The Zero Divisor Graphs of Finite Rings of Cubefree Order

Adel Tadayyonfar, Ali Reza Ashrafi
Department of Pure Mathematics, Faculty of Mathematical Sciences, University of Kashan, Kashan 87317-51167, I. R. Iran

Abstract

The aim of this paper is to classify the zero divisor graph of finite rings of cubefree order. It is proved that all zero divisor graphs can be interpreted as the extended join over well-known graphs.

1. Introduction

The notion of a zero divisor graph was introduced by Beck in [3] when he studied the coloring problem of a commutative ring. In order to define this graph, we assume that R is a ring and $G(R)$ is a simple graph such that $V(G(R))=R$ and two distinct vertices x and y are adjacent provided that $x y=0$. It is easy to prove that $G(R)$ is a connected graph of diameter at most 2. Anderson and Livingston [1], for simplification of the concept of Beck's zero divisor graph considered the set of all non-zero zero divisors as the vertex set. The edges can be defined in a similar way as Beck's seminal paper. This studied the interplay between the ring and graph theoretical properties of this structure. Throughout this paper we use the Anderson-Livingston's definition of zero devisor graph and so all rings considered here is not integral. We encourage to the interested readers to consult [5] for more information on this topic.

In $[2,6]$, a classification of finite rings of order p^{2} and p^{3} are presented. It is not so difficult to continue the lines of [6] for a classification of finite ring of square free orders. The aim of this paper is determining the zero divisor graphs of finite rings of order p^{2}, p is prime, and the zero divisor graphs of finite rings of cubefree orders.

We denote by K_{n} and ϕ_{n} the complete and empty graphs on n vertices, respectively. The join $G+H$ of graphs G and H with disjoint vertex sets $V(G)$ and $V(H)$ and edge sets $E(G)$ and $E(H)$ is the graph union $G \cup H$ together with all the edges joining $V(G)$ and $V(H)$. The complete bipartite and complete tripartite graphs $K_{m, n}$ and $K_{m, n, k}$ are defined by $K_{m, n}=\phi_{m}+\phi_{n}$ and $K_{m, n, k}=K_{m, n}+\phi_{k}$. Suppose $G_{1}, G_{2}, \cdots, G_{k}$ are graphs with disjoint vertices. The sequential join $G_{1}+G_{2}+\cdots+G_{k}$ is defined as the graph union $\left(G_{1}+G_{2}\right) \cup\left(G_{2}+G_{3}\right) \cup \cdots \cup\left(G_{n-1}+G_{n}\right)$.

The ring of integers modulo n is denoted by Z_{n} and $C_{n}(0)$ is another ring with the same elements and addition operation, but with the trivial multiplication. The opposite of a ring $(R,+, \cdot)$ is the ring $(R,+, *)$, whose multiplication " *" is defined by $a * b=b a$. If Γ is a graph and $\Pi=\left\{P_{1}, P_{2}, \cdots, P_{r}\right\}$ is a partition of $V(\Gamma)$ then the quotient graph $\frac{\Gamma}{\Pi}$ is defined as follows:

[^0]$$
V\left(\frac{\Gamma}{\Pi}\right)=\Pi \text { and } E\left(\frac{\Gamma}{\Pi}\right)=\left\{P_{i} P_{j} \mid \exists v \in P_{i} \exists v^{\star} \in P_{j} \text { s.t. } v v^{\star} \in E(\Gamma)\right\} .
$$

Suppose G is a labeled graph with $V(G)=\left\{x_{1}, \ldots, x_{n}\right\}$ and $\Gamma_{1}, \cdots, \Gamma_{n}$ are arbitrary graphs with disjoint vertex sets. An extended join of $\Gamma_{1}, \cdots, \Gamma_{n}$ by G is defined as follows:

$$
\left(\biguplus_{i=1}^{n} \Gamma_{i}\right)_{G}=\bigcup_{x_{r} x_{s} \in E(G)} \Gamma_{r}+\Gamma_{s}
$$

It is clear that when $G=K_{2}$ the extended joint of graphs Γ_{1} and Γ_{2} by G is the ordinary join of graphs. If we use the $(n+1)$-vertex path P_{n} as G then the extended join of graphs $\Gamma_{1}, \cdots, \Gamma_{n+1}$ by P_{n} is called the sequential join of these graphs. The corona product of two graphs G and H is the disjoint union of one copy of G and $|V(G)|$ copies of H in such a way that each vertex of the copy of G is connected to all vertices of its corresponding copy of H [7]. Finally, for a subset A of a ring R, A^{\star} denotes the set of nonzero elements of A. For concepts and notations not presented here, we refer to [8, 10].

2. Main Results

The aim of this section is to present a complete classification of graphs, which can be represented as zero divisor graphs of finite rings of cubefree order. For the sake of completeness, we mention here [6, Theorem 2], [6, Corollary 3] and a characterization theorem on finite rings [9] which are crucial throughout this paper.

Theorem 1. (See [6, Theorem 2]) For any prime p there are, up to isomorphism, exactly 11 rings of order p^{2} with the following presentations:

1. $A=\left\langle a \mid p^{2} a=0, a^{2}=a\right\rangle$,
2. $B=\left\langle a \mid p^{2} a=0, a^{2}=p a\right\rangle$,
3. $C=\left\langle a \mid p^{2} a=0, a^{2}=0\right\rangle$,
4. $D=\left\langle a, b \mid p a=p b=0, a^{2}=a, b^{2}=b, a b=b a=0\right\rangle$,
5. $E=\left\langle a, b \mid p a=p b=0, a^{2}=a, b^{2}=b, a b=a, b a=b\right\rangle$,
6. $F=\left\langle a, b \mid p a=p b=0, a^{2}=a, b^{2}=b, a b=b, b a=a\right\rangle$,
7. $G=\left\langle a, b \mid p a=p b=0, a^{2}=0, b^{2}=b, a b=a, b a=a\right\rangle$,
8. $H=\left\langle a, b \mid p a=p b=0, a^{2}=0, b^{2}=b, a b=b a=0\right\rangle$,
9. $I=\left\langle a, b \mid p a=p b=0, a^{2}=b, a b=0\right\rangle$,
10. $J=\left\langle a, b \mid p a=p b=0, a^{2}=b^{2}=0\right\rangle$,
11. $K=G F\left(p^{2}\right)=$ The finite field of order p^{2}.

Theorem 2. (See [6, Corollary 3]) If $n=p_{1} \cdots p_{k}$ is a square-free positive integer then up to isomorphism, there are exactly 2^{k} rings of order n. These are product rings in the form $R_{1} \times R_{2} \times \cdots \times R_{k}$ such that R_{i} is a ring of order p_{i}, its additive group is isomorphic to $Z_{p_{i}}$ and its multiplication is either trivial or isomorphic to the integers modulo p_{i}.

Theorem 3. (See [9, Hilfssatz 1]) Every finite ring is isomorphic to a Cartesian product of rings of prime power order.

In the following theorem $Z(R)$ denotes the set of all zero devisors of R.
Theorem 4. Suppose R is a finite ring of order p^{2}. Then $\Gamma(R)$ is isomorphic to $K_{p-1}, K_{p-1}+\phi_{p^{2}-p}, K_{p^{2}-1}$ or $K_{p-1, p-1}$.

Proof. Suppose R is a ring of order p^{2}. By Theorem $1, R \cong A, B, C, D, E, F, G, H, I$ or J. Our main proof proceeds case by case as follows:

Case 1. $R \cong A$ or G. If $R \cong A$ then $Z(R)=\{0, p, 2 p, \cdots,(p-1) p\}$ and so $\Gamma(R) \cong K_{p-1}$, as desired. Suppose $R \cong G$. Then by choosing $a=x+\left\langle x^{2}\right\rangle$ and $b=1+\left\langle x^{2}\right\rangle$ in the ring $\frac{Z_{p}[x]}{\left\langle x^{2}\right\rangle}$, one can see that

$$
\frac{Z_{p}[x]}{\left\langle x^{2}\right\rangle}=\left\langle a, b \mid p a=p b=0, a^{2}=0, b^{2}=b, a b=a, b a=a\right\rangle .
$$

This shows that $G \cong \frac{Z_{p}[x]}{\left\langle x^{2}\right\rangle}$. On the other hand, if $I=\left\langle x^{2}\right\rangle$ then

$$
Z\left(\frac{Z_{p}[x]}{I}\right)=\{I, x+I, 2 x+I, \cdots,(p-1) x+I\}
$$

Since $Z\left(\frac{Z_{p}[x]}{I}\right)$ is a commutative set with respect to multiplication, $G \cong K_{p-1}$.
Case 2. $R \cong B, E, F, H$ or I. We first assume that $R \cong B$. It is clear that $B \cong\langle p\rangle \triangleleft Z_{p^{3}}$. Notice that " \triangleleft " is a notation which denotes the ideals. Set $B_{1}=\left\{p^{2}, 2 p^{2}, \cdots,(p-1) p^{2}\right\}$ and $B_{2}=\langle p\rangle \backslash B_{1}$. Suppose x and y are arbitrary elements of $Z(R)^{\star}=B_{1} \cup B_{2}$. If $x, y \in B_{1}$ or $x \in B_{1}$ and $y \in B_{2}$ then $x y=0$. Otherwise, $x y \neq 0$. Thus, $\Gamma(R) \cong K_{p-1}+\phi_{p^{2}-p}$.

We now assume that $R \cong F$. Define:

$$
S=\left\{\left.\left[\begin{array}{ll}
x & y \\
x & y
\end{array}\right] \right\rvert\, x, y \in Z_{p}\right\}, a=\left[\begin{array}{ll}
1 & 0 \\
1 & 0
\end{array}\right], b=\left[\begin{array}{ll}
0 & 1 \\
0 & 1
\end{array}\right], F_{1}=\left\{\left.\left[\begin{array}{cc}
k & -k \\
k & -k
\end{array}\right] \right\rvert\, k \in Z_{p}^{\star}\right\} .
$$

One can prove that $F=\left\langle a, b \mid p a=p b=0, a^{2}=a, b^{2}=b, a b=b, b a=a\right\rangle$ and for each element $a, b \in F, a b=0$ if and only if $a, b \in F_{1}$ or $a \in F_{1}$ and $b \in F_{2}=F \backslash F_{1}$, This shows that $\Gamma(R) \cong K_{p-1}+\phi_{p^{2}-p}$. On the other hand, $E \cong F^{o p}$ and so $\Gamma(E) \cong \Gamma(F) \cong K_{p-1}+\phi_{p^{2}-p}$.

Next we assume that $R \cong H$. Notice that $H \cong Z_{p} \times C_{p}(0)$. Set $H_{1}=\left\{(0, b) \mid b \in C_{p}(0), b \neq 0\right\}$ and $H_{2}=\left\{(a, b) \mid a \in Z_{p}^{\star}, b \in C_{p}(0)\right\}$. Again, one can see that $a b=0$ if and only if $a, b \in H_{1}$ or $a \in H_{1}$ and $b \in H_{2}$. Therefore, $\Gamma(R) \cong K_{p-1}+\phi_{p^{2}-p}$, as desired. Finally, suppose that $R \cong I$. Since $L=\left\{c x+d x^{2}+\left\langle x^{3}\right\rangle \mid c, d \in Z_{p}\right\} \unlhd \frac{Z_{p}[x]}{\left\langle x^{3}\right\rangle}$, by choosing $a=x+\left\langle x^{3}\right\rangle$ and $b=x^{2}+\left\langle x^{3}\right\rangle$, we can see that $I \cong L$. Set $L_{1}=\left\{k x^{2}+\left\langle x^{3}\right\rangle \mid k \in Z_{p}^{\star}\right\}$ and $L_{2}=L \backslash L_{1}$. Again, it is not so difficult to prove $\Gamma(I) \cong K_{p-1}+\phi_{p^{2}-p}$.

Case 3. $R \cong C$ or J. Suppose $R \cong C$. Then one can easily see that $R \cong C_{p^{2}}(0)$ and all distinct elements of R are adjacent in its zero divisor graph. Therefore, $\Gamma(R) \cong K_{p^{2}-1}$. If $R \cong J$ then $R \cong C_{p}(0) \times C_{p}(0)$ and by definition $\Gamma(R) \cong K_{p^{2}-1}$.

Case 4. $R \cong D$. Suppose $R \cong D \cong Z_{p} \times Z_{p}$. Define $D_{1}=\left\{(r, 0) \mid r \in Z_{p}^{\star}\right\}$ and $D_{2}=\left\{(0, s) \mid s \in Z_{p}^{\star}\right\}$. Then for each element $x, y \in D, x y=0$ if and only if $x \in D_{1}$ and $y \in D_{2}$. Therefore, $\Gamma(R) \cong K_{p-1, p-1}$.

This completes the proof.
Suppose R is a cubefree finite ring. Then by Theorem 3, R is isomorphic to a Cartesian product of rings of prime power order. Among rings of order $p^{2}, Z_{p} \times Z_{p}, Z_{p} \times C_{p}(0)$ and $C_{p}(0) \times C_{p}(0)$ are the only rings which are product of rings of order p. So, we can write $R \cong \prod_{i=1}^{n} R_{i}$, where for each $i, 1 \leq i \leq n, R_{i}$ is not isomorphic to three mentioned rings. Define:

$$
\begin{aligned}
& N_{1}=\{1,2, \ldots, n\}, \\
& N_{2}=\left\{i \in N_{1} \mid R_{i} \not \equiv Z_{p}, C_{p}(0)\right\}, \\
& N_{3}=\left\{i \in N_{1} \mid R_{i} \cong C\right\}, \\
& N_{4}=\left\{i \in N_{1} \mid R_{i} \text { is not a field }\right\}, \\
& N_{5}=\left\{i \in N_{2} \mid R_{i} \cong B \text { or } C \text { or } E \text { or } F \text { or } I\right\} .
\end{aligned}
$$

The eccentricity of a vertex $v, \varepsilon(v)$, is the greatest distance between v and any other vertex and the minimum eccentricity among vertices of the graph is called its radius. A central vertex in a graph of radius r is one whose eccentricity is r. The center of the graph is defined as the set of all central vertices. We denote
the center of a graph G, by $C(G)$. For each $i, 1 \leq i \leq n$, we define three subsets T_{i}, T_{i}^{\star} and S_{i} from R_{i}, as follows:

$$
T_{i}^{\star}= \begin{cases}\Omega & R_{i} \cong G F\left(p^{2}\right) \text { or } C \\ Z\left(R_{i}\right)^{\star} & R_{i} \cong A \text { or } G \\ C\left(\Gamma\left(R_{i}\right)\right) & R_{i} \cong B \text { or } E \text { or } F \text { or } I \\ R_{i}^{\star} & R_{i} \cong Z_{p} \text { or } C_{p}(0) .\end{cases}
$$

where Ω is a fixed subset of R_{i}^{\star} of cardinality $p_{i}-1, T_{i}=T_{i}^{\star} \cup\left\{0_{R_{i}}\right\}$ and $S_{i}=R_{i} \backslash T_{i}$. Here we can easily prove that $C\left(\Gamma\left(R_{i}\right)\right)=\operatorname{Nil}\left(R_{i}\right)^{\star}$ in which $\operatorname{Nil}\left(R_{i}\right)$ is the nil radical of $R_{i}[8, \mathrm{p} .379]$. On the other hand, for each $x=\left(x_{1}, \ldots, x_{n}\right) \in R, \mu_{x}=\left\{i \in N_{2} \mid x_{i} \in S_{i}\right\}$. Define $x \sim y$ if and only if $\mu_{x}=\mu_{y}$, where $x, y \in R$. It is easy to see that \sim is an equivalence relation. Moreover, we assume that $[x]$ denotes the equivalence class of x under \sim and X is a set of representatives of the equivalence relation \sim.

Suppose that $x \in X$ and $\emptyset \neq v \subseteq N_{1}$. Set

$$
[x]_{v}=\left\{y=\left(y_{1}, \ldots, y_{n}\right) \mid \mu_{x}=\mu_{y} \& y_{i}=0 \text { if and only if } i \notin v\right\}
$$

The induced subgraph of $\Gamma(R)$ generated by $[x]_{v}$ is denoted by $\Gamma\left([x]_{v}\right)$. For each $x_{1}, x_{2} \in X, x_{1} \neq x_{2}$, and for each v_{1}, v_{2} such that $v_{1}, v_{2} \subseteq N_{1}, v_{1} \neq v_{2}$ and $v_{1}, v_{2} \neq \emptyset$, we say $\left\{\left(x_{1}, v_{1}\right),\left(x_{2}, v_{2}\right)\right\}$ satisfies condition (P) if and only if
i) $\mu_{x_{1}} \cap \mu_{x_{2}} \subseteq N_{3}$;
ii) $\left(v_{1} \backslash \mu_{x_{1}}\right) \cap\left(v_{2} \backslash \mu_{x_{2}}\right) \subseteq N_{4}$;
iii) $\mu_{x_{1}} \cap\left(v_{2} \backslash \mu_{x_{2}}\right), \mu_{x_{2}} \cap\left(v_{1} \backslash \mu_{x_{1}}\right) \subseteq N_{5}$.

Finally, for each $x \in X$ and $\emptyset \neq v \subseteq N_{1}$, we say that the pair (x, v) satisfies $Q_{x, v}$ (or $(x, v) \in E_{x, v}$) if and only if [$v \subset N_{1}$ and $\mu_{x} \subseteq v$] or [$v=N_{1}$ and $\left.\left(\mu_{x} \cap N_{5}\right) \cup\left(\left(v \backslash \mu_{x}\right) \cap N_{4}\right) \neq \emptyset\right]$. For simplicity of our argument,
Lemma 5. $V(\Gamma(R))=\bigcup_{x \in X, ~} \neq v \subseteq N_{1},(x, v) \in E_{x, v} V\left(\Gamma\left([x]_{v}\right)\right)$.
Proof. To simplify our argument, we define $W=\bigcup_{x \in X, \emptyset \neq v \subseteq N_{1},(x, v) \in E_{x, v}} V\left(\Gamma\left([x]_{v}\right)\right)$. Suppose $a \in V(\Gamma(R))$. Then there are $x \in X$ and $\emptyset \neq v \subseteq N_{1}$ such that $a \in[x]_{v}$. If $v \neq N_{1}$ then (x, v) satisfies $Q_{x, v}$ and so $a \in W$. Assume that $v=N_{1}$. Since $a=\left(a_{1}, \ldots, a_{n}\right)$, for each $i, i \in v=N_{1}, a_{i} \neq 0$. On the other hand, $a \in V(\Gamma(R))$ implies that there exists $j \in N_{1}$ such that a_{j} is not unit. We claim that $j \in\left(\mu_{x} \cap N_{5}\right) \cup\left(\left(v \backslash \mu_{x}\right) \cap N_{4}\right)$. Suppose $j \notin \mu_{x}$. Since a_{j} is not unit, $j \in N_{4}$ and so $j \in\left(v \backslash \mu_{x}\right) \cap N_{4}$, as desired. If $j \in \mu_{x}$ and $j \notin \mu_{x} \cap N_{5}$ then $a_{j} \in S_{j}$. Since $j \notin N_{5}, a_{j}$ is unit which is impossible.

Conversely, we assume that $a \in W$. Then there are $x \in X$ and $\emptyset \neq v \subseteq N_{1}$ such that $a \in V\left(\Gamma\left([x]_{v}\right)\right)$. If $v \neq N_{1}$ then $(0, \ldots, 0, t, 0, \ldots, 0)$ is a non-zero zero divisor for a, where $j \in N_{1} \backslash v$ and $0 \neq t \in R_{j}$. This shows that $a \in V(\Gamma(R))$. Next we assume that $v=N_{1}$. Since (x, v) satisfies $Q_{x, v}, j \in\left(\mu_{x} \cap N_{5}\right) \cup\left(\left(v \backslash \mu_{x}\right) \cap N_{4}\right)$ exists. Since for each $i, i \in N_{5}$, the elements of S_{i} and T_{i} are zero divisors of each other, $j \in \mu_{x} \cap N_{5}$ implies that $(0, \ldots, 0, t, 0, \ldots, 0)$ is a non-zero zero divisor for a, where $0 \neq t \in T_{j}$. Since for $i \in N_{4}$, the elements of T_{i} are zero divisors of each other, $j \in\left(v \backslash \mu_{x}\right) \cap N_{4}$ implies that $(0, \ldots, 0, t, 0, \ldots, 0)$ is a non-zero zero divisor for a, where $t \in T_{j}$. This completes the proof.

Lemma 6. There is a partition \mathcal{P} such that $\frac{\Gamma(R)}{\mathcal{P}}$ is isomorphic to a graph Λ such that

$$
\begin{aligned}
V(\Lambda) & =\left\{(x, v) \mid x \in X, \emptyset \neq v \subset N_{1}, \mu_{x} \subseteq v\right\} \cup\left\{\left(x, N_{1}\right) \mid x \in X,\left(\mu_{x} \cap N_{5}\right) \cup\left(\left(N_{1} \backslash \mu_{x}\right) \cap N_{4}\right) \neq \emptyset\right\} \\
E(\Lambda) & =\left\{\left(x_{1}, v_{1}\right)\left(x_{2}, v_{2}\right) \mid\left(x_{1}, v_{1}\right),\left(x_{2}, v_{2}\right) \in V(G), P \text { is satisfied }\right\}, \\
\mathcal{P} & =\left\{[x]_{v} \mid x \in X, \emptyset \neq v \subseteq N_{1}, Q_{x, v} \text { is satisfied }\right\} .
\end{aligned}
$$

Proof. By Lemma 5, the mapping $f: \frac{\Gamma(R)}{\mathcal{P}} \longrightarrow \Lambda$ which sends $[x]_{v}$ to (x, v) is an isomorphism. So, $\Lambda \cong \frac{\Gamma(R)}{\mathcal{P}}$ which proves the theorem.

Lemma 7. For each $x \in X$ and $\emptyset \neq v \subseteq N_{1}$ which satisfy the condition $Q_{x, v}$, we have:

$$
\Gamma\left([x]_{v}\right)= \begin{cases}K_{\left(\Pi_{i \epsilon \mu_{x}} p_{i} \times \Pi_{i \in v}\left(p_{i}-1\right)\right)} & \emptyset \neq \mu_{x} \subseteq N_{3} \text { and } v \subseteq N_{4} \\ K_{\Pi_{i \epsilon v}\left(p_{i}-1\right)} & \mu_{x}=\emptyset \text { and } v \subseteq N_{4} \\ \phi_{\left(\Pi_{i \mu_{x}} p_{i} \times \Pi_{i \in v}\left(p_{i}-1\right)\right)} & \mu_{x} \neq \emptyset \text { and }\left[\mu_{x} \nsubseteq N_{3} \text { or } v \nsubseteq N_{4}\right] \\ \prod_{\Pi_{i \epsilon v}\left(p_{i}-1\right)} & \text { Otherwise. }\end{cases}
$$

Proof. Consider two arbitrary elements $y=\left(y_{1}, \ldots, y_{n}\right), y^{\prime}=\left(y_{1}^{\prime}, \ldots, y_{n}^{\prime}\right) \in[x]_{v}$. Obviously, $\mu_{y}=\mu_{y^{\prime}}=\mu_{x}$. Suppose that $\mu_{x} \subseteq N_{3}, v \subseteq N_{4}$. Thus, for every $i \in \mu_{x}, y_{i}, y_{i}^{\prime} \in C$ and so $y_{i} y_{i}^{\prime}=0$. If $i \in v \backslash \mu_{x}$ then $y_{i}, y_{i}^{\prime} \in T_{i}$ and $\Gamma\left(T^{\star}\right)$ is an induced subgraph of $\Gamma\left(R_{i}\right)$ isomorphic to $K_{p_{i}-1}$. So, again $y_{i} y_{i}^{\prime}=0$. Finally, if $i \in N_{1} \backslash v$ then $y_{i}=y_{i}^{\prime}=0$ and so $y_{i} y_{i}^{\prime}=0$. Therefore, $y_{i} y_{i}^{\prime}=0$ and $\Gamma\left([x]_{v}\right)$ is a complete graph. If $\mu_{x} \neq \emptyset$ then and we have:

$$
\begin{aligned}
\left|[x]_{v}\right| & =\prod_{i \in \mu_{x}}\left|S_{i}\right| \times \prod_{i \in \vee \backslash \mu_{x}}\left|T_{i}^{\star}\right| \\
& =\prod_{i \in \mu_{x}}\left(p_{i}^{2}-p_{i}\right) \times \prod_{i \in \vee \backslash \mu_{x}}\left(p_{i}-1\right) \\
& =\prod_{i \in \mu_{x}} p_{i} \times \prod_{i \in \mu_{x}}\left(p_{i}-1\right) \times \prod_{i \in v \backslash \mu_{x}}\left(p_{i}-1\right) \\
& =\prod_{i \in \mu_{x}} p_{i} \times \prod_{i \in v}\left(p_{i}-1\right) .
\end{aligned}
$$

If $\mu_{x}=\emptyset$ then $\left|[x]_{v}\right|=\prod_{i \in v}\left(p_{i}-1\right)$. If $\mu_{x} \nsubseteq N_{3}$ then there exists $i \in \mu_{x}$ such that $i \notin N_{3}$. Hence there are $y_{i}, y_{i}^{\prime} \in S_{i}$ such that $y_{i}, y_{i}^{\prime} \notin C$ and so $y_{i} y_{i}^{\prime} \neq 0$. This shows that $y y^{\prime} \neq 0$. If $v \nsubseteq N_{4}$ then there exists $i \in v$ such that $i \notin N_{4}$. By our notation, R_{i} is a field and $y_{i}, y_{i}^{\prime} \in R_{i}$. So, $i \in v$ implies that $y_{i} y_{i}^{\prime} \neq 0$. Again $y y^{\prime} \neq 0$ and $\Gamma\left([x]_{v}\right)=\phi_{\|[x]_{v} \mid}$, which completes the proof.
Theorem 8. Suppose R is a cubefree order ring. Then,

Proof. Suppose L denotes the right hand side graph of the Equation 1. We first prove that $V(L)=V(\Gamma(R))$. Clearly, $V(L) \subseteq V(\Gamma(R))$ and so it is enough to show that $V(\Gamma(R)) \subseteq V(L)$. Suppose $y=\left(y_{1}, \ldots, y_{n}\right) \in V(\Gamma(R))$. Then there exists $\emptyset \neq v \subseteq N_{1}$ such that $y_{i} \neq 0$ if and only if $i \in v$. We can also find a subset μ of N_{2} such that $y_{i} \in S_{i}$ if and only if $i \in \mu$. Therefore, there exists $x \in X$ such that $\mu_{x}=\mu_{y}=\mu$, as desired.

We now prove that $E(\Gamma(R))=E(L)$. Suppose $y y^{\prime} \in E(\Gamma(R)), y=\left(y_{1}, \ldots, y_{n}\right)$ and $y^{\prime}=\left(y_{1}^{\prime} \ldots, y_{n}^{\prime}\right)$. By definition of $E\left(\Gamma(R)\right.$), for each $i \in N_{1}, y_{i} y_{i}^{\prime}=0$. Since $y, y^{\prime} \in V(\Gamma(R))$, there are $\emptyset \neq v, v^{\prime} \subseteq N_{1}$ such that $i \in v$ if and only if $y_{i} \neq 0$, and $j \in v^{\prime}$ if and only if $y_{j}^{\prime} \neq 0$. We first assume that $v \neq v^{\prime}$. By definition of $V(\Gamma(R))$, there are $x, x^{\prime} \in X$ such that $\mu_{y}=\mu_{x}$ and $\mu_{y^{\prime}}=\mu_{x^{\prime}}$. This shows that $y \in[x]_{v}$ and $y^{\prime} \in\left[x^{\prime}\right]_{v^{\prime}}$. Since for each $i \in N_{1}$, $y_{i} y_{i}^{\prime}=0, \mu_{x} \cap \mu_{x^{\prime}} \subseteq N_{3}$. If $\left(v \backslash \mu_{x}\right) \cap\left(v^{\prime} \backslash \mu_{x^{\prime}}\right) \nsubseteq N_{4}$ then there exists $j \in v \backslash \mu_{x}$ such that $j \notin N_{4}$. Therefore, by definition of N_{4}, R_{j} is a field. Now $y_{j} y_{j}^{\prime}=0$ implies that $y_{j}=0$ or $y_{j}^{\prime}=0$, which is impossible. Thus $\left(v \backslash \mu_{x}\right) \cap\left(v^{\prime} \backslash \mu_{x^{\prime}}\right) \subseteq N_{4}$. Next we prove that $\mu_{x} \cap\left(v^{\prime} \backslash \mu_{x^{\prime}}\right) \subseteq N_{5}$. Suppose $i \in \mu_{x} \cap\left(v^{\prime} \backslash \mu_{x^{\prime}}\right)$. Hence $y_{i}^{\prime} \in T_{i}$. Again from the equation $y_{i} y_{i}^{\prime}=0$ we deduce that $i \in N_{5}$. In a similar way, $\mu_{x^{\prime}} \cap\left(v \backslash \mu_{x}\right) \subseteq N_{5}$. Therefore, $y y^{\prime} \in E(L)$. If $v=v^{\prime}$ and $x \neq x^{\prime}$ then a similar argument as above shows that $y y^{\prime} \in E(L)$. Assume that $y, y^{\prime} \in[x]_{v}$, for some $x \in X$ and $\emptyset \neq v \subseteq N_{1}$. Since $y_{i} y_{i}^{\prime}=0, i \in N_{1}$, we have $\mu_{x} \subseteq N_{3}$ and $v \subseteq N_{4}$. By Lemma $7, \Gamma\left([x]_{v}\right)$ is a complete graph and so $y y^{\prime} \in E(L)$. Conversely, we assume that $a b \in E(L)$. Put $a=\left(a_{1}, \ldots, a_{n}\right)$ and $b=\left(b_{1}, \ldots, b_{n}\right)$. Then there are $x, x^{\prime} \in X$ and $\emptyset \neq v, v^{\prime} \subseteq N_{1}$, such that $a \in V\left(\Gamma\left([x]_{v}\right)\right)$ and $b \in V\left(\Gamma\left(\left[x^{\prime}\right]_{v^{\prime}}\right)\right)$. Our main proof will consider four cases as follows:
a. $x=x^{\prime}$ and $v=v^{\prime}$. Suppose $a, b \in V\left(\Gamma\left([x]_{v}\right)\right)$. Then $\Gamma\left([x]_{v}\right)$ is a complete graph and so $\mu_{x} \subseteq N_{3}, v \subseteq N_{4}$. Since $\mu_{x} \subseteq N_{3}, a_{i} b_{i}=0$, for each $i \in \mu_{x}$. If $i \in v \backslash \mu_{x}$ then $a_{i}, b_{i} \in T_{i}$. But T_{i} is not a subset of any field,
so $a_{i} b_{i}=0$, for each $i \in v \backslash \mu_{x}$. On the other hand, for any $i \in N_{1} \backslash v$, we have $a_{i}=b_{i}=0$ which implies that $a_{i} b_{i}=0$. Hence $a b \in E(\Gamma(R))$, as desired.
b. $x \neq x^{\prime}$ and $v=v^{\prime}$. If $i \in \mu_{x} \backslash \mu_{x^{\prime}}$ then the inclusion $\mu_{x^{\prime}} \cap\left(v \backslash \mu_{x}\right) \subseteq N_{5}$ shows that $a_{i} \in T_{i}$ and $b_{i} \in S_{i}$. Since the elements of S_{i} and T_{i} are zero divisors of each other, $a_{i} b_{i}=0$. We now assume that $i \in \mu_{x} \cap \mu_{x^{\prime}}$. Then $\mu_{x} \cap \mu_{x^{\prime}} \subseteq N_{3}$ and so $a_{i}, b_{i} \in C$. Hence $a_{i} b_{i}=0$. If $i \in v \backslash \mu_{x}$ then we have two cases that $i \in \mu_{x^{\prime}}$ or $i \notin \mu_{x^{\prime}}$. In the first case, the inclusion $\mu_{x^{\prime}} \cap\left(v \backslash \mu_{x}\right) \subseteq N_{5}$ proves that $a_{i} \in T_{i}$ and $b_{i} \in S_{i}$. Thus $a_{i} b_{i}=0$. In the later, the inclusion $\left(v \backslash \mu_{x}\right) \cap\left(v \backslash \mu_{x^{\prime}}\right) \subseteq N_{4}$ proving that $a_{i} b_{i}=0$. Finally, if $i \notin v$ then $a_{i}=b_{i}=0$ and hence $a_{i} b_{i}=0$ which completes this part.
c. $x=x^{\prime}$ and $v \neq v^{\prime}$. We consider four subcases that $i \in \mu_{x}, i \in\left(v \backslash \mu_{x}\right) \cap\left(N_{1} \backslash v^{\prime}\right), i \in\left(v \backslash \mu_{x}\right) \cap v^{\prime}$ or $i \notin v$. In the first subcase, $\mu_{x}=\mu_{x^{\prime}} \subseteq N_{3}$ and so $a_{i}, b_{i} \in C$ which implies that $a_{i} b_{i}=0$. In the second and forth subcases, $b_{i}=0$ and $a_{i}=0$, respectively, and so $a_{i} b_{i}=0$. Finally, in the third subcase, the inclusion $\left(v \backslash \mu_{x}\right) \cap\left(v^{\prime} \backslash \mu_{x}\right) \subseteq N_{4}$ deduces $a_{i} b_{i}=0$, which completes this part.
d. $x \neq x^{\prime}$ and $v \neq v^{\prime}$. By a similar argument as Cases a-c, we can conclude this part.

This completes our argument.

We end this paper by determining the zero divisor graph of all finite rings of order $p^{2} q$, where p and q are distinct primes.

Corollary 9. Suppose R is a finite ring of order $p^{2} q$, where p and q are distinct primes. Then $\Gamma(R)$ is isomorphic to one of the following graphs:

1. $K_{p^{2} q-1}$,
2. $K_{p^{2}-1, q-1}$,
3. $K_{p q-1}+\phi_{p q(p-1)}$,
4. $K_{q-1}+\phi_{q\left(p^{2}-1\right)}$,
5. $K_{p^{2}-1}+\phi_{p^{2}(q-1)}$,
6. $K_{q(p-1)}+K_{q-1}+\phi_{p q(p-1)}$,
7. $K_{q(p-1), q(p-1)}+K_{q-1}+\phi_{q(p-1)^{2}}$,
8. $K_{p(p-1), p(q-1)}+K_{p-1}+\phi_{p(p-1)(q-1)}$,
9. $\phi_{(p-1)(q-1)}+K_{p-1}+\phi_{q-1}+\phi_{p(p-1)}$,
10. $\left(\phi_{(p-1)(q-1)} \uplus \phi_{p-1} \uplus \phi_{q-1} \uplus \phi_{(p-1)^{2}} \uplus \phi_{p-1} \uplus \phi_{(p-1)(q-1)}\right)_{G_{1}}$, where G_{1} is the corona product of a triangle by K_{1} in such a way that two copies of $\phi_{(p-1)(q-1)}$ and a copy of $\phi_{(p-1)^{2}}$ are corresponding to vertices of three copies of K_{1}. Moreover, two copies of $\phi_{(p-1)(q-1)}$ are adjacent to ϕ_{p-1}.
Proof. Apply Theorems 1, 3 and 8.
Acknowledgement. The authors are indebted to the referees for their suggestions and helpful remarks.

References

[1] D. F. Anderson, P. S. Livingston, The zero-divisor graph of a commutative ring, Journal of Algebra 217 (1999) 434-447.
[2] V. G. Antipkin, V. P. Elizarov, Rings of order p^{3}, Siberian Mathematical Journal 23 (1982) 457-464.
[3] I. Beck, Coloring of commutative rings, Journal of Algebra 116 (1988) 208-226.
[4] N. Bloomfield, The Zero divisor graphs of commutative local rings of order p^{4} and p^{5}, Communication in Algebra 41 (2013) 765-775.
[5] J. Coykendall, S. Sather-Wagstaff, L. Sheppardson, S. Spiroff, On zero divisor graphs, Progress in Commutative Algebra 2, 241-299, Walter de Gruyter, Berlin, 2012.
[6] B. Fine, Classification of finite rings of order p^{2}, Mathematics Magazine 66 (4) (1993) 248-252.
[7] R. Frucht and F. Harary, On the coronas of two graphs, Aequationes Mathematicae 4 (1970) 322-324.
[8] T. W. Hungerford, Algebra, Graduate Texts in Mathematics 73, Springer-Verlag, Berlin, 1974.
[9] K. Shoda, Über die Galoissche Theorie der halbeinfachen hyperkomplexen Systeme, Mathematische Annalen 107 (1933) $252-258$.
[10] D. B. West, Introduction to Graph Theory, Prentice Hall, Inc., Upper Saddle River, NJ, 1996.

[^0]: 2010 Mathematics Subject Classification. Primary 13A99; Secondary 16U99, 05C50
 Keywords. Zero divisor graph, finite ring, extended join of graphs.
 Received: 06 November 2013; Accepted: 12 April 2014
 Communicated by Francesco Belardo
 The research of the authors are partially supported by the University of Kashan under grant no 159020/33.
 Email addresses: adeltadayyonfar@yahoo.com (Adel Tadayyonfar), ashrafi@kashanu.ac.ir (Ali Reza Ashrafi)

