Filomat 29:8 (2015), 1769–1780 DOI 10.2298/FIL1508769M

Published by Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat

Fuzzy Hyper *p***-ideals of Hyper BCK-algebras**

M. Aslam Malik^a, Muhammad Touqeer^b

^aDepartment of Mathematics, University of the Punjab, Quaid-e-Azam Campus, Lahore-54590, Pakistan

^bDepartment of Mathematics, University of the Punjab, Quaid-e-Azam Campus, Lahore-54590, Pakistan

Abstract. The paper is a reflection of "fuzzy sets" applied to "hyper p-ideals" and their comparison with simple "fuzzy hyper BCK-ideals". The idea of "fuzzy (weak, strong) hyper *p*-ideals" is presented and characterization of these ideals is conferred using different concepts like that of "level subsets, hyper homomorphic pre-image" etc. The connections between "fuzzy (weak, strong) hyper *p*-ideals" are discussed and "the strongest fuzzy relation" on a "hyper BCK-algebra" is conferred.

1. Introduction

The "hyper structure theory" was presented by Marty [16], in 1934, at the "8th Congress of Scandinavian Mathematicians". Now a days hyperstructures are widely used in both pure and applied mathematics. During the exploration of properties of set difference, Imai and Iseki in 1966 bring together a set of axioms commonly known as BCK-algebras. Komori [14] in 1983, introduced a new class of algebras called BCC-algebras or BIK⁺-algebras. Dudek et al. [5, 8] discussed the properties of branches, ideals and atoms in weak BCC-algebras. Dudek [4] introduced the concept of solid weak BCC-algebras and further, he and Thomys [6] generalized the concept of BCC-algebras. Borzooei et al. [2] discussed the applications of hyperstructures in BCC-algebras. Later in 2000, this theory was applied to BCK-algebras by Jun et al. [13]. Jun et al. [12], deliberated the properties of "fuzzy strong hyper BCK-ideals". The most apposite theory of "fuzzy sets" which is a tool for handling with uncertainties was presented by Zadeh [17] in 1965. Dudek et al. [7], "applied the fuzzy sets to BCC-algebras". Moreover in 2001, "Jun and Xin [10] applied the fuzzy set

²⁰¹⁰ Mathematics Subject Classification. 08A72

Keywords. 'Reflexive hyper BCK-ideal, (Fuzzy) hyper *p*-ideal; (fuzzy) weak hyper *p*-ideal; (fuzzy) strong hyper *p*-ideal, hyper homomorphic pre-image

Received: 06 November 2013; Accepted: 12 April 2014

Communicated by Miroslav Ciric

Email addresses: malikpu@yahoo.com (M. Aslam Malik), touqeer-fareed@yahoo.com (Muhammad Touqeer)

theory to hyper BCK-algebras". This paper confers, "the concept of fuzzification of (weak, strong) hyper *p*-ideals in hyper BCK-algebras" and associated properties.

2. Preliminaries

"If *H* is a non-empty set with the hyperoperation 'o' from $H \times H$ into $P^*(H)$ the collection of all non-empty subsets of *H*, then for any subsets *A* and *B* of *H* by *AoB* we denote the set $\bigcup \{a \circ b \mid a \in A, b \in B\}$ ". "If $A = \{a\}$, then instead of $\{a\}_0$ we write aoB".

Definition 2.1. [13] *"Hyper BCK-algebra is a non-empty set H equipped with a hyperoperation "*o*" and a constant 0 fulfilling the following conditions:*

(HK1) $(u \circ w) \circ (v \circ w) \ll u \circ v$ (HK2) $(u \circ v) \circ w = (u \circ w) \circ v$ (HK3) $u \circ H \ll \{u\}$ (HK4) $u \ll v$ and $v \ll u$ imply u = vfor any $u, v, w \in H$. Here $u \ll v$ is defined by $0 \in u \circ v$ and for any $G, I \subseteq H, G \ll I$ is defined as $\forall a \in G, \exists b \in I$ such that $a \ll b$. The relation " \ll " is called the hyper order in H".

Proposition 2.2. [13] "For a hyper BCK-algebra H, the following properties are obvious: (i) $u \circ 0 = \{u\}$ (ii) $u \circ v \ll u$ (iii) $0 \circ G = \{0\}$ (iv) $v \ll w$ implies $u \circ w \ll u \circ v$ (v) $G \subseteq I$ implies $G \ll I$ for any $u, v, w \in H$ and for non-empty subsets G and I of H".

Moreover for the basic study relevant to "hyper BCK-subalgebras and (weak, strong, reflexive) hyper BCK-ideals", please see [13]. From now onwards, *H* will represent a "hyper BCK-algebra".

Lemma 2.3. [12, 13] For any H, (i) "any strong hyper BCK-ideal of H is a hyper BCK-ideal of H". (ii) "any hyper BCK-ideal of H is a weak hyper BCK-ideal of H".

Lemma 2.4. [12] "For any reflexive hyper BCK-ideal I of H, if $u \circ v \cap I \neq \emptyset$ then $u \circ v \ll I$, $\forall u, v \in H$ ".

Proposition 2.5. [11] "If G is a subset of H and I is any hyper BCK-ideal of H, such that, $G \ll I$ then $G \subseteq I$ ".

Definition 2.6. For a "hyper BCK-algebra" H, a non-empty subset $I \subseteq H$, containing 0 is known as • a "weak hyper p-ideal" of H if

- a "hyper p-ideal" of H if $(a \circ c) \circ (b \circ c) \subseteq I \text{ and } b \in I \text{ imply } a \in I.$ $(a \circ c) \circ (b \circ c) \ll I \text{ and } b \in I \text{ imply } a \in I.$
- a "strong hyper p-ideal" of H if

 $(a \circ c) \circ (b \circ c) \cap I \neq \emptyset$ and $b \in I$ imply $a \in I$.

Theorem 2.7. Every "(strong, weak) hyper p-ideal" is a "(strong, weak) hyper BCK-ideal".

Proof. Let *I* be a "hyper *p*-ideal of *H*". Then, for any *i*, *j*, *k* \in *H*, $(i \circ k) \circ (j \circ k) \ll I$ and $j \in I$ imply $i \in I$. Putting k = 0 we get $(i \circ 0) \circ (j \circ 0) \ll I$ and $j \in I$ imply $i \in I$. Therefore, $(i \circ j) \ll I$ and $j \in I \Rightarrow i \in I$. Hence proved. \Box

Generally, every "(strong, weak) hyper BCK-ideal" is not a "(strong, weak) hyper *p*-ideal". It can be observed with the help of examples given below:

Example 2.8. "Let $H = \{0, a, b\}$. We Contemplate the following table:

0	0	a	b
0	{0}	{0}	{0}
а	<i>{a}</i>	{0, <i>a</i> }	{0, a}
b	{ <i>b</i> }	{ <i>b</i> }	$\{0, a\}$

Then H is a hyper BCK-algebra". Take $I = \{0, a\}$. Then I is a "weak hyper BCK-ideal", however, not a "weak hyper p-ideal of H" as $(b \circ b) \circ (0 \circ b) = \{0, a\} \subseteq I$ and $0 \in I$ but $b \notin I$.

Example 2.9. "Let $H = \{0, a, b\}$. We Contemplate the following table:

0	0	а	b
0	{0}	{0}	{0}
а	<i>{a}</i>	{0}	<i>{a}</i>
b	{ <i>b</i> }	{ <i>b</i> }	$\{0, b\}$

Then H is a hyper BCK-algebra". Take $I = \{0, b\}$. Then, I is a "hyper BCK-ideal" but not a "hyper p-ideal" as $(a \circ a) \circ (0 \circ a) = \{0\} \ll I, 0 \in I$ but $a \notin I$.

Here $I = \{0, b\}$ *is also a "strong hyper BCK-ideal" however, it is not a "strong hyper p-ideal of H" as* $(a \circ a) \circ (0 \circ a) = \{0\} \cap I \neq \emptyset$ and $0 \in I$ but $a \notin I$.

Theorem 2.10. For any "hyper BCK-algebra",
(i) "any hyper p-ideal is also a weak hyper p-ideal".
(ii) "any strong hyper p-ideal is also a hyper p-ideal".

Proof. (*i*) Let, *I* is a "hyper *p*-ideal of *H*".

Let, $(i \circ k) \circ (j \circ k) \subseteq I$ and $j \in I$. Then, $(i \circ k) \circ (j \circ k) \subseteq I$ implies $(i \circ k) \circ (j \circ k) \ll I$ (by Proposition 2.2(v)), which along with $j \in I$ implies $i \in I$, which is our required condition.

(*ii*) Let, *I* is a "strong hyper *p*-ideal of *H*". Let, $(i \circ k) \circ (j \circ k) \ll I$ and $j \in I$. Then, $\forall \alpha \in (i \circ k) \circ (j \circ k), \exists \beta \in I$ such that $\alpha \ll \beta$. Thus $0 \in \alpha \circ \beta$ and $(\alpha \circ \beta) \cap I \neq \emptyset$, which along with $\beta \in I$ implies $\alpha \in I$, that is $(i \circ k) \circ (j \circ k) \subseteq I$. Thus $(i \circ k) \circ (j \circ k) \cap I \neq \emptyset$, which along with $j \in I$ implies $i \in I$, which is our required condition. \Box

Generally, the converse of above thoerem doesn't hold. It can be observed by the following examples:

Example 2.11. "Let $H = \{0, a, b\}$. We Contemplate the following table:

0	0	а	b
0	{0}	{0}	{0}
а	<i>{a}</i>	{0, <i>a</i> }	{0, a}
b	{ <i>b</i> }	{ <i>b</i> }	$\{0, a, b\}$

Then H is a hyper BCK-algebra". Take $I = \{0, b\}$. Clearly, I is a "weak hyper p-ideal of H". But for $(a \circ a) \circ (0 \circ a) = \{0, a\} \ll I$ and $0 \in I$, $a \notin I$, so I isn't a "hyper p-ideal".

Example 2.12. "We cogitate the table given below which explains the hyper BCK-algebra $H = \{0, a, b\}$:

c)	0	а	b
()	{0}	{0}	{0}
l	1	<i>{a}</i>	{0, <i>a</i> }	{0, a}
ŀ)	{ <i>b</i> }	$\{a,b\}$	$\{0, a, b\}$

Take $I = \{0, a\}^{"}$. *Clearly, I is a "hyper p-ideal" but not a "strong hyper p-ideal of H" as,* $(b \circ 0) \circ (a \circ 0) \cap I = \{a, b\} \cap I \neq \emptyset$ and $a \in I$ but $b \notin I$.

For detail study of "fuzzy (weak, strong) hyper BCK-ideals", one must consult [10].

Theorem 2.13. [10] *For any H*,

(i) "any fuzzy hyper BCK-ideal of H is a fuzzy weak hyper BCK-ideal of H".
(ii) "any fuzzy strong hyper BCK-ideal of H is a fuzzy hyper BCK-ideal of H".

3. Fuzzy Hyper *p*-ideals

Now we present the idea of "fuzzy (weak, strong) hyper *p*-ideals" and confer associated properties.

Definition 3.1. For a "hyper BCK-algebra" H, a "fuzzy set" ω in H is called a

- "fuzzy weak hyper p-ideal of H" if, for any $a, b, c \in H$ $\varpi(0) \ge \varpi(a) \ge \min \{ \inf_{x \in (a \circ c) \circ (b \circ c)} \varpi(x), \varpi(b) \}$
- "fuzzy hyper p-ideal of H" if, $a \ll b$ implies $\varpi(a) \ge \varpi(b)$ and for any $a, b, c \in H$, $\varpi(a) \ge \min \{\inf_{x \in (a \circ c) \circ (b \circ c)} \varpi(x), \varpi(b)\}$
- "fuzzy strong hyper p-ideal of H" if, $\forall a, b, c \in H$, $\inf_{x \in a \circ a} \varpi(x) \ge \varpi(a) \ge \min \{ \sup_{y \in (a \circ c) \circ (b \circ c)} \varpi(y), \varpi(b) \}$

Theorem 3.2. Any "fuzzy (weak, strong) hyper p-ideal" is a "fuzzy (weak, strong) hyper BCK-ideal".

Proof. Let, ω is a "fuzzy hyper *p*-ideal of *H*". Then, $\forall i, j, k \in H$ we get,

 $\varpi(i) \ge \min \{\inf_{a \in (i \circ k) \circ (j \circ k)} \varpi(a), \ \varpi(j)\}$

Putting k = 0 we get,

 $\varpi(i) \ge \min \{ \inf_{a \in (i \circ 0) \circ (j \circ 0)} \varpi(a), \ \varpi(j) \}$

which gives,

$$\varpi(i) \ge \min \{ \inf_{a \in i \circ j} \varpi(a), \ \varpi(j) \}$$

Hence proved. \Box

Generally, the converse of above theorem doesn't hold. Consider the "hyper BCK-algebra $H = \{0, a, b\}$ " defined by the table, given in Example (2.9). Define a "fuzzy set ϖ in H" by:

$$\varpi(0) = 1, \, \varpi(a) = 0.6, \, \varpi(b) = 0$$

It is easy to substantiate that ω is a "fuzzy weak hyper BCK-ideal" but not a "fuzzy weak hyper *p*-ideal of *H*" as

$$\varpi(a) = 0.6 < 1 = \min \{ \inf_{a \in (a \circ a) \circ (0 \circ a)} \varpi(a), \ \varpi(0) \}$$

Now, again consider the "hyper BCK-algebra $H = \{0, a, b\}$ " defined by the table given in Example (2.9) and define a "fuzzy set ω in H" by:

 $\varpi(0) = 0.8, \ \varpi(a) = 0.5, \ \varpi(b) = 0.3$

Clearly ω is a "fuzzy hyper BCK-ideal" but not a "fuzzy hyper *p*-ideal" of *H* since

 $\varpi(a) = 0.5 < 0.8 = \min \{ \inf_{a \in (a \circ a) \circ (0 \circ a)} \varpi(a), \ \varpi(0) \}$

Example 3.3. "Let $H = \{0, a, b, c\}$ be a hyper BCK-algebra defined by the table given below:

*	0	а	b	С
0	{0}	{0}	{0}	{0}
а	<i>{a}</i>	$\{0, a\}$	$\{0, a\}$	$\{0, a\}$
b	{ <i>b</i> }	{ <i>b</i> }	$\{0, a\}$	$\{0, a\}$
С	{ <i>C</i> }	{ <i>C</i> }	{ <i>C</i> }	$\{0, a\}$

Define a fuzzy set ϖ in H by":

 $\varpi(0) = \varpi(a) = 1, \ \varpi(b) = \frac{1}{2}, \ \varpi(c) = \frac{1}{3}$

Clearly, ω is a "fuzzy strong hyper BCK-ideal" of but not a "fuzzy strong hyper p-ideal" of H since $\omega(b) = \frac{1}{2} < 1 = \min \{\sup_{a \in (b \circ b) \circ (a \circ b)} \omega(a), \omega(a)\}$

Theorem 3.4. For any "hyper BCK-algebra",
(i) "Any fuzzy hyper p-ideal is a fuzzy weak hyper p-ideal".
(ii) "Any fuzzy Strong hyper p-ideal is a fuzzy hyper p-ideal".

Proof. (*i*) Let, ω be a "fuzzy hyper *p*-ideal of *H*". Since, "every fuzzy hyper *p*-ideal is a fuzzy hyper BCK-ideal" (by Theorem 3.2) and "every fuzzy hyper BCK-ideal is a fuzzy weak hyper BCK-ideal" (by Theorem 2.13(i)), therefore ω is also a "fuzzy weak hyper BCK-ideal of *H*". Hence ω satisfies $\omega(0) \ge \omega(i)$, for all $i \in H$. Also being a "fuzzy hyper *p*-ideal" ω satisfies:

$$\varpi(i) \ge \min \{ \inf_{x \in (i \circ k) \circ (j \circ k)} \varpi(x), \ \varpi(j) \}$$

 $\forall i, j, k \in H$. Hence ω is a "fuzzy weak hyper *p*-ideal of *H*".

1773

(*ii*) Let, ϖ is a "fuzzy strong hyper *p*-ideal of *H*". Since, "every fuzzy strong hyper *p*-ideal is a fuzzy strong hyper BCK-ideal" (by Theorem 3.2) and "every fuzzy strong hyper BCK-ideal is a fuzzy hyper BCK-ideal" (by Theorem 2.13(ii)), therefore ϖ is also a "fuzzy hyper BCK-ideal" of *H*. Hence for any $i, j \in H$, if $i \ll j$ then $\varpi(i) \ge \varpi(j)$.

Also being a "fuzzy strong hyper *p*-ideal", ϖ satisfies for any $i, j, k \in H$ $\varpi(i) \ge \min \{\sup_{x \in (i \circ k) \circ (j \circ k)} \varpi(x), \varpi(j)\}$ Since $\sup_{x \in (i \circ k) \circ (j \circ k)} \varpi(x) \ge \varpi(y), \forall y \in (i \circ k) \circ (j \circ k)$, therefore we get, $\varpi(i) \ge \min \{\sup_{x \in (i \circ k) \circ (j \circ k)} \varpi(x), \varpi(j)\} \ge \min \{\varpi(y), \varpi(j)\}$, for all $y \in (i \circ k) \circ (j \circ k)$ Since $\varpi(y) \ge \inf_{z \in (i \circ k) \circ (j \circ k)} \varpi(k), \forall y \in (i \circ k) \circ (j \circ k)$, therefore we have, $\varpi(i) \ge \min \{\varpi(y), \varpi(j)\} \ge \min \{\inf_{z \in (i \circ k) \circ (j \circ k)} \varpi(z), \varpi(j)\}$, that is $\varpi(i) \ge \min \{\inf_{z \in (i \circ k) \circ (j \circ k)} \varpi(z), \varpi(j)\}$

Hence proved. \Box

Generally, the converse of above theorem doesn't hold. Consider the "hyper BCK-algebra $H = \{0, a, b\}$ " defined by the table given in Example (2.11). Define a "fuzzy set ω in H" by:

$$\varpi(0) = 1, \ \varpi(a) = 0.6, \ \varpi(b) = 0.9$$

Then ϖ is a "fuzzy weak hyper *p*-ideal" but not a "fuzzy hyper *p*-ideal of *H*" as:

 $a \le b$ but $\varpi(a) = 0.6 < 0.9 = \varpi(b)$

Example 3.5. *"Consider a hyper BCK-algebra H* = $\{0, a, b\}$ *defined by the following table:*

0	{0}	<i>{a}</i>	{ <i>b</i> }
0	{0}	{0}	{0}
а	<i>{a}</i>	{0, <i>a</i> }	<i>{a}</i>
b	{ <i>b</i> }	{ <i>b</i> }	$\{0, b\}$

Define a fuzzy set ϖ in H by":

 $\varpi(0) = \varpi(a) = 1, \ \varpi(b) = \frac{1}{2}$ Then ϖ is a "fuzzy hyper p-ideal" but it is not a "fuzzy strong hyper p-ideal of H" as: $\varpi(b) = \frac{1}{2} < 1 = \min \{ \sup_{x \in (b \circ b) \circ (a \circ b)} \varpi(x), \ \varpi(a) \}$

Theorem 3.6. A "fuzzy set ϖ in H'', ϖ is a "fuzzy (weak, strong) hyper p-ideal of H'' iff $\forall t \in [0,1]$, $\varpi_t \neq \emptyset$ is a "(weak, strong) hyper p-ideal of H''.

Proof. Let, ϖ is a "fuzzy hyper *p*-ideal of *H*". Since $\varpi_t \neq \emptyset$, so for any $i \in \varpi_t$, $\varpi(i) \ge t$. "Since every fuzzy hyper *p*-ideal is also a fuzzy weak hyper *p*-ideal" (by Theorem 3.4(i)), so ϖ is also a "fuzzy weak hyper *p*-ideal of *H*". Thus $\varpi(0) \ge \varpi(i) \ge t$, for all $i \in H$, which implies $0 \in \varpi_t$.

Let $(i \circ k) \circ (j \circ k) \ll \varpi_t$ and $j \in \varpi_t$, then $\forall x \in (i \circ k) \circ (j \circ k)$, $\exists y \in \varpi_t$ such that $x \ll y$. So $\varpi(x) \ge \varpi(y) \ge t$, $\forall x \in (i \circ k) \circ (j \circ k)$. Thus $\inf_{x \in (i \circ k) \circ (j \circ k)} \varpi(x) \ge t$. Also $\varpi(j) \ge t$, as $j \in \varpi_t$. Therefore

 $\varpi(i) \ge \min \{ \inf_{x \in (i \circ k) \circ (j \circ k)} \varpi(x), \ \varpi(j) \} \ge \min \{t, t\} = t$

 \Rightarrow *i* $\in \varpi_t$. Hence ϖ_t is "hyper *p*-ideal" of *H*.

Conversely, Let, " $\omega_t \neq \emptyset$ is a "hyper *p*-ideal of *H*", $\forall t \in [0, 1]$ ". Let $i \ll j$ for some $i, j \in H$ and put $\omega(j) = t$. Then $j \in \omega_t$. So $i \ll j \in \omega_t \Rightarrow i \ll \omega_t$. "Being a hyper *p*-ideal, ω_t is also a hyper BCK-ideal of *H*" (By Theorem (2.7)) therefore by Proposition 2.5, $i \in \omega_t$. Hence $\omega(i) \ge t = \omega(j)$. That is $i \ll j \Rightarrow \omega(i) \ge \omega(j)$, for all $i, j \in H$. Moreover, for any $i, j, k \in H$, let $d = \min \{\inf_{z \in (i \circ k) \circ (j \circ k)} \omega(z), \omega(j)\}$. Then $\omega(j) \ge d \Rightarrow j \in \omega_d$ and for all $e \in (i \circ k) \circ (j \circ k), \omega(e) \ge \inf_{z \in (i \circ k) \circ (j \circ k)} \omega(z) \ge d$, which implies $e \in \omega_d$. Thus $(i \circ k) \circ (j \circ k) \subseteq \omega_d$. By Proposition 2.2(v), $(i \circ k) \circ (j \circ k) \subseteq \omega_d \Rightarrow (i \circ k) \circ (j \circ k) \ll \omega_d$, which along with $j \in \omega_d$ implies $i \in \omega_d$. Hence we get $\omega(i) \ge d = \min \{\inf_{z \in (i \circ k) \circ (j \circ k)} \omega(z), \omega(j)\}$.

Hence proved. \Box

Theorem 3.7. If ϖ is a "fuzzy (weak, strong) hyper *p*-ideal of H" then, $A = \{i \in H \mid \varpi(i) = \varpi(0)\}$ is a "(weak, strong) hyper *p*-ideal of H".

Proof. Let, ω is a "fuzzy strong hyper *p*-ideal of *H*". Clearly, $0 \in A$. Let $(i \circ k) \circ (j \circ k) \cap A \neq \emptyset$ and $j \in A$ for some *i*, *j*, *k* \in *H*. Then $\exists i_{\circ} \in (i \circ k) \circ (j \circ k) \cap A$ such that $\omega(i_{\circ}) = \omega(0)$. Also $\omega(j) = \omega(0)$. Then

$$\begin{split} \varpi(i) \geq \min \{ \sup_{x \in (i \circ k) \circ (j \circ k)} \varpi(x), \ \varpi(j) \} \geq \min \{ \varpi(i_{\circ}), \ \varpi(j) \} \\ = \min \{ \varpi(0), \ \varpi(0) \} = \varpi(0) \end{split}$$

$$\Rightarrow \varpi(i) \ge \varpi(0)$$

"Being a fuzzy strong hyper *p*-ideal, ϖ is also a fuzzy weak hyper *p*-ideal of *H*" (by Theorem 3.4), so it satisfies $\varpi(0) \ge \varpi(i)$, $\forall i \in H$. Therefore $\varpi(0) = \varpi(i)$ and so $i \in A$. Hence proved. \Box

Likewise, as done above, we can Corroborate the result for the other two cases. The "transfer principle" for "fuzzy sets" described in [15] suggest the following result.

Theorem 3.8. Let ϖ be a "fuzzy set in H" defined by:

$$\varpi(a) = \begin{cases} t & if \ a \in A \\ 0 & if \ a \notin A \end{cases}$$

 $\forall a \in H$, where, $A \subseteq H$ and $t \in (0, 1]$. Then, "A is a (weak, strong) hyper p-ideal iff ω is a fuzzy (weak, strong) hyper p-ideal".

Proof. Let, *A* is a "strong hyper *p*-ideal of *H*". Then for any $i, j, k \in H$ if $(i \circ k) \circ (j \circ k) \cap A \neq \emptyset$ and $j \in A$ then $i \in A$. Thus we have

 $\varpi(i) = t = \min \{\sup_{x \in (i \circ k) \circ (j \circ k)} \varpi(x), \varpi(j)\}$ If $(i \circ k) \circ (j \circ k) \cap A = \emptyset$ and $j \notin A$ then $\varpi(y) = 0, \forall y \in (i \circ k) \circ (j \circ k)$ and $\varpi(j) = 0$, therefore $\min \{\sup_{x \in (i \circ k) \circ (j \circ k)} \varpi(x), \varpi(j)\} = 0 \le \varpi(i)$ If $(i \circ k) \circ (j \circ k) \cap A = \emptyset$ and $j \in A$, OR, $(i \circ k) \circ (j \circ k) \cap A \neq \emptyset$ and $j \notin A$, Then in both of these cases we have:

$$\min \{ \sup_{x \in (iok) \circ (iok)} \varpi(x), \ \varpi(j) \} = 0 \le \varpi(i)$$

Now by Proposition 2.2(ii), "we have $i \circ i \leq i$, $\forall i \in H$ ". Then, $\forall z \in i \circ i, z \ll i$.

"Being a strong hyper *p*-ideal of *H*, $A = \omega_t$ is a hyper *p*-ideal of *H*" (by Theorem 2.10(ii)) and hence ω is a "fuzzy hyper *p*-ideal" of *H* (by Theorem 3.6). Therefore

$$z \ll i \Rightarrow \varpi(z) \ge \varpi(i)$$
, for all $z \in i \circ i$

$$\Rightarrow \inf_{z \in i \circ i} \ \varpi(z) \ge \varpi(i), \forall i \in H$$

Hence ω is a "fuzzy strong hyper *p*-ideal" of *H*.

Conversely, Let ω is a "fuzzy strong hyper *p*-ideal of *H*". Then, by Theorem 3.6, " $\forall t \in (0, 1], \omega_t = A$ is a strong hyper *p*-ideal of *H*". Correspondingly, we can verify the result for the other two types of ideals. \Box

Theorem 3.9. The family of "fuzzy strong hyper p-ideals" is a "completely distributive lattice with respect to join and meet".

Proof. Let $\{\omega_i \mid i \in I\}$ be a family of "fuzzy strong hyper *p*-ideals of *H*". "Since [0,1] is a completely distributive lattice with respect to the usual ordering in [0,1]", it is sufficient to corroborate that, $\forall_{i \in I} \omega_i$ and $\wedge_{i \in I} \omega_i$ are "fuzzy strong hyper *p*-ideals of *H*".

For any $a \in H$ we have,

$$\begin{aligned} \inf_{x \in a \circ a} & ((\vee_{i \in I} \ \varpi_i)(x)) = \inf_{x \in a \circ a} \ (\sup_{i \in I} \ \varpi_i(x)) \\ = & \sup_{i \in I} \ (\inf_{x \in a \circ a} \ \varpi_i(x))) \ge \sup_{i \in I} \ \varpi_i(a) = (\vee_{i \in I} \ \varpi_i)(a) \\ \Rightarrow & \inf_{x \in a \circ a} \ ((\vee_{i \in I} \ \varpi_i)(x)) \ge (\vee_{i \in I} \ \varpi_i)(a) \end{aligned}$$

Moreover, for any $a, b, c \in H$, we have

$$(\vee_{i \in I} \varpi_i)(a) = \sup_{i \in I} \varpi_i(a) \ge \sup_{i \in I} [\min \{ \sup_{y \in (a \circ c) \circ (b \circ c)} \varpi_i(y), \varpi_i(b) \}]$$

$$= \min \{ \sup_{i \in I} (\sup_{y \in (a \circ c) \circ (b \circ c)} \varpi_i(y)), \sup_{i \in I} (\varpi_i(b)) \}$$

$$= \min \{ \sup_{y \in (a \circ c) \circ (b \circ c)} (\sup_{i \in I} \varpi_i(y)), \sup_{i \in I} (\varpi_i(b)) \}$$

$$= \min \{ \sup_{y \in (a \circ c) \circ (b \circ c)} ((\vee_{i \in I} \varpi_i)(y)), (\vee_{i \in I} \varpi_i)(b) \}$$

$$\Rightarrow (\vee_{i \in I} \varpi_i)(a) \ge \min \{ \sup_{y \in (a \circ c) \circ (b \circ c)} ((\vee_{i \in I} \varpi_i)(y)), (\vee_{i \in I} \varpi_i)(b) \}$$

Hence $\lor_{i \in I} \varpi_i$ is a "fuzzy strong hyper *p*-ideal" of *H*.

Now, we prove that $\wedge_{i \in I} \varpi_i$ is a "fuzzy strong hyper *p*-ideal of *H*". For any $a \in H$ we have,

$$\inf_{x \in a \circ a} ((\wedge_{i \in I} \varpi_i)(x)) = \inf_{x \in a \circ a} (\inf_{i \in I} \varpi_i(x))$$
$$= \inf_{i \in I} (\inf_{x \in a \circ a} \varpi_i(x))) \ge \inf_{i \in I} \varpi_i(a) = (\wedge_{i \in I} \varpi_i)(a)$$
$$\Rightarrow \inf_{x \in a \circ a} ((\wedge_{i \in I} \varpi_i)(x)) \ge (\wedge_{i \in I} \varpi_i)(a)$$

Moreover, for any $a, b, c \in H$, we have

$$(\wedge_{i\in I} \ \varpi_i)(a) = \inf_{i\in I} \ \varpi_i(a) \ge \inf_{i\in I} \ [\min \ \{\sup_{y\in(a\circ c)\circ(b\circ c)} \ \varpi_i(y), \ \varpi_i(b)\}]$$

$$= \min \ \{\inf_{i\in I} \ (\sup_{y\in(a\circ c)\circ(b\circ c)} \ \varpi_i(y)), \ \inf_{i\in I} \ (\varpi_i(b))\}$$

$$= \min \ \{\sup_{y\in(a\circ c)\circ(b\circ c)} (\inf_{i\in I} \ \varpi_i(y)), \ \inf_{i\in I} \ (\varpi_i(b))\}$$

$$= \min \ \{\sup_{y\in(a\circ c)\circ(b\circ c)} ((\wedge_{i\in I} \ \varpi_i)(y)), \ (\wedge_{i\in I} \ \varpi_i)(b)\}$$

$$\Rightarrow (\wedge_{i\in I} \ \varpi_i)(a) \ge \min \ \{\sup_{y\in(a\circ c)\circ(b\circ c)} ((\wedge_{i\in I} \ \varpi_i)(y)), \ (\wedge_{i\in I} \ \varpi_i)(b)\}$$
Hence $\wedge_{i\in I} \ \varpi_i$ is a "fuzzy strong hyper *p*-ideal of *H*".

Hence proved. \Box

Correspondingly, as done above, we can Corroborate the result for the other two cases. For the definition of "the stronges fuzzy relation on H", one must see [1].

Theorem 3.10. Let ω be a "fuzzy set" and let λ_{ω} be "the strongest fuzzy relation on H". ω is a "fuzzy strong hyper *p*-ideal iff λ_{ω} is a fuzzy strong hyper *p*-ideal of $H \times H$ ".

Proof. Let, ϖ is a "fuzzy strong hyper *p*-ideal of *H*". Consider $\inf_{(x,y)\in(i_1,i_2)\circ(i_1,i_2)} \lambda_{\varpi}(x, y) = \inf_{(x,y)\in(i_1\circ i_1,i_2\circ i_2)} [\min \{\varpi(x), \ \varpi(y)\}]$ $= \min \{\inf_{x\in i_1\circ i_1} \varpi(x), \ \inf_{y\in i_2\circ i_2} \varpi(y)\} \ge \min \{\varpi(i_1), \ \varpi(i_2)\} = \lambda_{\varpi}(i_1, i_2)$ $\Rightarrow \inf_{(x,y)\in(i_1,i_2)\circ(i_1,i_2)} \lambda_{\varpi}(x, y) \ge \lambda_{\varpi}(i_1, i_2), \forall (i_1, i_2) \in H \times H$ Now, for any $(i_1, i_2), (j_1, j_2), (k_1, k_2)$ in $H \times H$, consider

$\lambda_{\omega}(i_1, i_2) = \min \{ \varpi(i_1), \ \varpi(i_2) \} \ge$		
$\min \left[\min \left\{\sup_{z \in (i_1 \circ k_1) \circ (j_1 \circ k_1)} \varpi(z), \ \varpi(j_1)\right\}, \ \min \left\{\sup_{d \in (i_2 \circ k_2) \circ (j_2 \circ k_2)} \varpi(d)\right\}$		
$, \varpi(j_2)$]		
$= \min \left[\min \left\{ \sup_{z \in (i_1 \circ k_1) \circ (j_1 \circ k_1)} \varpi(z), \sup_{d \in (i_2 \circ k_2) \circ (j_2 \circ k_2)} \varpi(d) \right\}, \min \left\{ \varpi(j_1) \right\} \right]$		
$, \varpi(j_2)$]		
$= \min [\min \{ \sup (\varpi(z), \varpi(d)) \}, \lambda_{\varpi}(j_1, j_2)]$		
where $\sum (i, a, k) = (i, a, k)$ and $d \in (i, a, k) = (i, a, k)$		
$z \in (i_1 \circ k_1) \circ (j_1 \circ k_1) \text{ and } d \in (i_2 \circ k_2) \circ (j_2 \circ k_2)$		
$\Rightarrow \lambda_{\omega}(i_1, i_2) \ge \min [\sup \{\min (\omega(z), \omega(d))\}, \ \lambda_{\omega}(j_1, j_2)]$		
where		
$z \in (i_1 \circ k_1) \circ (j_1 \circ k_1), d \in (i_2 \circ k_2) \circ (j_2 \circ k_2)$		
$\Rightarrow \lambda_{\omega}(i_1, i_2) \ge \min \{ \sup \lambda_{\omega}(z, d), \lambda_{\omega}(j_1, j_2) \}$		
where		
$(z, d) \in ((i_1 \circ k_1) \circ (j_1 \circ k_1), (i_2 \circ k_2) \circ (j_2 \circ k_2))$		
$= ((i_1, i_2) \circ (k_1, k_2)) \circ ((j_1, j_2) \circ (k_1, k_2))$		
Hence, λ_{ω} is a "fuzzy strong hyper <i>p</i> -ideal of $H \times H''$.		
Conversely, let λ_{ω} is a "fuzzy strong hyper <i>p</i> -ideal of $H \times H^{"}$. Then, we have		
$\inf_{(x,y)\in(i_1,i_2)\circ(i_1,i_2)} \lambda_{\varpi}(x,y) \ge \lambda_{\varpi}(i_1,i_2), \forall (i_1,i_2) \in H \times H$		
$\Rightarrow \inf_{(x,y)\in(i_1\circ i_1,i_2\circ i_2)} [\min \{\varpi(x), \ \varpi(y)\}] \ge \min \{\varpi(i_1), \ \varpi(i_2)\}$		
$\Rightarrow \min \{ \inf_{x \in i_1 \circ i_1} \varpi(x), \inf_{y \in i_2 \circ i_2} \varpi(y) \} \ge \min \{ \varpi(i_1), \varpi(i_2) \}$		
$\Rightarrow \{\inf_{x \in i_1 \circ i_1} \varpi(x), \inf_{y \in i_2 \circ i_2} \varpi(y)\} \ge \{\varpi(i_1), \varpi(i_2)\}$		
$\Leftrightarrow \inf_{x \in i_1 \circ i_1} \varpi(x) \ge \varpi(i_1) \text{ and } \inf_{y \in i_2 \circ i_2} \varpi(y) \ge \varpi(i_2), \forall i_1, i_2 \in H.$		

Hence the first condition for ω to be a "fuzzy strong hyper *p*-ideal" is satisfied. Note that "being a fuzzy strong hyper *p*-ideal of $H \times H$, λ_{ω} is also a fuzzy weak hyper *p*-ideal of $H \times H$ " (by Theorem 3.4), thus λ_{ω} satisfies

$$\lambda_{\omega}(0,0) \ge \lambda_{\omega}(i,i), \forall (0,0), (i,i) \in H \times H$$

$$\Rightarrow \min \{\omega(0), \omega(0)\} \ge \min \{\omega(i), \omega(i)\}$$

$$\Rightarrow \omega(0) \ge \omega(i), \forall i \in H$$

Now, for any, (i_1, i_2) , (j_1, j_2) , (k_1, k_2) in $H \times H$, λ_{ω} satisfies

 $\Rightarrow \lambda_{\omega}(i_1, i_2) \geq \min \{ \sup \lambda_{\omega}(e, f), \lambda_{\omega}(j_1, j_2) \}$

where

$$(e,f) \in ((i_1,i_2) \circ (k_1,k_2)) \circ ((j_1,j_2) \circ (k_1,k_2))$$

 $= ((i_1 \circ k_1) \circ (j_1 \circ k_1), \ (i_2 \circ k_2) \circ (j_2 \circ k_2))$

 $\Rightarrow \min \{ \omega(i_1), \ \omega(i_2) \} \ge \min [\sup \{ \min \{ \omega(e), \ \omega(f) \} \}, \ \min \{ \omega(j_1), \ \omega(j_2) \}]$

where

$$(e, f) \in ((i_1 \circ k_1) \circ (j_1 \circ k_1), (i_2 \circ k_2) \circ (j_2 \circ k_2))$$

Putting $i_1 = j_1 = k_1 = 0$ we get $\Rightarrow \min \{ \omega(0), \ \omega(i_2) \} \ge \min [\sup \{ \min \{ \omega(0), \ \omega(f) \} \}, \min \{ \omega(0), \ \omega(j_2) \}]$ Where

 $(e,f)\in (0,(i_2\circ k_2)\circ (j_2\circ k_2))$ $\Rightarrow \varpi(i_2) \ge \min \{ \sup_{f \in (i_2 \circ k_2) \circ (j_2 \circ k_2))} \varpi(f), \ \varpi(j_2) \}, \text{ since } \varpi(0) \ge \varpi(i), \ \forall \ i \in H$ Similarly by putting $i_2 = j_2 = k_2 = 0$, we get,

M. Aslam Malik, Muhammad Touqeer / Filomat 29:8 (2015), 1769–1780

 $\Rightarrow \varpi(i_1) \ge \min \{ \sup_{e \in (i_1 \circ k_1) \circ (j_1 \circ k_1))} \varpi(e), \ \varpi(j_1) \}$

Hence ω is a "fuzzy strong hyper *p*-ideal of *H*". \Box

Identically, as done above, we can corroborate the statement for the other two cases.

Theorem 3.11. Let, " $f : X \rightarrow Y$ be an onto hyper BCK-algebras from a hyper BCK-algebra X to a hyper BCK-algebra Y". If, "v is a "fuzzy strong hyper p-ideal of Y then the hyper homomorphic pre-image ω of v under f is a fuzzy strong hyper p-ideal of X".

Proof. Let, *v* is a "fuzzy strong hyper *p*-ideal of *Y*". Since, ϖ is a "hyper homomorphic pre-image" of *v* under *f*, so ϖ is defined by $\varpi = v \circ f$ that is $\varpi(i) = v(f(i)), \forall i \in X$. Since *v* satisfies

 $\inf_{f(x)\in f(i)\circ f(i)=f(i\circ i)} v(f(x)) \ge v(f(i)), \forall i \in X \text{ and } f(i) \in Y$ $\Rightarrow \inf_{x\in i\circ i} \varpi(x) \ge \varpi(i), \forall i \in X$

Now for any $i, j, k \in X$ consider

 $\varpi(i) = \nu(f(i)) \ge \min \{ \sup_{f(y) \in (f(i) \circ k') \circ (j' \circ k')} \nu(f(y)), \nu(j') \}$

where $j', k' \in Y$. Since $f : X \to Y$ is an onto "hyper BCK-algebras", so for $j', k' \in Y$, $\exists j, k \in X$ such that f(j) = j' and f(k) = k'. Hence we get

$$\begin{split} \varpi(i) &\geq \min \{ \sup_{f(y) \in (f(i) \circ f(k)) \circ (f(j) \circ f(k)) = f((i \circ k) \circ (j \circ k))} \nu(f(y)), \nu(f(j)) \} \\ &\Rightarrow \varpi(i) \geq \min \{ \sup_{y \in (i \circ k) \circ (j \circ k)} \varpi(y), \varpi(j) \}, \forall i, j, k \in X \end{split}$$

Hence proved. \Box

Correspondingly, as done above, we can corroborate the statement for "fuzzy (weak) hyper *p*-ideals". Lastly, we confer the product of two fuzzy hyper *p*-ideals. One may consult [3], for basic material on the "product of fuzzy hyper BCK-ideals".

Theorem 3.12. A fuzzy set $\varpi = \varpi_1 \times \varpi_2$ is a "fuzzy (weak, strong) hyper p-ideal" of $H = H_1 \times H_2$ iff ϖ_1 and ϖ_2 are "fuzzy (weak, strong) hyper p-ideals" of H_1 and H_2 respectively.

Proof. Let $\omega = \omega_1 \times \omega_2$ be a "fuzzy hyper *p*-ideal" of $H = H_1 \times H_2$ and let $i_1 \ll i_2$ for some $i_1, i_2 \in H_1$. Then $(i_1, 0) \ll (i_2, 0)$ which implies $\omega((i_1, 0)) = \omega_1(i_1) \ge \omega((i_2, 0)) = \omega_1(i_2)$, that is, $\omega_1(i_1) \ge \omega_1(i_2)$ Moreover for any $i_1, j_1, k_1 \in H_1$, let $t = \min\{\inf_{a \in (i_1 \circ k_1) \circ (j_1 \circ k_1)} \omega_1(a), \omega_1(j_1)\}$ Then, $\forall b \in (i_1 \circ k_1) \circ (j_1 \circ k_1), \omega_1(b) \ge \inf_{a \in (i_1 \circ k_1) \circ (j_1 \circ k_1)} \omega_1(a) \ge t$ and $\omega_1(j_1) \ge t$ $\Rightarrow \omega((b, 0)) \ge t$ and $\omega((j_1, 0)) \ge t, \forall (b, 0) \in ((i_1, 0) \circ (k_1, 0)) \circ ((j_1, 0) \circ (k_1, 0))$ $\Rightarrow (b, 0) \in \omega_t$ and $(j_1, 0) \in \omega_t$, $\Rightarrow ((i_1, 0) \circ (k_1, 0)) \circ ((j_1, 0) \circ (k_1, 0)) \subseteq \omega_t$ and $(j_1, 0) \in \omega_t$

 \Rightarrow (*i*₁, 0) $\in \varpi_t$, "since ϖ_t is a hyper *p*-ideal" (by Theorem 3.6).

Therefore, $\varpi((i_1, 0)) \ge t$. Thus

 $\omega_1(i_1) \ge t = \min\{\inf_{a \in (i_1 \circ k_1) \circ (j_1 \circ k_1)} \omega_1(a), \omega_1(j_1)\}, \text{ which is our required condition.}$

Likewise, it can be proved that, ω_2 is a "fuzzy hyper *p*-ideal" of H_2 . Conversely suppose that ω_1 and ω_2 are "fuzzy hyper *p*-ideals of H_1 and H_2 " respectively.

For any $(i, l), (j, m) \in H = H_1 \times H_2$, where $i, j \in H_1$ and $l, m \in H_2$, let $(i, l) \ll (j, m)$.

1778

Since $(i, l) \ll (j, m)$ imply $i \ll j$ and $l \ll m$

 $\Rightarrow \varpi_{1}(i) \geq \varpi_{1}(j) \text{ and } \varpi_{2}(l) \geq \varpi_{2}(m)$ $\Rightarrow \min \{ \varpi_{1}(i), \ \varpi_{2}(l) \} \geq \min\{ \varpi_{1}(j), \ \varpi_{2}(m) \}$ $\Rightarrow (\varpi_{1} \times \varpi_{2})((i, l)) \geq (\varpi_{1} \times \varpi_{2})((j, m))$ $\Rightarrow \varpi((i, l)) \geq \varpi((j, m))$ Thus $(i, l) \ll (j, m) \Rightarrow \varpi((i, l)) \geq \varpi((j, m))$ Moreover for any $(i, l), (j, m), (k, n) \in H$, where $i, j, k \in H_{1}$ and $l, m, n \in H_{2}$, $\varpi((i, l)) = (\varpi_{1} \times \varpi_{2})((i, l)) = \min\{ \varpi_{1}(i), \ \varpi_{2}(l) \}$ $\geq \min[\min\{\inf_{c \in (i \circ k) \circ (j \circ k)} \ \varpi_{1}(c), \ \varpi_{1}(j) \}, \min\{\inf_{d \in (l \circ n) \circ (m \circ n)} \ \varpi_{2}(d), \ \varpi_{2}(m) \}]$ $= \min[\min\{\inf_{c \in (i \circ k) \circ (j \circ k), \ d \in (l \circ n) \circ (m \circ n)} \ \{ \varpi_{1}(c), \ \varpi_{2}(d) \}, \min\{ \varpi_{1}(j), \ \varpi_{2}(m) \}]$ $= \min[\inf_{c \in (i \circ k) \circ (j \circ k), \ (l \circ n) \circ (m \circ n)} \ \{ \varpi_{1}(c), \ \varpi_{2}(d) \}, \ \min\{ \varpi_{1}(j), \ \varpi_{2}(m) \}]$ $= \min[\inf_{c \in (i \circ k) \circ (j \circ k), \ (l \circ n) \circ (m \circ n))} \ (\varpi_{1} \times \varpi_{2})(c, d), \ (\varpi_{1} \times \varpi_{2})((j, m)) \}$ $= \min\{\inf_{c,d) \in ((i \circ k) \circ (j \circ k), \ (l \circ n) \circ (m \circ n))} \ \varpi((c, d)), \ \varpi((j, m)) \}$ Hence proved. \Box

Correspondingly, as done above, we can corroborate the statement for the other two cases.

4. Conclusion

From our above discussion we can conclude that:

- a "(fuzzy) strong hyper *p*-ideal" is a "(fuzzy) hyper *p*-ideal" and a "(fuzzy) hyper *p*-ideal" is a "(fuzzy) weak hyper *p*-ideal".
- λ_ω, "the strongest fuzzy relation" on a "hyper BCK-algebra", is a "fuzzy (weak, strong) hyper *p*-ideal" in case, ω is a "fuzzy (weak, strong) hyper *p*-ideal".
- "Hyper homomorphic pre-image", defined on an "onto hyper homomorphism", of a "fuzzy (weak, strong) hyper *p*-ideal" is also a "fuzzy (weak, strong) hyper *p*-ideal".
- The product of two "fuzzy (weak, strong) hyper *p*-ideal" is again a "fuzzy (weak, strong) hyper *p*-ideal".

References

- [1] P. Bhattacharya, N. P. Mukherjee: Fuzzy relations and fuzzy groups, Information Sci. 36 (1985), 261-282.
- [2] R.A. Borzooei, W.A. Dudek, N. Koohestani: On hyper BCC-algebras, International J. Math. and Math. Sciences (2006), Article ID 49703.
- [3] R.A. Borzooei, A. Hasankhani, M.M. Zahedi, Y.B. Jun: On hyper K-algebras, Math. Japonica 52 (1) (2000), 113-121.
- [4] W.A. Dudek: Solid weak BCC-algebras, Intern. J. Computer Math. 88 (2011), 2915-2925.
- [5] W.A. Dudek, B. Karamdin, S.A. Bhatti: Branches and ideals of weak BCC-algebras, Algebra Colloquium 18 (Special) (2011), 899-914.
- [6] W.A. Dudek, J. Thomys: On some generalizations of BCC-algebras, Intern. J. Computer Math. 89 (2012), 1596-1616.
- [7] W.A. Dudek, Y.B. Jun, Z. Stojakovic: On fuzzy ideals in BCC-algebras, Fuzzy Sets and Systems 123(2001), 251-258.

- [8] W.A. Dudek, X.H Zhang, Y.Q Wang: ideals and atoms of BZ-algebras, Mathematica Slovaca 59 (4) (2009), 387-404.
 [9] Y. Imai, K. Iseki: On axioms of propositional calculi, XIV Proc., Jpn. Acad. 42 (1966), 19-22.
- [10] Y.B. Jun, X.L. Xin: Fuzzy hyper BCK-ideals of hyper BCK-algebras, Sci. Math. Jpn. 53 (2) (2001), 415-422.
- [11] Y.B. Jun, X.L. Xin: FuZzy hyper bCk-rdears of hyper bCk-algebras, Sci. Math. Jpn. 35 (2) (2001), 413–422.
 [11] Y.B. Jun, X.L. Xin: Scalar elements and hyperatoms of hyper BCK-algebras, Sci. Math. Jpn. 2 (3)(1999), 303-309.
 [12] Y.B. Jun, X.L. Xin, M.M. Zahedi, E.H. Roh: Strong hyper BCK-ideals of hyper BCK-algebras, Math. Jpn. 51 (3) (2000), 493-498.
 [13] Y.B. Jun, M.M. Zahedi, X.L. Xin, R. A. Borzooei: On hyper BCK-algebras, Ital. J. Pure Appl. Math. 8 (2000), 127-136.
 [14] Y. Komori: The variety generated by BCC-algebras is finitely based, Reports Fac. Sci. Shizuoka Univ. 17 (1983), 13-16.

- [15] M. Kondo, W.A. Dudek: On the transfer principle in fuzzy theory, Mathware and Soft Computing 12 (2005), 41-55.
- [16] F. Marty: Sur une generalization de la notion de groupe, 8th Congress Math. Scandinaves, Stockholm 1934, 45-49.
 [17] L. A Zadeh: Fuzzy sets, Inf. Control 8 (1965), 338-353.