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Abstract. A set of vertices S of a graph G is a geodetic set of G if every vertex v ¢ S lies on a shortest path
between two vertices of S. The minimum cardinality of a geodetic set of G is the geodetic number of G and
it is denoted by g(G). A Steiner set of G is a set of vertices W of G such that every vertex of G belongs to
the set of vertices of a connected subgraph of minimum size containing the vertices of W. The minimum
cardinality of a Steiner set of G is the Steiner number of G and it is denoted by s(G). Let G and H be two
graphs and let 1 be the order of G. The corona product G © H is defined as the graph obtained from G and
H by taking one copy of G and 1 copies of H and joining by an edge each vertex from the i"-copy of H to
the i""-vertex of G. We study the geodetic number and the Steiner number of corona product graphs. We
show that if G is a connected graph of order n > 2 and H is a non complete graph, then g(Go H) < s(GOH),
which partially solve the open problem presented in [Discrete Mathematics 280 (2004) 259-263] related to
characterize families of graphs G satisfying that g(G) < s(G).

1. Introduction

The Steiner distance of a set of vertices of a graph was introduced as a generalization of the distance
between two vertices [2]. In this sense, Steiner sets in graphs could be understood as a generalization of
geodetic sets in graphs. Nevertheless, its relationship is not exactly obvious. Some of the primary results
in this topic were presented in [4], where the authors tried to obtain a result relating geodetic sets and
Steiner sets. That is, they tried to show that every Steiner set of a graph is also a geodetic set. Fortunately,
the author of [9] showed by a counterexample that not every Steiner set of a graph is a geodetic set, and
it was pointed out an open question related to characterizing those graphs satisfying that every Steiner
set is geodetic or vice versa. Some relationships between Steiner sets and geodetic sets were obtained in
[3, 4, 8-10]. For instance, [3] was dedicated to obtain some families of graphs in which every Steiner set is
a geodetic set, but the problem of characterizing such graphs remains open.

In this work we show some classes of graph in which every Steiner set is a geodetic set. For instance, we
prove thatif G is a graph with diameter two, then every Steiner set of G is also a geodetic set. We also obtain
some relationships between the Steiner (geodetic) sets of corona product graphs and the Steiner (geodetic)
sets of its factors and, as a consequence of this study, we obtain that if G is a corona product graph, then
every Steiner set of G is a geodetic set.
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We begin by stating some terminology and notation. In this paper G = (V, E) denotes a connected simple
graph of order n = |V|. We denote two adjacent vertices u and v by u ~ v. Given a set W C V and a vertex
v € V, Nw(v) represents the set of neighbors that v has in W, i.e. Nw(v) = {u € W : u ~ v}. The subgraph
induced by a set W C V will be denoted by (W).

The distance dg(u, v) between two vertices u and v is the length of a shortest # — v path in G. If there is
no ambiguity, we will use the notation d(u, v) instead of d¢(u, v). A shortest u —v path is called u —v geodesic.
We define Ig[u, v]Y to be the set of all vertices lying on some u — v geodesic of G = (V, E), and for a nonempty
set S C V, Ig[S] = U, pes Ic[u, v] (I[S] for short). A set S C V is a geodetic set of G if Ig[S] = V and a geodetic
set of minimum cardinality is called a minimum geodetic set [6]. The cardinality of a minimum geodetic set
of G is called the geodetic number of G and it is denoted by g(G). A vertex v € V is geodominated by a pair
x,y € Vif v lies on an x — y geodesic of G. For an integer k > 2, a vertex v of a graph G is k-geodominated by
a pair x, y of vertices in G if d(x, y) = k and v lies on an x — y geodesic of G. A subset S C V is a k-geodetic set
if each vertex vin S = V - § is k-geodominated by some pair of vertices of S, [7]. The minimum cardinality
of a k-geodetic set of G is its k-geodetic number gi(G). It is clear that g(G) < gx(G) for every k.

For a nonempty set W of vertices of a connected graph, the Steiner distance d(W) of W is the minimum
size of a connected subgraph of G containing W, [2]. Necessarily, such a subgraph is a tree and it is called a
Steiner tree with respect to W or a Steiner W-tree, for short. For a set W C V, the set of all vertices of G lying
on some Steiner W-tree is denoted by S¢[W] (or by S[W], if there is no ambiguity). If Sg[W] = V, then W
is called a Steiner set of G. The Steiner number of a graph G, denoted by s(G), is the minimum cardinality
among the Steiner sets of G.

Let G and H be two graphs and let n be the order of G. The corona product G © H is defined as the
graph obtained from G and H by taking one copy of G and n copies of H and then joining by an edge, all the
vertices from the i"-copy of H to the i"-vertex of G. Among others, complete graphs, stars, comb graphs,
wheels and fan graphs are basic examples of corona product families, all of them being of the type K; © H.
Notice that G © H is a complete graph if and only if G is a trivial graph and H is a complete graph. Figure 1
shows two examples of corona product graphs where the factors are non-trivial.

Figure 1: From the left, we show the corona graphs Cs © K> and P3 © K3.

Throughout the article we will denote by V = {v1, v, ..., v} the set of vertices of G and by H; = (V;, E;)
the copy of H in G © H such that v; ~ v for every v € V;.
2. Geodetic Number of Corona Product Graphs

We begin by stating some results that we will use as tool in this section. The first one is the following
well-known result.

Lemma 2.1. [6] Let G be a connected graph of order n. Then g(G) = n if and only if G = K.

Our second tool will be the following useful lemma related to the geodetic sets of corona product graphs.

DIf there is no ambiguity, then we will use I[u, v].
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Lemma 2.2. Let G = (V,E) be a connected graph of order n and let H be a graph. Let Hy = (V1,E1),Hy =
(Va,E2), ..., Hy = (Vyu, Ey) be the n copies of H in G © H.

(i) Given three different verticesa, bandvof GOH, ifv € Viand (a & Viorb ¢ V;), then v ¢ Igonla, b].
(i) If W is a geodetic set of G © H, then W N V; # 0, for every i € {1, ..., n}.
(iii) If W is a minimum geodetic set of G © H and G © H is a non-complete graph, then WN'V = 0.

(iv) IfH is a non-complete graph and W is a minimum geodetic set of GOH, then for everyi € {1, ..., n}, W; = WNV;
is a geodetic set of (v;) © H;.

Proof. Items (i) and (ii) follow directly from the fact that the vertices belonging to V; are adjacent to only
one vertex not in V;.

Item (iii) is a direct consequence of two well known facts: (1): No cut-vertex belongs to a minimum
geodetic set, which leads to the result when G is non-trivial; (2) No vertex of degree n’ — 1 belongs to
a minimum geodetic set unless the graph be K, , which leads to the result when G is trivial and H is
non-complete.

Finally, let H be a non-complete graph and let W be a minimum geodetic set of G © H. By (ii) we have
that W; = WN V; # 0. Also, by (iii) we have that V N W = 0. Now we suppose that W; is not a geodetic set
of (v;) © H;. Hence, there exists v € V; U {v;} such that v ¢ I, o, [, y] for every x, y € W;. By (i) we have that
if v € V; — W, then v must be geodominated by vertices of W;, which is a contradiction, so v ¢ Vj,i.e., v = v;.
Now, since v; is adjacent to every vertex of H; and H; is a non-complete graph, we obtain that there exist
two non-adjacent vertices c,d of H; such that c,d € W;. Hence, v; € Iiyyon,lc, d], a contradiction. Therefore,
(iv) follows. [

The following relation between g(H) and g(K; © H), which we will use here, was obtained in [3].
Lemma 2.3. [3] For any graph H, g(K; © H) > g(H).

A vertex v is an extreme vertex in a graph G if the subgraph induced by its neighbors is complete. The
following lemma is a consequence of the observation that each extreme vertex v of G is either the initial or
terminal vertex of a geodesic containing v.

Lemma 2.4. [1] Every geodetic set of a graph contains its extreme vertices.

Proposition 2.5. Let G be a connected graph of order ny and let H be a graph of order n,. If G © H is a non-complete
graph, then
mg(H) < g(G o H) < nin,.

The upper bound is achieved if and only if H is isomorphic to a graph in which every connected component is isomorphic
to a complete graph.
Moreover, if no connected component of H is isomorphic to a complete graph, then

9(GOH) <ni(np - 1).

Proof. If H = K,,, the vertices of the set U!,V; are extreme vertices. Then, by Lemma 2.4 we have
9(G © Ky,,) = miny = n1g(Ky,). For non-complete graphs the lower bound follows directly from Lemma 2.2
(iv) and Lemma 2.3. On the other hand, if n; > 2, then every vertex v; € V is geodominated, in G© H,
by two vertices belonging to different copies of H. So, the set [, V; is a geodetic set of G ® H. Thus,
9(G © H) < nyny. Finally, if n; = 1, then the order of G © H is 1, + 1. Hence, if H is a non-complete graph,
then Lemma 2.1 leads to the upper bound g(K; © H) < n,.

Now, let us suppose that there is a component of H which is not isomorphic to a complete graph. In
such a case, there are three different vertices u;, x;, y; € V; such that u; € Iy [x;, y;], with i € {1,...,m}. Let
V=Av1,..., 0}, Ui =V; = {u;}, withi € {1,...,n1}, and let U = U?:ll U;. We will show that U is a geodetic set
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of G© H. Since for every vertex u; € U; we have that u; € Ir,[xi, yi], we obtain that u; € Igou[U]. Also, as for
every v; € V, we have that v; € Igen[a, b], for some a € U; and b € U, with i # j, we obtain that v; € Igen[U].
Therefore, U is a geodetic set of G © H and, as a consequence, g(G © H) < |U| = ny(ny — 1). Therefore, if
9(G © H) = nyny, then H is isomorphic to a graph in which every connected component is isomorphic to a
complete graph. O

Theorem 2.6. Let G be a connected graph of order n and let H be a non-complete graph. Then,
9(G O H) = ng(K; © H).

Proof. Let W be a minimum geodetic set of G ® H. From Lemma 2.2 (iii) we have that WN V = (. Also,
by Lemma 2.2 (ii) and (iv) we have that for every i € {1,...,n}, the set W; = WN V; # 0 is a geodetic set of
(v;) ©H; = K1 ® H. Hence, we have

9(GoH) =W =) IWi> ) g(w)oH,) = ng(Ki © H).
i=1

i=1

On the other hand, let U; C V; U {v;} be a minimum geodetic set of (v;) ® H; and let U = U!, U;. Notice
that, by Lemma 2.2 (iii), v; ¢ U;. We will show that U is a geodetic set of G © H. Let us con51der a vertex x
of G ® H. We have the following cases.

Case 1: If x € (V; U {v;}) — U;, then there exist u, v € U; such that x € I(yyom,[1, v]. So, x € Igon[u, v].

Case 2: If x = v; € V and n 2 2, then for every vertex v € U; and some u € Uj, j # i we have that
x € Iconlu,v]. Also, if x € V and n = 1, then as H is a non-complete graph, there exist two different vertices
a,b € U = U, such that x € Igon[a, b].

Thus, every vertex x of G © H is geodominated by a pair of vertices of U and, as a consequence,
9(G © H) < ng(K; © H). Therefore, we obtain that g(G© H) = ng(K; ©H). O

The geodetic number of wheel graphs and fan graphs were studied in [3] and [5].
Remark 2.7. [3] Ifn > 4, then g(W1,,) = [%]

Remark 2.8. [3, 5] Ifn > 3, then g(Fy,) = [”T”-‘
As a particular cases of Theorem 2.6 and by using the above remarks we obtain the following results.
Corollary 2.9. Let G be a connected graph of order n;.
(i) Ifny =4, then g(G O Cp,) = mg(Wi,) = 1 [%]
(i) Ifny = 3, then g(G © Py,) = n1g(F14,) = m [”ZT“-‘

From Lemma 2.3 we have that g(K; © H) > g(H). Hence, Theorem 2.6 leads to the lower bound of
Proposition 2.5. Now we are interested in those graphs in which g(H) = g(K; © H).

Theorem 2.10. For a connected non-complete graph H, the following statements are equivalent:
e g(H) = g(K;i ©H).
* g(H) = g,(H).

Proof. Let us suppose g(H) = g,(H). Let W be a 2-geodetic set of minimum cardinality in H. Hence, for
every vertex u € W there exist a,b € W, such that u € Iy[a,b] and du(a,b) = 2. Since every geodesic of
length two in H is a geodesic in K; © H, we have that W is a geodetic set of K; ® H. As a consequence,
g(H) > g(K; © H). Hence, by Lemma 2.3 we conclude that g(H) = g(K; © H).
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On the other hand, let us suppose g(H) = g(K; © H). Let U be a minimum geodetic set of K; © H and let
v be the vertex of K;. Since H can not be a complete graph, by Lemma 2.2 (iii) we have that v ¢ U. Now,
since K; © H has diameter two, we have that for every vertex u of H not belonging to U, there exista,b € U
such that u € Ix,enla, b] and dy(a,b) = 2 (Note that if dy(a,b) > 2, then u ¢ Ix,0nla, b] = {a,b,v}). Hence,
U is a 2-geodetic set of H. Thus, g,(H) < |U| = g(K; © H) = g(H). Also, as g(H) < g,(H), we obtain that
g(H) = g,(H). O

Theorem 2.11. Let G be a connected graph of order n and let H be a connected non-complete graph. Then the
following statements are equivalent:

e 9(GOH) = ng(H).
o g(H) = g,(H).
Proof. The result is a direct consequence of Theorem 2.6 and Theorem 2.10. O
Since for every graph H of diameter two we have g(H) = g,(H), Theorem 2.11 leads to the following result.
Corollary 2.12. Let G be a connected graph of order n and let H be a graph. If D(H) = 2, then
9(G © H) = ng(H).
Another consequence of Theorem 2.10 is the following result.

Corollary 2.13. Let G and H be two connected graphs of order ny and ny, respectively. Let Ny be the empty graph of
order k > 2. Then
9(G © (H © Ny)) = ninak.

Proof. The result follows from the fact that g(H © Nx) = g,(H © Ny) = mpk. That is, the set composed
by the nyk pendant vertices of H © N form a geodetic set of H © Ny which is a 2-geodetic set. So,
g(H O Ny) < g,(HO Ni) < npk. Moreover, since every pendant vertex is an extreme vertex, by Lemma 2.4 we
have g(H © Ni) > nyk. Therefore, the result follows. [J

The following result improves the lower bound in Proposition 2.5 for those graphs whose geodetic
number is different from its 2-geodetic number.

Theorem 2.14. Let G be a connected graph of order n and let H be a non-complete graph. If g(H) # g,(H), then
9(GOH) 2n(g(H)-1).
Proof. As a direct consequence of Theorem 2.10 and Lemma 2.3 we obtain that, if g(H) # g,(H), then
g(Ky © H) > g(H) - 1. (1)

Hence, the result follows directly by Theorem 2.6 and (1). O

3. Steiner Number of Corona Product Graphs
In this section the main tool will be the following basic lemma.

Lemma 3.1. Let G = (V, E) be a connected graph of order ny and let H be a graph of order ny. Let Hy = (V1,Eq1),Hy =
(V3,E2), ..., Hy = (Vy, E,;) be the ny copies of Hin G © H.

(i) If G is non-trivial and A C U, V; with ANV, # 0, for every i € {1, ...,m}, then every Steiner A-tree contains
all vertices of G
(i) If U is a Steiner set of GO H, then U N V; # 0, for every i € {1, ..., n}.
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(iii) If G or H is non-trivial, then for every Steiner set U of minimum cardinality in G © H it follows UN 'V = 0.

Proof. (i) follows from the fact that if there exists a Steiner A-tree T not containing a vertex of G, then T is
not connected, which is a contradiction. (ii) follows directly from the fact that the vertices belonging to V;
are adjacent to only one vertex not in V.

Now let U’ be a Steiner set of G©® H and let U = U’ — V. We will show that U is a Steiner set of G © H.
By (ii) we have that UN V; # 0, for every i € {1, ...,n}. Also, if v € V;, then we have that there exists a Steiner
U-tree in G © H such that it contains the vertex v. Now, since n; > 2 we obtain that every vertex v; € V
belongs to every Steiner U-tree (note that every shortest u — v path, where v € V; and u € Vj, j # i, must
contain v;). Thus, U is a Steiner set of G ® H and (iii) follows. [J

The next lemmas obtained in [4] will be useful to obtain our results.
Lemma 3.2. [4] Let G be a connected graph of order n. Then s(G) = n if and only if G = K,,.

Before present our main results about the Steiner number, let us show the following useful lemma.
Lemma 3.3. For any graph G, s(K; © G) = s(G).

Proof. Let n be the order of G. If G = K, then K; © G = K;;41, so by Lemma 3.2, s(K; ©G) =n+1 > n = 5(G).
If G # K,, then the result follows immediately from Lemma 3.1 (iii). [

Proposition 3.4. For any connected non-trivial graph G of order ny and any graph H of order ny, s(G © H) = nin,.

Proof. Let A = U2 V;. By Lemma 3.1 (iii) we have that every Steiner set of minimum cardinality is a subset
of A. Thus, A is a Steiner set of G © H and, as a consequence, s(G © H) < njn.

Now, let us suppose B is a Steiner set of minimum cardinality in G © H. By Lemma 3.1 (iii) we have that
B does not contain any vertex of G. Now;, let us suppose there exists a vertex v; € V such that BN V; C V.
Let B; = BN V; and let u € V; — B;. Since every vertex of B; is adjacent to v;, and v; belongs to every Steiner
B-tree T, we have that the size of the restriction of T to V; U {v;} is |B;|. Thus, the vertex u does not belong to
any Steiner B-tree in G © H, which is a contradiction. Thus, for every i € {1, ...,n1} we have that BN V; = V.
Therefore, s(G © H) > nin,. The proof is complete. [

The Steiner number of wheel graphs and fan graphs were studied in [3] and [5].

Remark 3.5. [3] Ifn > 4, then s(W1,,) =n —2.

Remark 3.6. [3,5] If n > 3, then g(F1,) =n—1.

Theorem 3.7. Let H be a connected non complete graph. Then the following statements are equivalent:
e s(K; © H) = s(H).
e D(H) =2

Proof. Let B be a Steiner set of minimum cardinality in H and let v be the vertex of K;. If D(H) = 2, then
there exist three vertices of H such that x,y € Band z ¢ B, dy(x,y) = 2 and x,y € Np(z). So, if we take a
Steiner B-tree T in H containing the path xzy, then replacing the vertex z of T by the vertex v, and replacing
every edge uz of T by a new edge uv, we obtain a Steiner B-tree T’ in K1 © H. Hence, B is a Steiner set of
Ki © H. Therefore, s(H) > s(K; © H) and, by Lemma 3.3, we conclude s(H) = s(K; © H).

Now, let H be a graph such that s(K; © H) = s(H). Let W be a Steiner set of minimum cardinality in
K1 © H and let v be the vertex of K;. We first show that W is a Steiner set of H. Note that by Lemma 3.1 (iii),
v ¢ W. Since the star graph of center v is a Steiner W-tree, we have that the Steiner distance of Win K; © H
is d(W) = |W|. If (W) is connected, then |W| is the order of K1 ® H, which is a contradiction. Thus, (W) is
non-connected. Let (Wy), (W>), ...,{Wj) be the connected components of (W). If there exists a vertex u of H
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such thatu ¢ W and Ny, (1) = 0, for some i, then the Steiner distance of W in Ky ©H is d(W) > Zle [Wi| = W],
which is a contradiction. So, every vertex u of H not belonging to W is at distance one to every connected
component of (W) and, as a consequence, W is a Steiner set of H, which has minimum cardinality since
s(Ky © H) = s(H). Let us show that D(H) = 2. On the contrary, we suppose that D(H) > 3 (note that H is not
a complete graph). From the assumption D(H) > 3, we conclude that for each vertex u of H, not belonging
to W, there exist y € W; (for some i) such that d(y, u) = 2. Let x € W; be a neighbor of both u and y, and let
W’ = W — {x}. Then we have that every Steiner W-tree of H is a Steiner W’-tree of H and, as a consequence,
W’ is a Steiner set of H, which is a contradiction. Therefore, D(H) =2. [

4. Relationships Between the Geodetic Number and the Steiner Number
First of all, notice that K; © K,, = K,,41 and hence
9(K1 0 K;) = g(Kiy1) = s(Kiy1) =s(K1 ©Ky,) =n + 1.
Also, by Propositions 2.5 and 3.4 we have that for any connected nontrivial graph G of order n;,
9(G O Ky,) =5(GOKy,) = niny.

Now we show some classes of graphs where the Steiner number is greater than or equal to the geodetic
number.

Theorem 4.1. If G is a graph of diameter two, then every Steiner set of minimum cardinality in G is a geodetic set
of G.

Proof. Let W be a Steiner set of minimum cardinality in G and let n be the order of G. If (W) is connected,
then |W| = n. So, by Lemma 3.2 we have that G = K,;, which is a contradiction because G has diameter two.
Thus, (W) is non-connected. Let (B1),(B>), ..., (B;) be the connected components of (W). We assume that W
isnot a geodetic set. Then there exists a vertex x of G such that x ¢ I[W]. Thus, x ¢ W and x ¢ I[u, v] for every
u,v € W. Hence, Nw(x) C B;, for some i € {1, ...,r}. Since G has diameter two, any Steiner W-tree is formed
by r Steiner B;-trees connected by vertices vy, vy, ..., v;, t > 1, not belonging to W such that Nw(v;) ¢ B, for

everyi€{l,..t}and j € {1,..,r}. Hence, SIW] = (Ui, s[Bi]) U (Ule{v,«}) = (U, B)u (Ule{vi}), where the
last equality comes from the connectivity (B;). Therefore x ¢ S[W], which is a contradiction. [J

Corollary 4.2. If G is a graph of diameter two, then g(G) < s(G) and, in particular, if H is a non-complete graph,
g(Ky © H) < s(K; © H).

Now, from Theorem 2.6, Proposition 3.4 and Corollary 4.2 we obtain the following interesting result in
which we give an infinite number of graphs G satisfying that g(G) < s(G).

Theorem 4.3. Let G be a connected graph of order ny > 2 and let H be any non-complete graph of order ny. Then,
9(GOH) <s(GOH).

Proof. By Theorem 2.6 we have that g(G © H) = ng(K; © H). Since, K; © H has diameter two, by Corollary
4.2 we have that g(K; © H) < s(K; © H). Finally, by Proposition 3.4 we know that s(G © H) = nin,. Hence,

9(GOH) = n1g(Ky © H) < m15(Ky © H) < mnp = s(G © H).
|
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