let c0(t) : [0,T]→ C be a measurable function such that it is bounded and<c0(t) ≥ ε > 0 a.e.
on [0,T](T > 0). Also , let h = h(z, t) : B × [0,T] → Cn be a mapping such that Dh(0, t) = c0(t)I for t ∈ [0,T] and
h(z, .) is measurable on [0,T] for z ∈ B.

Let f (z, t) = a(t)z + . . . be a mapping such that f (., t) ∈ H(B), f (0, t) = 0, D f (0, t) = exp
(∫ t

0 c0(τ)dτ
)

I and
f (z, .) is locally absolutely continuous on [0,T], locally uniformly with respect to z ∈ B. Suppose that h(z, t) satisfies
the differential equation

∂ f
∂t

(z, t) = D f (z, t)h(z, t) a.e. t ∈ [0,T], z ∈ B.

Assume that f (., 0) is continuous and injective on B. Also, assume that the following conditions hold:

(i) There exist some constants M > 0 and α ∈ [0, 1) such that∥∥∥D f (z, t)
∥∥∥ ≤ M|a(t)|

(1 − ‖z‖)α
, z ∈ B, t ∈ [0,T];

(ii) There exists a constant c1 > 0 such that

<〈h(z, t), z〉 ≥ c1 ‖z‖2 , z ∈ B, a.e. t ∈ [0,T];

(iii) There exists a constant c2 > 0 such that

‖h(z, t)‖ ≤ c2, z ∈ B, a.e. t ∈ [0,T];

(iv) There exists a constant k > 0 such that f (., t) is k-quasiregular for each t ∈ [0,T].

Then, there exists a constant τ ∈ (0,T) such that f (., t) is continuous and injective on B for t ∈ [0, τ] and there
exists a quasiconformal homeomorphism F of R2n onto itself such that F |B = f (., 0).
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3. Main Results

The main object of this section is to obtain a general sufficient condition for a normalized quasiregular
mapping on B to be extended to a quasiconformal homeomorphism of R2n onto itself. The asymptotical
case will be also considered. These results generalize the results obtained in [15], [8], [7] and [24].

Definition 3.1. Let F = F(u, v) : B × Cn
→ Cn be a mapping of class C1 with F(0, 0) = 0 and let γ > 0. Also let

a = a(t) be an absolutely continuous complex valued function on [0,∞) such that a(0) = 1. We say that the conditions
(Pa) are satisfied if the following assumptions hold:

(i) F(e−γtz, a(t)z) ∈ H(B) for all t ≥ 0;

(ii) For each t ∈ [0,∞) there exists a complex number a1(t) ≥ 0, with a1(0) = 1 such that

e−γtDuF(0, 0) + a(t)DvF(0, 0) = a1(t)I (13)

where DuF(u, v) (DvF(u, v)) is the n × n matrix for which the (i, j) entry is given by

∂Fi

∂u j
(u, v)

(
∂Fi

∂v j
(u, v)

)
; (14)

(iii) DvF(u, v) is invertible for all (u, v) ∈ B × Cn.

In the next theorem we give a sufficient condition for the univalence of the mapping F(z, z), where
F(u, v) satisfies (Pa) conditions. Our result generalizes the result obtained in [15] for the function F(u, v) =
f (u) + G(u)(v − u), where G(u) is a nonsingular n × n matrix, holomorphic as a function of u ∈ B such that
G(0) = I, and γ = 1. Moreover, when γ = 1 and a(t) = et the next result is an improvement of Theorem 1 in
[8].

Theorem 3.1. Let F = F(u, v) : B × Cn
→ Cn and let a(t) : [0,∞) → C be functions that satisfy (Pa) conditions.

Suppose that α(t) = a′(t)/a(t) is bounded a.e. on each interval [0,T] (T > 0) and lim
t→∞
|a(t)| = ∞. Also, let γ > 0. If∥∥∥∥∥ 2γ

α(t) + γ
H(0, t) −

α(t) − γ
α(t) + γ

I
∥∥∥∥∥ < 1 a.e. t > 0 (15)

and

max
‖z‖=1

∥∥∥∥∥ 2γ
α(t) + γ

H(z, t) −
α(t) − γ
α(t) + γ

I
∥∥∥∥∥ ≤ 1 a.e. t > 0 (16)

where

H(z, t) =
e−γt

a(t)

[
DvF(e−γtz, a(t)z)

]−1
DuF(e−γtz, a(t)z), z ∈ B, t > 0 (17)

then, F(z, z) is a univalent mapping on B.

Proof. Consider the mapping f : B × [0,∞)→ Cn given by

f (z, t) = F(e−γtz, a(t)z). (18)

We will prove that the mapping f (z, t) is a standard solution of a Loewner differential equation. Since
the conditions (Pa) are satisfied it follows that f (., t) ∈ H(B), f (0, t) = F(0, 0) = 0 and a1(t)I = D f (0, t), where
a1(t) : [0,∞) → C, with a1(0) = 1. Due to the fact that the mapping F = F(u, v) is of class C1 on B × Cn we
obtain that f (z, .) is locally absolutely continuous on [0,∞), locally uniformly with respect to z ∈ B.

From the absolute continuity of the function a(t) on [0,∞) it follows that a(t) is a.e. differentiable and
thus, there exists a set N ⊂ [0,∞) of measure zero such that a(t) is differentiable on [0,∞) \N.
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Making use of (18) we obtain that

D f (z, t) = e−γtDuF(e−γtz, a(t)z) + a(t)DvF(e−γtz, a(t)z)

= a(t)DvF(e−γtz, a(t)z)
α(t) + γ

2γ
[I − E(z, t)] (19)

where for each t ∈ (0,∞) \N and z ∈ B, E(z, t) is a linear operator defined by

E(z, t) =
α(t) − γ
α(t) + γ

I −
2γ

α(t) + γ
H(z, t). (20)

In the sequence we will show that I − E(z, t) is an invertible operator for each t ∈ (0,∞) \N. It is easy to
see that E(., t) : B→ L(Cn) is holomorphic for t ∈ (0,∞) \N . From (20) and (15) we deduce that

‖E(0, t)‖ =

∥∥∥∥∥ 2γ
α(t) + γ

H(0, t) −
α(t) − γ
α(t) + γ

I
∥∥∥∥∥ < 1, t ∈ (0,∞) \N. (21)

Moreover, in view of the weak maximum modulus theorem (see [17]), we have

‖E(z, t)‖ ≤ max
‖w‖=1

∥∥∥∥∥ 2γ
α(t) + γ

H(w, t) −
α(t) − γ
α(t) + γ

I
∥∥∥∥∥ ≤ 1, t ∈ (0,∞) \N, z ∈ B. (22)

Hence, in virtue of (20) and (21), we obtain that ‖E(z, t)‖ < 1 for all z ∈ B and t ∈ (0,∞) \ N and this
proves that I − E(z, t) is invertible.

By using elementary computations, we have

∂ f
∂t

(z, t) =
[
−γe−γtDuF(e−γtz, a(t)z) + a′(t)DvF(e−γtz, a(t)z)

]
(z)

= a(t)DvF(e−γtz, a(t)z)
α(t) + γ

2
[I + E(z, t)] (z). (23)

It follows that f (z, t) satisfies the Loewner differential equation

∂ f
∂t

(z, t) = D f (z, t)h(z, t), t ∈ (0,∞) \N, z ∈ B,

where

h(z, t) =

{
γ [I − E(z, t)]−1 [I + E(z, t)] (z), t ∈ (0,∞) \N, z ∈ B
cz, t ∈ N, z ∈ B (24)

with c a positive constant.
The mapping h(z, t) defined by (24) is measurable and holomorphic, with h(0, t) = 0 and

Dh(0, t) = γ [I − E(0, t)]−1 [I + E(0, t)] =
a′1(t)
a1(t)

I = c0(t)I (25)

for each t ∈ (0,∞) \N. Moreover,∥∥∥∥∥h(z, t)
γ
− z

∥∥∥∥∥ =

∥∥∥∥∥∥E(z, t)
(

h(z, t)
γ

+ z
)∥∥∥∥∥∥ ≤ ‖E(z, t)‖

∥∥∥∥∥h(z, t)
γ

+ z
∥∥∥∥∥ ≤ ∥∥∥∥∥h(z, t)

γ
+ z

∥∥∥∥∥
and thus,<〈h(z, t), z〉 ≥ 0. It follows that the mapping h(z, t) is a generating vector field.
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In the sequence, we will prove that the function c0(t) = a′1(t)/a1(t) satisfies the conditions of Theorem 2.1.
First, from (25) we get that

E(0, t)
(
γ +

a′1(t)
a1(t)

)
=

(
a′1(t)
a1(t)

− γ

)
I

and thus, ∣∣∣∣∣∣γ +
a′1(t)
a1(t)

∣∣∣∣∣∣ >
∣∣∣∣∣∣a′1(t)
a1(t)

− γ

∣∣∣∣∣∣
which shows that<

a′1(t)
a1(t)

> 0 for t ∈ (0,∞) \N.

We also have that ∫
∞

0
<c0(t)dt = lim

t→∞
<

∫ t

0

a′1(s)
a1(s)

ds = lim
t→∞

ln |a1(t)|.

Since |a1(t)| ≥ |a(t)|
∣∣∣‖DvF(0, 0)‖ − γ ‖DuF(0, 0)‖

∣∣∣ and lim
t→∞
|a(t)| = ∞ it follows that lim

t→∞
|a1(t)| = ∞ and therefore∫

∞

0
<c0(t)dt = ∞.

It remains to prove that the function c0(t) is bounded a.e. on [0,T], T > 0. Differentiating with respect
to t the equality

a1(t)I = e−γtDuF(0, 0) + a(t)DvF(0, 0)

we obtain
a′1(t) = −γe−γtDuF(0, 0) + a′(t)DvF(0, 0).

Dividing the last equality by a1(t), we have∣∣∣∣∣∣a′1(t)
a1(t)

∣∣∣∣∣∣ ≤ γe−γt

|a1(t)|
‖DuF(0, 0)‖ +

∣∣∣∣∣a′(t)a(t)

∣∣∣∣∣ ∣∣∣∣∣ a(t)
a1(t)

∣∣∣∣∣ ‖DvF(0, 0)‖ .

Since the function a1(t) is continuous on [0,T] and does not vanish on [0,∞) we obtain that
1
|a1(t)|

is bounded

on [0,T]. From the hypothesis, we have that the mapping F(u, v) is of class C1 on B × [0,∞) and a′(t)/a(t) is
bounded a. e. on [0,T]. Therefore, it follows that the function c0(t) is bounded a. e. on [0,T].

In conclusion, the mapping f (z, t) is a standard solution of the Loewner differential equation (12).
Making use of Theorem 2.1, we obtain that the mapping f (z, t) is also a canonical solution and therefore
f (z, t) is a univalent subordination chain. In particular F(z, z) = f (z, 0) is univalent.

The next result provides a general quasiconformal extension of a normalized holomorphic mapping on
B to R2n. Our result generalizes the result obtained in [15] for the function F(u, v) = f (u) + G(u)(v − u),
where G(u) is a nonsingular n × n matrix, holomorphic as a function of u ∈ B such that G(0) = I, and γ = 1.
Moreover, when γ = 1 and a(t) = et the next result is an improvement of Theorem 4.1 in [7].

Theorem 3.2. Let q ∈ (0, 1). Let F = F(u, v) : B×Cn
→ Cn, γ > 0, and a(t) : [0,∞)→ C be such that the conditions

(Pa) given in Definition 3.1 are satisfied. Assume that

(i) lim
t→∞
|a(t)| = ∞ and α(t) =

a′(t)
a(t)

is bounded a. e. on each interval [0,T] (T > 0);

(ii)

max
‖z‖=1

∥∥∥∥∥ 2γ
α(t) + γ

H(z, t) −
α(t) − γ
α(t) + γ

I
∥∥∥∥∥ ≤ q < 1, a. e. t > 0 (26)

where H(z, t) is defined by (17);
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(iii) There exist some constants M > 0, k ≥ 1 and α ∈ [0, 1) such that

‖DvF(u, v)‖ ≤
M

(1 − ‖u‖)α
, u ∈ B, v ∈ Cn (27)

and

‖DvF(u, v)‖ ≤ k |det DvF(u, v)| , u ∈ B, v ∈ Cn. (28)

Then, the mapping f : B→ Cn given by f (z) = F(z, z) extends to a quasiconformal homeomorphism ofR2n onto itself.

Proof. It is easy to see that the inequality (26) imply the inequalities (15) and (16). As in the proof of Theorem
3.1 we obtain that the mapping f (z, t) = F(e−γtz, a(t)z) is a univalent subordination chain which satisfies the
Loewner differential equation (12), where E(z, t) and h(z, t) are defined by (19) and (23) respectively. Also,
in the proof of Theorem 3.1 we showed that the function

a1(t) = e−γtDuF(0, 0) + a(t)DvF(0, 0)

satisfies all the required conditions of Theorem 2.2.
Our result will follow from Theorem 2.2 if we prove that the conditions (i)-(iii) of the theorem are

satisfied.
In view of (19), (27) and (28) we have∥∥∥D f (z, t)

∥∥∥ ≤ |a1(t)|
∥∥∥[I − E(0, t)]−1

∥∥∥ ∥∥∥[DvF(0, 0)]−1
∥∥∥ ∥∥∥DvF(e−γtz, a(t)z)

∥∥∥ ‖I − E(z, t)‖

≤
1 + q
1 − q

|a1(t)|
M

(1 − ‖e−γtz‖)α
∥∥∥[DvF(0, 0)]−1

∥∥∥ ≤ M∗|a1(t)|
(1 − ‖z‖)α

, a. e. t > 0, z ∈ B.

Since D f (z, t) is continuous with respect to the variable t, the last estimate holds true for all t ≥ 0. Thus,
the proof of (i) in Theorem 2.2 is completed.

The mapping E(z, t) is holomorphic in the variable z with E(0, t) = 0 and ‖E(z, t)‖ < 1. Then, in view of

Remark 2.3 from [6] it follows that the mapping h(z, t) defined by (24) with c =
1 − q
1 + q

satisfies the conditions

(ii) and (iii) of Theorem 2.2.
In the sequence we will prove that the mapping f (., t) is k∗-quasiregular, where k∗ is a positive constant.

In view of (19) and (28) we have∥∥∥D f (z, t)
∥∥∥n
≤ |a(t)|n

∣∣∣∣∣α(t) + γ

2γ

∣∣∣∣∣n ‖I − E(z, t)‖n
∥∥∥DvF(e−γtz, a(t)z)

∥∥∥n

≤ |a(t)|n
∣∣∣∣∣α(t) + γ

2γ

∣∣∣∣∣n ‖I − E(z, t)‖n k
∣∣∣det DvF(e−γtz, a(t)z)

∣∣∣
= k|det D f (z, t)|

‖I − E(z, t)‖n

|det[I − E(z, t)]|

≤ k
(

1 + q
1 − q

)n−1

|det D f (z, t)| = k∗|det D f (z, t)|, a. e. t ≥ 0, z ∈ B.

The last inequality was obtained by using the following estimation from the linear operator theory.
If A : Cn

→ Cn is a linear operator such that ‖A‖ ≤ q < 1 then,

‖A‖n

|det A|
≤

(
1 + q
1 − q

)n−1

.
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Since D f (z, t) is continuous with respect to the variable t, the estimate (iv) of Theorem 2.2 holds true for

all t ≥ 0 with k∗ = k
(

1 + q
1 − q

)n−1

.

From the above arguments we can conclude that the mapping f (z, t) satisfies all the assumptions of
Theorem 2.2 and thus f (z, 0) = F(z, z) extends to a quasiconformal homeomorphism of R2n onto itself, as
desired.

Making use of Theorem 2.3, we obtain the following asymptotical case of Theorem 3.2. This is a
generalization of the result obtained in [15] for the function F(u, v) = f (u) + G(u)(v − u), where G(u) is a
nonsingular n× n matrix, holomorphic as a function of u ∈ B such that G(0) = I, andγ = 1. Moreover, when
γ = 1 and a(t) = et the next result is an improvement of Theorem 5.1 in [7].

Theorem 3.3. Let F = F(u, v) : B × Cn
→ Cn, γ > 0 and a(t) : [0,T]→ C be such that the conditions (Pa) given in

Definition 3.1 are satisfied. Assume that the mapping F(z, z) is continuous and injective on B. Suppose that

(i) α(t) =
a′(t)
a(t)

is bounded a. e. on [0,T];

(ii) max
‖z‖=1

∥∥∥∥∥ 2γ
α(t) + γ

H(z, t) −
α(t) − γ
α(t) + γ

I
∥∥∥∥∥ ≤ q < 1, a. e. 0 < t ≤ T, z ∈ B \ {0}, where H(z, t), t ∈ [0,T], z ∈ B is

defined by (17).

Moreover, suppose that there exist some constants M > 0, k > 0 and α ∈ [0, 1) such that the conditions (27) and
(28) hold.

Then, the mapping F(z, z) extends to a quasiconformal homeomorphism of R2n onto itself.

Proof. By the same reasoning as in the proof of Theorem 3.2 and by making use of Theorem 2.3, the result
in our theorem follows.

4. Applications

As aplications of Theorems 3.1, 3.2 and 3.3, we obtain the next results which are direct generalizations
of Theorem 4 and Theorem 8 in [15].

Theorem 4.1. Let q ∈ (0, 1] and a : [0,∞)→ C be an absolutely continuous function such that a(0) = 1, <[a′(t)/a(t)] >
0 a.e. t > 0, lim

t→∞
|a(t)| = ∞ and a′(t)/a(t) is bounded a.e. on each interval [0,T] (T > 0). Let G(z) be a nonsingular

n× n matrix, holomorphic as a function of z ∈ B normalized by G(0) = I and let γ > 0. If f : B→ Cn is a normalized
holomorphic mapping which satisfies:

max
‖z‖=e−γt

∥∥∥∥∥ 2γ
a′(t) + γa(t)

{
‖z‖ [(G(z))−1D f (z) − I] + (a(t) − ‖z‖)(G(z))−1D2G(z)(z, ·)

}
−

a′(t) − γa(t)
a′(t) + γa(t)

I
∥∥∥∥∥ ≤ q, a.e. t > 0,

then the followings are true:

(i) If q = 1, the mapping f is biholomorphic on B;

(ii) If q < 1 and if there exist some constants k ≥ 1 and α ∈ (0, 1) such that ‖G(z)‖ = O ((1 − ‖z‖)−α) and
‖G(z)‖n ≤ k |detG(z)|, z ∈ B, hold then f is quasiregular on B and extends to a quasiconformal homeomorphism
of R2n onto itself.



P. Curt, D. Răducanu / Filomat 29:8 (2015), 1879–1892 1889

Proof. The results follow from Theorems 3.1 and 3.2 with

F(u, v) = f (u) + G(u)(v − u), u = e−γtz, v = a(t)z.

Theorem 4.2. Let q ∈ (0, 1) and a : [0,T]→ C be an absolutely continuous function such that a(0) = 1, <[a′(t)/a(t)] ≥
ε > 0 and a′(t)/a(t) is bounded a.e. on [0,T] (T > 0). Let G(z) be a nonsingular n × n matrix, holomorphic as a
function of z ∈ B normalized by G(0) = I and let γ > 0. If f : B→ Cn is a normalized holomorphic mapping which
is continuous and injective on B and satisfies:

max
‖z‖=e−γt

∥∥∥∥∥ 2γ
a′(t) + γa(t)

{
‖z‖ [(G(z))−1D f (z) − I] + (a(t) − ‖z‖)(G(z))−1D2G(z)(z, ·)

}
−

a′(t) − γa(t)
a′(t) + γa(t)

I
∥∥∥∥∥ ≤ q, a.e. 0 < t ≤ T,

then the following statement is true:
If there exist some constants k ≥ 1 and α ∈ (0, 1) such that ‖G(z)‖ = O ((1 − ‖z‖)−α) and ‖G(z)‖n ≤ k |detG(z)| , z ∈

B, hold then f is quasiregular on B and extends to a quasiconformal homeomorphism of R2n onto itself.

Proof. The result follows from Theorem 3.3 with

F(u, v) = f (u) + G(u)(v − u), u = e−γtz, v = a(t)z.

Note that for γ = 1 Theorem 4.1 reduces to Theorem 4 in [15] and Theorem 4.2 reduces to Theorem 8 in
[15].

In the sequence, by using Theorems 3.1, 3.2 and 3.3, we obtain the next results which are general
n-dimensional versions of the well-known univalence criterion due to Lewandowski [19].

Theorem 4.3. Let q ∈ (0, 1] and let f : B → Cn be a normalized holomorphic mapping. Let a : [0,∞) → C be an
absolutely continuous function such that a(0) = 1, <[a′(t)/a(t)] > 0 a.e. t > 0, lim

t→∞
|a(t)| = ∞ and a′(t)/a(t) is

bounded a.e. on each interval [0,T] (T > 0). Suppose that p is a complex valued holomorphic mapping on B with
p(0) = 1 and Fréchet derivative denoted by p′(z). Let γ > 0. If

max
‖z‖=e−γt

∥∥∥∥∥∥ 2γ
a′(t) + γa(t)

{
‖z‖

1 − p(z)
1 + p(z)

I + (a(t) − ‖z‖)
[

p′(z)(z)
1 + p(z)

I + (D f (z))−1D2 f (z)(z, .)
]}

−
a′(t) − γa(t)
a′(t) + γa(t)

I
∥∥∥∥∥ ≤ q, a. e. t > 0, z ∈ B (29)

then, the followings are true:

(i) If q = 1, the mapping f is biholomorphic on B;

(ii) If q < 1 and if there exist some constants M > 0, k ≥ 1 and α ∈ [0, 1) such that∥∥∥D f (z)
∥∥∥ ≤ 2
|p(z) + 1|

M
(1 − ‖z‖)α

, z ∈ B (30)

and ∥∥∥D f (z)
∥∥∥n
≤

22n

|p(z) + 1|2n k
∣∣∣det

(
D f (z)

)∣∣∣ , z ∈ B (31)
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then, the mapping f is quasiregular on B and extends to a quasiconformal homeomorphism of R2n onto itself.

Proof. The result follows from Theorems 3.1 and 3.2 with

F(u, v) = f (u) +
p(u) + 1

2
D f (u)(v − u), u = e−γtz, v = a(t)z.

If we consider γ = 1 in Theorem 4.3, we obtain the following result.

Theorem 4.4. Let q ∈ (0, 1] and let f : B → Cn be a normalized holomorphic mapping. Let a : [0,∞) → C be an
absolutely continuous function such that a(0) = 1, <[a′(t)/a(t)] > 0 a.e. t > 0, lim

t→∞
|a(t)| = ∞ and a′(t)/a(t) is

bounded a.e. on each interval [0,T] (T > 0). Also, let p be a complex valued holomorphic mapping on B with p(0) = 1
and Fréchet derivative denoted by p′(z). Assume that:

max
‖z‖=e−t

∥∥∥∥∥∥ 2
a′(t) + a(t)

{
‖z‖

1 − p(z)
1 + p(z)

I + (a(t) − ‖z‖)
[

p′(z)(z)
1 + p(z)

I + (D f (z))−1D2 f (z)(z, .)
]}

−
a′(t) − a(t)
a′(t) + a(t)

I
∥∥∥∥∥ ≤ q

a. e. t > 0, z ∈ B. Then, the followings are true:

(i) If q = 1, the mapping f is biholomorphic on B;

(ii) If q < 1 and if there exist some constants M > 0, k ≥ 1 and α ∈ [0, 1) such that (30) and (31) hold then, f is
quasiregular on B and extends to a quasiconformal homeomorphism of R2n onto itself.

If we take a(t) = e−t in Theorem 4.4, we obtain the next result which is the n-dimensional version of the
well-known univalence criterion due to Lewandowski [19] and its quasiconformal extension.

Corollary 4.1. Let q ∈ (0, 1] and let f : B → Cn be a normalized holomorphic mapping. Let p be a complex valued
holomorphic mapping on B with p(0) = 1. Assume that:∥∥∥∥∥∥‖z‖2 1 − p(z)

1 + p(z)
I + (1 − ‖z‖2)

[
p′(z)(z)
1 + p(z)

I + (D f (z))−1D2 f (z)(z, .)
]∥∥∥∥∥∥ ≤ q

a. e. t > 0, z ∈ B. Then, the followings are true:

(i) If q = 1, the mapping f is biholomorphic on B;

(ii) If q < 1 and if there exist some constants M > 0, k ≥ 1 and α ∈ [0, 1) such that (30) and (31) hold then, f is
quasiregular on B and extends to a quasiconformal homeomorphism of R2n onto itself.

Various generalizations of the Lewandowski’s n-dimensional univalence criterion, given in Corollary
4.1, can be obtained by specializing the function a(t) in Theorem 4.4.

If we consider a(t) = e(δ−1)t, δ ∈ C and<δ > 1 then, we have the next result.

Corollary 4.2. Let q ∈ (0, 1] and let δ ∈ C with<δ > 1. Let f : B→ Cn be a normalized holomorphic mapping and
let p be a complex valued holomorphic mapping on B with p(0) = 1. Assume that:∥∥∥∥∥∥2

δ

{
‖z‖δ

1 − p(z)
1 + p(z)

I + (1 − ‖z‖δ)
[

p′(z)(z)
1 + p(z)

I + (D f (z))−1D2 f (z)(z, .)
]}

+
2 − δ
δ

I

∥∥∥∥∥∥ ≤ q

a. e. t > 0, z ∈ B. Then, the followings are true:

(i) If q = 1, the mapping f is biholomorphic on B;
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(ii) If q < 1 and if there exist some constants M > 0, k ≥ 1 and α ∈ [0, 1) such that (30) and (31) hold then, f is
quasiregular on B and extends to a quasiconformal homeomorphism of R2n onto itself.

Note that for δ = 2, Corollary 4.2 reduces to Corollary 4.1.
Another particular case of Theorem 4.4 is obtained for

a(t) =
et + ce−t

1 + c
, |c| ≤ 1, c , −1.

Corollary 4.3. Let q ∈ (0, 1] and let c ∈ C with |c| ≤ 1, c , −1. Let f : B → Cn be a normalized holomorphic
mapping and let p be a complex valued holomorphic mapping on B with p(0) = 1. Assume that:∥∥∥∥∥∥‖z‖2 1 + 2c − p(z)

1 + p(z)
I + (1 − ‖z‖2)

[
p′(z)(z)
1 + p(z)

I + (D f (z))−1D2 f (z)(z, .)
]∥∥∥∥∥∥ ≤ q

a. e. t > 0, z ∈ B. Then, the followings are true:

(i) If q = 1, the mapping f is biholomorphic on B;

(ii) If q < 1 and if there exist some constants M > 0, k ≥ 1 and α ∈ [0, 1) such that (30) and (31) hold then, f is
quasiregular on B and extends to a quasiconformal homeomorphism of R2n onto itself.

Note that for c = 0, Corollary 4.3 reduces to Corollary 4.1.
Another generalization of the Lewandowski’s n-dimensional univalence criterion follows from Theorem

4.4 with

a(t) =
et + be−t

b + e−2t , |b − 1| ≤ 2, 1 ≤ |2b + 1|.

Corollary 4.4. Let q ∈ (0, 1] and let b ∈ Cwith |b−1| ≤ 2, 1 ≤ |2b+1|. Let f : B→ Cn be a normalized holomorphic
mapping and let p be a complex valued holomorphic mapping on B with p(0) = 1. Assume that:∥∥∥∥∥∥‖z‖2 1 − p(z)

1 + p(z)
I +

1 − ‖z‖4

b + ‖z‖2

[
p′(z)(z)
1 + p(z)

I + (D f (z))−1D2 f (z)(z, .)
]

+
(b2
− 1) ‖z‖2

(b + ‖z‖2)2

∥∥∥∥∥∥ ≤ q
b + 2 ‖z‖2 + b ‖z‖4

(b + ‖z‖2)2

a. e. t > 0, z ∈ B. Then, the followings are true:

(i) If q = 1, the mapping f is biholomorphic on B;

(ii) If q < 1 and if there exist some constants M > 0, k ≥ 1 and α ∈ [0, 1) such that (30) and (31) hold then, f is
quasiregular on B and extends to a quasiconformal homeomorphism of R2n onto itself.

Note that for b = 1, Corollary 4.4 reduces to Corollary 4.1.
Finally we give the asymptotical case of Theorem 4.3.

Theorem 4.5. Let q ∈ (0, 1) and let f : B → Cn be a normalized holomorphic mapping which is continuous and
injective on B. Let a : [0,T]→ C be an absolutely continuous function such that a(0) = 1, <[a′(t)/a(t)] ≤ ε > 0 a.e.
on [0,T] and a′(t)/a(t) is bounded a.e. on [0,T]. Suppose that p is a complex valued holomorphic mapping on B with
p(0) = 1. Let γ > 0. Assume that:

max
‖z‖=e−γt

∥∥∥∥∥∥ 2γ
a′(t) + γa(t)

{
‖z‖

1 − p(z)
1 + p(z)

I + (a(t) − ‖z‖)
[

p′(z)(z)
1 + p(z)

I + (D f (z))−1D2 f (z)(z, .)
]}

−
a′(t) − γa(t)
a′(t) + γa(t)

I
∥∥∥∥∥ ≤ q < 1, a. e. 0 < t ≤ T, z ∈ B.

If there exist some constants M > 0, k ≥ 1 and α ∈ [0, 1) such that the conditions(30) and (31) are satisfied then, the
mapping f is quasiregular on B and extends to a quasiconformal homeomorphism of R2n onto itself.
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Proof. The result follows from Theorem 3.3 with

F(u, v) = f (u) +
p(u) + 1

2
D f (u)(v − u), u = e−γtz, v = a(t)z.
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