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Abstract. In this paper, the monodromy groupoids of internal groupoids in the topological groups with
operations are studied and a monodromy principle for internal groupoids in groups with operations is
obtained.

Introduction

One form of the monodromy principle was enunciated by Chevalley in [16, Theorem 2, Chapter 2]. The
general idea is that of extending a local morphism f on a topological structure G, or extending a restriction of
f , not to G itself but to some simply connected cover of G. A form of this for topological groups was given in
[16, Theorem 3], and developed in [23] for Lie groups. We refer the readers to the introduction of an earlier
paper [30] on monodromy and monodromy groupoids. As stated there the notion of monodromy groupoid
was indicated by J. Pradines in [36] as part of his grand scheme announced in [36–39] to generalise the
standard construction of a simply connected Lie group from a Lie algebra to a corresponding construction
of a Lie groupoid from a Lie algebroid (see also [26, 27, 34]).

Let G be a topological groupoid such that the stars StGx’s, the fibres of initial point map of the groupoid,
are path connected and have universal covers. Let Mon(G) be the disjoint union of the universal covers
of the stars StGx’s at the base points identities of the groupoid G. Then there is a groupoid structure on
Mon(G) defined by the concatenation composition of the paths in the stars StGx. So there is a projection
map p : Mon(G)→ G. In [28], the star topological groupoid and topological groupoid structures of Mon(G)
are studied under some suitable local conditions (see [13] and [14] for the smooth groupoid case including
topological groupoids). We call Mon(G), the monodromy groupoid of G.

In the locally trivial case, Mackenzie [26, p.67-70] gives a non-trivial direct construction of the topol-
ogy on Mon(G) and proves also that Mon(G) satisfies the monodromy principle on the globalisation of
continuous local morphisms on G.

In the case where G is a connected topological group satisfying the usual local conditions of covering
space theory, the monodromy groupoid Mon(G) is the universal covering group, while if G is the topological
groupoid X ×X, for a topological space X, the monodromy groupoid Mon(G) is, again under suitable local
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conditions, the fundamental groupoid πX. Thus the monodromy groupoid generalizes the concepts of
universal covering group and the fundamental groupoid. For further discussion, see [11].

A group-groupoid is a group object in the category of groupoids [15]; equivalently, it is an internal category
and hence an internal groupoid in the category of groups [35]. An alternative name, quite generally used,
is “2-group”, see for example [5]. Recently the notion of monodromy for topological group-groupoids was
introduced and investigated in [30], and normality and quotients in group-groupoids were developed in
[31].

In [15, Theorem 1] Brown and Spencer proved that the category of internal categories within the groups,
i.e., group-groupoids, is equivalent to the category of crossed modules of groups. Then in [35, Section 3],
Porter proved that a similar result holds for certain algebraic categories C, introduced by Orzech [33], which
definition was adapted by him and called category of groups with operations. Applying Porter’s result, the
study of internal category theory in C was continued in the works of Datuashvili [19] and [20]. Moreover,
she developed cohomology theory of internal categories, equivalently, crossed modules, in categories of
groups with operations [18, 21].

In a similar way, the results of [15] and [35] enabled us to develop the results of [30] for internal
groupoids in topological groups with operations. So in this paper we aim to prove that the results of [30]
can be generalized to a wide class of algebraic categories, which include categories of topological groups,
rings, associative algebras, associative commutative algebras, Lie algebras, Leibniz algebras, alternative
algebras and others. These are conveniently handled by working in a category TopC.

The organization of the paper is as follows: In section 1, we recall some preliminary concepts on
groupoids, star topological groupoids and topological groupoids. In Section 2 we give a brief construction
of the monodromy groupoid Mon(G) for a topological groupoid G such that the stars, the fibres of the
initial point map of groupoid, have universal covers. In Section 3, we prove that if G is an internal
groupoid in topological groups with operations such that the stars of G have universal coves, then the
monodromy groupoid Mon(G) becomes an internal groupoid in groups with operations. Finally in Section
4 we explain other construction of monodromy groupoid Mon(G,W) using free groupoid notions, identify
the monodromy groupoids Mon(G) and Mon(G,W) when the stars of G are simply connected and give a
week monodromy principle for internal groupoids in the groups with operations.

The main results of this paper form some parts of Ph.D thesis of second author at Erciyes University.

1. Preliminary notions on groupoids

A groupoid is a small category in which each morphism is an isomorphism (see for example [7] and [26]).
So a groupoid G has a set G of morphisms, which we call just elements of G, a set G0 of objects together with
initial and final point maps s, t : G → G0 and object inclusion map ε : G0 → G such that sε = tε = 1G0 . There
exists a partial composition defined by Gt ×s G → G, (1, h) 7→ 1 ◦ h, where Gt ×s G is the pullback of t and
s. Here if 1, h ∈ G and t(1) = s(h), then the composite 1 ◦ h exists such that s(1 ◦ h) = s(1) and t(1 ◦ h) = t(h).
Further, this partial composition is associative, for x ∈ G0 the element ε(x) acts as the identity, and each
element 1 has an inverse 1−1 such that s(1−1) = t(1), t(1−1) = s(1), 1 ◦ 1−1 = ε(s(1)), 1−1

◦ 1 = ε(t((1)). The map
G → G, 1 7→ 1−1 is called the inversion. In a groupoid G, the initial and final points, the object inclusion,
the composite and inversion maps are called structural maps. An example of a groupoid is fundamental
groupoid of a topological space X, where the objects are points of X and morphisms are homotopy classes
of the paths relative to the end points. A group is a groupoid with one object.

In a groupoid G for x, y ∈ G0 we write G(x, y) for s−1(x) ∩ t−1(y). The difference map δ : G ×s G → G is
given by δ(1, h) = 1−1

◦ h, and is defined on the double pullback of G by s. If x ∈ G0, and W ⊆ G, we write
StWx for W ∩ s−1(x), and call StWx the star of W at x. Especially we write StGx for s−1(x) and call star of G at
x. We denote the set of inverses of the morphisms in W by W−1. The set of all morphisms from x to x is a
group, called object group at x, and denoted by G(x) = G(x, x).

Let G and H be groupoids. A morphism from H to G is a pair of maps f : H → G and f0 : H0 → G0 such
that s f = f0s, t f = f0t and f (1 ◦ h) = f (1) ◦ f (h) for all (1, h) ∈ Ht ×s H. For such a morphism we simply write
f : H→ G.
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A star topological groupoid is a groupoid in which the stars StGx’s have topologies such that for each
1 ∈ G(x, y) the left (and hence right) translation

L1 : StGy→ StGx, h 7→ 1 ◦ h

is a homeomorphism and G is the topological sum of the StGx’s. A topological groupoid G defined
in Definition 1.1 may be retopologized as the topological sum of its stars to become a star topological
groupoid.

A subset W of a star topological groupoid G is called star connected (resp. star simply connected) if for
each x ∈ G0, the star StWx of W at x is connected (resp. simply connected). So a star topological groupoid
G is star connected (resp. star simply connected) if each star StGx of G is connected (resp. simply connected).

We adapt the following definition from [26]. See also [9] and [10] for some earlier works on topological
groupoids.

Definition 1.1. Let G be a groupoid on G0. If the set G of morphisms and the set X = G0 of objects have
both topologies such that the source and target maps s, t : G → G0, the difference map δ : (1, h) 7→ 1−1

◦ h
defined on the double pullback Gt×sG and the unit map ε : G0 → G, x 7→ ε(x) are continuous, then G is
called a topological groupoid.

Recall that a covering map p : X̃ → X of connected spaces is called universal if it covers every covering
of X in the sense that if q : Ỹ→ X is another covering of X then there exists a map r : X̃→ Ỹ such that p = qr
(hence r becomes a covering). A covering map p : X̃→ X is called simply connected if X̃ is simply connected.
So a simply connected covering is a universal covering.

Let X be a topological space admitting a simply connected cover. A subset U of X is called liftable if U is
open, path-connected and the inclusion U→ X maps each fundamental group of U trivially. If U is liftable,
and q : Y → X is a covering map, then for any y ∈ Y and x ∈ U such that qy = x, there is a unique map
ı̂ : U → Y such that ı̂x = y and qı̂ is the inclusion U → X. A space X is called semi-locally simply connected if
each point has a liftable neighborhood and locally simply connected if it has a base of simply connected sets.
So a locally simply connected space is also semi-locally simply connected.

Let X be a topological space such that each path component of X admits a simply connected covering
space. It is standard that if πX is the fundamental groupoid of X, topologised as in [8], and x ∈ X, then the
target map t : StπXx→ X is the universal covering map of X based at x (see also Brown [7, Chapter 9]).

The following theorem is proved in [8, Theorem 1]. We give a sketch proof since we need some details
of the proof in Theorem 3.11. An alternative but equivalent construction of the topology is in [7, 10.5.8].

Theorem 1.2. If X is a locally path connected and semi-locally simply connected space, then the fundamental groupoid
πX may be given a topology making it a topological groupoid.

Proof: LetU be the open cover of X consisting of all liftable subsets. For each U inU and x ∈ U define a
map λx : U → πX by choosing for each x′ ∈ U a path in U from x to x′ and letting λx(x′) be the homotopy
class of this path. By the condition on U the map λx is well defined. Let Ũx = λx(U). Then the sets Ũ−1

x αṼy
for all α ∈ πX(x, y) form a base for a topology such that πX is a topological groupoid with this topology. �

2. A review of monodromy groupoid Mon(G)

Let G be a star topological groupoid such that each star StGx has a universal cover. The groupoid Mon(G)
is defined from the universal covers of stars StGx’s at the base points identities as follows: As a set, Mon(G)
is the union of the stars Stπ(StGx)ε(x). The object set X of Mon(G) is the same as that of G. The initial point
map s : Mon(G)→ X maps all of star Stπ(StGx)ε(x) to x, while the target point map t : Mon(G)→ X is defined
on each Stπ(StGx)ε(x) as the composition of the two target maps

Stπ(StGx)ε(x) t
−→ StGx t

−→ X.
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As explained in Mackenzie [26, p.67] there is a multiplication on Mon(G) defined by

[a] • [b] = [a�(a(1) ◦ b)]

where � inside the bracket denotes the usual composition of paths and ◦ denotes the composition in the
groupoid. Here a(1) ◦ b is the path defined by (a(1) ◦ b)(t) = a(1) ◦ b(t) (0 6 t 6 1). Here we point that since G
is a star topological groupoid, the left translation given in (1) is a homeomorphism. Hence the path a(1) ◦ b,
which is a left translation of b by a(1), is defined when b is a path. So the path a�(a(1) ◦ b) is defined by

(a�(a(1) ◦ b))(t) =


a(2t), 0 6 t 6 1

2

a(1) ◦ b(2t − 1), 1
2 6 t 6 1.

Here if a is a path in StGx from ε(x) to a(1), where t(a(1)) = y, say, and b is a path in StGy from ε(y) to b(1),
then for each t ∈ [0, 1] the composition a(1) ◦ b(t) is defined in StGy, yielding a path a(1) ◦ b from a(1) to
a(1) ◦ b(1). It is straightforward to prove that in this way a groupoid is defined on Mon(G) and that the final
map of paths induces a morphism of groupoids p : Mon(G)→ G.

If each star StGx admits a simply connected cover at ε(x), then we may topologise each star of Mon(G)
so that it is the universal cover of StGx based at ε(x), and then Mon(G) becomes a star topological groupoid.
We call Mon(G) the monodromy groupoid or star universal cover of G.

Let Gpd be the category of groupoids and TopGpd the category of topological groupoids. Let sTopGpd
be the full subcategory of TopGpd on those topological groupoids whose stars have universal covers. Then
we have a functor

Mon: sTopGpd→ Gpd

assigning the monodromy groupoid Mon(G) to each topological groupoid G such that the stars have
universal covers.

Theorem 2.1. [30, Theorem 2.1] For the topological groupoids G and H such that the stars have universal covers,
the monodromy groupoids Mon(G ×H) and Mon(G) ×Mon(H) are isomorphic.

Example 2.2. Let G be a topological group which can be thought as a topological groupoid with only one
object. If G has a simply connected cover, then the monodromy groupoid Mon(G) of G is just the universal
cover of G.

Example 2.3. [13, Theorem 6.2] If X is a topological space, then G = X ×X becomes a topological groupoid
on X. Here a pair (x, y) is a morphism from x to y with inverse morphism (y, x). The groupoid composition
is defined by (x, y) ◦ (u, z) = (x, z) whenever y = u. If X has a simply connected cover, then the monodromy
groupoid Mon(G) of G is isomorphic to the fundamental groupoid πX.

Therefore the monodromy groupoid concept generalises both the fundamental groupoid of a topological
space and the universal covering group of a topological group.

In the following theorem which is the main result of [30, Theorem 3.10 ], the monodromy groupoid for
a topological group-groupoid has been developed. In Theorem 3.13 we prove a more general result and
develop the monodromy groupoid for an internal groupoid in topological groups with operations.

Theorem 2.4. Let G be a topological group-groupoid such that each star StGx has a universal cover. Then the
monodromy groupoid Mon G is a group-groupoid.

3. Monodromy groupoid for an internal groupoid in topological groups with operations

The idea of the definition of categories of groups with operations comes from Higgins [25] and Orzech
[33]; and the definition below is from Porter [35] and Datuashvili [22, p.21], which is adapted from Orzech
[33].
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Definition 3.1. Let C be a category of groups with a set of operations Ω and with a set E of identities such
that E includes the group laws, and the following conditions hold: If Ωi is the set of i-ary operations in Ω,
then

(a) Ω = Ω0 ∪Ω1 ∪Ω2;
(b) The group operations written additively 0,− and + are the elements of Ω0, Ω1 and Ω2 respectively.

Let Ω′2 = Ω2\{+}, Ω′1 = Ω1\{−} and assume that if ? ∈ Ω′2, then ?◦ defined by a ?◦ b = b ? a is also in Ω′2.
Also assume that Ω0 = {0};

(c) For each ? ∈ Ω′2, E includes the identity a ? (b + c) = a ? b + a ? c;
(d) For each ω ∈ Ω′1 and ? ∈ Ω′2, E includes the identities ω(a + b) = ω(a) + ω(b) and ω(a) ? b = ω(a ? b).
Then the category C satisfying the conditions (a)-(d) is called a category of groups with operations.

From now on C will be a category of groups with operations.
A morphism between any two objects of C is a group homomorphism, which preserves the operations

of Ω′1 and Ω′2.

Remark 3.2. The set Ω0 contains exactly one element, the group identity; hence for instance the category
of associative rings with unit is not a category of groups with operations.

Example 3.3. The categories of groups, rings generally without identity, R-modules, associative, associative
commutative, Lie, Leibniz, alternative algebras are examples of categories of groups with operations.

The category of topological groups with operations are defined in [1] (see also [29]) as follows:

Definition 3.4. A category TopC of topological groups with a set Ω of continuous operations and with a
set E of identities such that E includes the group laws such that the conditions (a)-(d) of Definition 3.1 are
satisfied, is called a category of topological groups with operations.

In the rest of the paper TopC will denote the category of topological groups with operations.
A morphism between any two objects of TopC is a continuous group homomorphism, which preserves

the operations in Ω′1 and Ω′2.
The categories of topological groups, topological rings and topological R-modules are examples of

categories of topological groups with operations.

Definition 3.5. An internal category C in C is a category in which the initial and final point maps s, t : C⇒ C0,
the object inclusion map ε : C0 → C and the partial composition ◦ : Ct ×s C → C, (a, b) 7→ a ◦ b are the
morphisms in the category C.

Note that since ε is a morphism in C, ε(0) = 0 and that the composition ◦ being a morphism implies that
for all a, b, c, d ∈ C and ? ∈ Ω2

(a ? c) ◦ (b ? d) = (a ◦ b) ? (c ◦ d) (1)

whenever one side makes sense. This is called the interchange law [35].
As it was pointed out in [35] by an easy application it follows that any internal category C in C is an

internal groupoid since given a ∈ C,

a−1 = ε(t(a)) − a + ε(s(a)) (2)

satisfies a ◦ a−1 = ε(s(a)) and a−1
◦ a = ε(t(a)); and the map G → G, a 7→ a−1 is also a morphism in C. So we

use the term internal groupoid rather than internal category and write G for an internal groupoid.
In particular if C is the category of groups, then an internal groupoid G in C becomes a group object

in the category of groupoids, which is quite often called 2-group, see for example [5], group-groupoid or
G-groupoid [15]. In the case where C is the category of rings, an internal groupoid is a ring object in the
category of groupoids [32] (see also [2] and [3] for topological R-module case).
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Remark 3.6. [1, 3.7] The following are immediate from Definition 3.5:

(i) By Definition 3.5 we know that in an internal groupoid G in C, the initial and final point maps s and
t, the object inclusion map ε are the morphisms in C and the interchange law (1) is satisfied. Therefore in
an internal groupoid G, the unary operations are endomorphisms of the underlying groupoid of G and the
binary operations are morphisms from the underlying groupoid of G × G to the one of G.

(ii) Let G be an internal groupoid in C and 0 ∈ G0 the identity element. Then Ker d0 = StG0, called in [7]
transitivity component or connected component of 0, is also an internal groupoid which is also an ideal of G.

Let H and G be two internal groupoids in C. A morphism of internal groupoids is a morphism f : H→ G
of underlying groupoids which is also a morphism of groups with operations. A morphism f : H → G of
internal groupoids is called covering (resp. universal covering) if it is a covering (resp. universal covering)
morphism on the underlying groupoids.

The following proposition is known for group-groupoids in [12, Proposition 2.1]. In internal groupoid
case the proof is similar by using the interchange law.

Proposition 3.7. Let G be an internal groupoid in C. Let 1, h ∈ G with 1 ∈ G(x, y) and s(h) = t(1). Then

(1) 1 ◦ h = 1 − ε(y) + h

(2) 1 + h − 1 = ε(x) + h − ε(x) for h ∈ G(0)

Definition 3.8. An internal groupoid in the category TopC of topological groups with operations is called
a topological internal groupoid.

So a topological internal groupoid is a topological groupoid G in which the set of morphisms and the set
G0 of objects are objects of TopC and all structural maps of G, i.e., the source and target maps s, t : G→ G0,
the object inclusion map ε : G0 → G and the composition map ◦ : Gt ×s G → G, are morphisms of TopC.
From Proposition 3.7 we can see that in an internal groupoid the continuities of the group operation and
the object inclusion map imply the continuity of the groupoid composite.

If TopC is the category of topological groups, then an internal groupoid in TopC becomes a topological
group-groupoid.

Example 3.9. A topological group with operations which is abelian according to all binary operations
? ∈ Ω2 can be thought as an internal groupoid in topological groups with operations.

Example 3.10. Let X be an object of TopC. Then the groupoid G = X × X defined in Example 2.3 is an
internal groupoid in TopC: The binary operations in G are defined by (x, y)?̃(u, v) = (x? u, y? v) for ? ∈ Ω2
and the unary operations by ω̃(x, y) = (ω(x), ω(y)) for ω ∈ Ω1. For the interchange law if 1 = (x, y), h = (y, z),
k = (u, v) and l = (v,w) are the morphisms in G so that the compositions 1 ◦ h and k ◦ l are defined, then we
have (1 ◦ h)?̃(k ◦ l) = (x ? u, z ? w) and (1?̃k) ◦ (h?̃l) = (x ? u, z ? w) and therefore we have the interchange
law

(1?̃k) ◦ (h?̃l) = (1 ◦ h)?̃(k ◦ l).

Theorem 3.11. Let X be an object of TopC such that the underlying space is locally path connected and semi-locally
simply connected. Then the fundamental groupoid πX is an internal groupoid in TopC.

Proof: Let X be a topological group with operations as assumed. By Theorem 1.2, πX has a topology such
that it is a topological groupoid. We know by [8, Proposition 3] that when X and Y are endowed with such
topologies, for a continuous map f : X → Y, the induced morphism π( f ) : πX → πY is also continuous.
Hence the continuous binary operations ? : X × X → X for ? ∈ Ω2 and the unary operations ω : X → X
for ω ∈ Ω1 respectively induce continuous binary operations ?̃ : πX × πX → πX and unary operations
ω̃ : πX → πX. So the set of morphisms becomes a topological group with operations. The groupoid
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structural maps are morphisms of groups with operations, i.e., preserve the operations. Therefore πX
becomes an internal groupoid in TopC. �

Let sTopC be the full subcategory of TopC on those objects whose underlying spaces are locally path
connected and semi-locally simply connected; and let Cat(TopC) be the category of internal groupoids in
topological groups with operations. Then we have a functor

π : sTopC
→ Cat(TopC).

Theorem 3.12. Let X and Y be the objects of sTopC. Then π(X × Y) and πX × πY are isomorphic as internal
groupoids in TopC.

Proof: From [30, Theorem 3.8] we know that the topological groupoidsπ(X×Y) andπX×πY are isomorphic.
There, in the detail of the proof, it was proved that the morphism

f : π(X × Y)→ πX × πY, f ([a]) = ([p1a], [p2a])

is an isomorphism of topological groupoids. In addition to these, it is immediate to see that f preserves the
binary operations and the unary operations, i.e., f ([a] ? [b]) = f ([a]) ? f ([b]) for ? ∈ Ω2 and f (ωa) = ω f (a)
for ω ∈ Ω1. �

Let X be topological group with operations. We know from Example 3.10 that G = X × X is an internal
groupoid in TopC and from Example 2.3 that the monodromy groupoid of G is the fundamental groupoid
πX which is also an internal groupoid in C. Therefore it can be thought that if G is an internal groupoid
in TopC such that the stars StGx’s have universal covers, then the monodromy groupoid Mon(G) is also an
internal groupoid or not in C. In the following theorem we reply this question.

Theorem 3.13. Let G be an internal groupoid in TopC such that each star StGx has a universal cover. Then the
monodromy groupoid Mon(G) becomes an internal groupoid in C.

Proof: Let G be an internal groupoid in topological groups with operations as assumed. Therefore the set
G0 of objects and the set G of morphisms are topological groups with operations. Then we define the unary
operations by

ω̃ : Mon(G)→Mon(G), [a] 7→ [ω(a)]

for ω ∈ Ω1 and the binary operations on Mon(G) by

?̃ : Mon(G) ×Mon(G)→Mon(G), ([a], [b]) 7→ [a ? b]

for ? ∈ Ω2. Here for each ? ∈ Ω2, the product a ? b is induced by that of G by (a ? b)(t) = a(t) ? b(t) for
t ∈ [0, 1]. So if a is a path in StGx from ε(x) to a(1) and b is a path in StGy from ε(y) to b(1), then a ? b is a
path in StG(x ? y) from ε(x ? y) to a(1) ? b(1). These operations defined in these ways are well defined: If
a1 ∈ [a], there is a homotopy F : I × I → G such that F(s, 0) = a1(s) and F(s, 1) = a(s) (0 6 s 6 1). Similarly
if b1 ∈ [b], there is a homotopy H : I × I → G such that H(s, 0) = b1(s) and H(s, 1) = b(s). Then we define
a homotopy K : I × I → G by K(s, t) = F(s, t) ? G(s, t). Here K(s, 0) = a1 ? b1 and K(s, 1) = a ? b; and since
the binary operations ?’s in ∈ Ω2 are continuous, K is continuous. So a1 ? b1 and a ? b are homotopic and
therefore the binary operations defined on Mon(G) are well defined. Further since the unary operations
ω ∈ Ω1 are continuous, the induced unary operations

ω̃ : Mon(G)→Mon(G), [a] 7→ [ω(a)]

are well defined. The other details can be checked to prove that Mon(G) is a group with operations in C.
We now prove that the interchange law

[(a ? c) • (b ? d)] = [(a • b) ? (c • d)]
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in Mon(G) is satisfied when a • b and c • d are defined. If these a • b and c • d are defined, then we have the
following compositions of the paths in Mon(G):

(a ? c) • (b ? d)(t) =


(a ? c)(2t), 0 6 t 6 1

2

(a ? c)(1) ◦ (b ? d)(2t − 1), 1
2 6 t 6 1

and hence

(a ? c) • (b ? d) = (a ? c)�((a ? c)(1) ◦ (b ? d)). (3)

On the other hand

(a • b)(t) =


a(2t), 0 6 t 6 1

2

a(1) ◦ b(2t − 1), 1
2 6 t 6 1

(c • d)(t) =


c(2t), 0 6 t 6 1

2

c(1) ◦ d(2t − 1), 1
2 6 t 6 1

(a • b) ? (c • d)(t) =


(a ? c)(2t), 0 6 t 6 1

2

(a(1) ◦ b(2t − 1)) ? (c(1) ◦ d(2t − 1)), 1
2 6 t 6 1

and hence

(a • b) ? (c • d) = (a ? c)�((a(1) ◦ b) ? (c(1) ◦ d))). (4)

By the interchange law in G we have that

(a ? c)(1)) ◦ (b ? d) = (a(1) ◦ b) ? (c(1) ◦ d).

Therefore comparing the equalities (3) and (4) we obtain that

(a ? c) • (b ? d) = (a • b) ? (c • d)

which insures the interchange law in Mon(G).
Other necessary details are straightforward and hence Mon(G) becomes an internal groupoid in C. �
In Theorem 3.13 in particularly if we choose TopC as the category of topological groups, then an internal

in TopC becomes a topological group-groupoid and therefore we obtain Theorem 2.4.
Let sCat(TopC) be the full sub category of Cat(TopC), the category of internal groupoids in topological

groups with operations, on those internal groupoids whose stars have simply connected covers. Let Cat(C)
be the category of internal groupoids in C. Therefore we have a functor

Mon: sCat(TopC) −→ Cat(C)

assigning the monodromy groupoid Mon(G) as the internal groupoid in C to each internal groupoid G in
TopC such that the stars have simply connected covers.

Hence we can now restate Theorem 2.1 for internal groupoids in TopC as follows.

Theorem 3.14. For the internal groupoids G and H in TopC such that the stars have universal covers, the
monodromy groupoids Mon(G ×H) and Mon(G) ×Mon(H) as internal groupoids in C are isomorphic.
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Proof: In the detail of the proof of Theorem 2.1, it is proved that the morphism

f : Mon(G ×H)→Mon(G) ×Mon(H), f ([a]) = ([p1a], [p2a])

is an isomorphism of groupoids. In addition to this, we prove that f is a morphism of internal groupoids.

f ([a] ? [b]) = ([p1(a ? b)], [p2(a ? b)])
= ([p1a ? p1b], [p2a ? p2b])
= ([p1a], [p2a]) ? ([p1b], [p2b])
= f ([a]) ? f ([b]).

for [a], [b] ∈Mon(G ×H) and ? ∈ Ω2; and

f (ω[a]) = ([p1(ωa], [p2(ωa)])
= ([ω(p1a)], [ω(p2a)])
= (ω[(p1a)], ω[(p2a)])
= (ω([(p1a)], [(p2a)])
= ω f ([a]).

for ω ∈ Ω1. Hence f becomes a morphism of Cat(C) as required. �

4. A monodromy principle for internal groupoids in groups with operations

In this section we recall another construction Mon(G,W) of the monodromy groupoid from [13] (sea
also [4] and [14]) and give a monodromy principle for internal groupoids in C.

The construction here is a generalization to the groupoid case of a construction for groups by Douady
and Lazard in [23]. Let G be a star topological groupoid, and let W be any subset of G containing X = G0,
e.i., W containing all the identity morphisms and such that W = W−1. Then W obtains the structure of
pregroupoid: this means that W has the structure of maps s, t : W → X, ε : X → W with sε = tε = 1X, and
further there is a partial multiplication on W in which if uv is defined then t(u) = s(v), u(εt(u)) = εs(u)u = u,
and each u ∈ W has an inverse u−1 such that u ◦ u−1 = εs(u), u−1

◦ u = εt(u). For further discussion of this,
see for example Crowell and Smythe [17]. For our purposes, we do not need this, since we know already
that W is embeddable in a groupoid.

There is a standard construction Mon(G,W) associating to a pregroupoid W a morphism ı̃ : W →

Mon(G,W) to a groupoid Mon(G,W) and which is universal for pregroupoid morphisms to a groupoid.
First form the free groupoid F(W) on the graph W, and denote the inclusion W → F(W) by u 7→ [u]. Let N
be the normal subgroupoid (Higgins [25], Brown [7]) of F(W) generated by the elements [u][v] ◦ [u ◦ v]−1

for all u, v ∈ W such that u ◦ v is defined and belongs to W. Then Mon(G,W) is defined to be the quotient
groupoid F(W)/N. The composition W → F(W) → Mon(G,W) is written ı̃, and is the required universal
morphism.

In the case W is the pregroupoid arising from a subset W of a groupoid G, there is a unique morphism of
groupoids p : Mon(G,W)→ G such that pı̃ is the inclusion i : W → G. It follows that ı̃ is injective. Clearly, p
is surjective if and only if W generates G. In this case, we call Mon(G,W) the monodromy groupoid of (G,W).

The Lie versions of the following results are given in [13, Theorem 4.2].

Theorem 4.1. Suppose that G is a star connected star topological groupoid and W is an open neighbourhood of
Ob(G) satisfying the condition:

(?) W is star path-connected and W2 is contained in a star path-connected neighbourhood V of Ob(G) such that
for all x ∈ Ob(G), Vx is liftable.

Then there is an isomorphism over G of star topological groupoids Mon(G,W) → Mon(G), and hence the
morphism Mon(G,W)→ G is a star universal covering map.

As a result of Theorem 4.1 and Theorem 3.13 we obtain the following Corollary.
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Corollary 4.2. Let G be an internal groupoid in TopC such that the stars have universal covers and W an open
neighbourhood of Ob(G) in G satisfying the condition (?) in Theorem 4.1. Then the monodromy groupoid Mon(G,W)
is an internal groupoid in C.

Proof: By Theorem 3.13, Mon(G) is an internal groupoid in C and by Theorem 4.1 the groupoids Mon(G,W)
and Mon(G) are isomorphic as star topological groupoids. So Mon(G,W) also becomes an internal groupoid
in C. �

Let q : E → X be a surjective function and let the symmetry groupoid Sq of q be the groupoid over X of
bijections Ex → Ey for all fibres Ex = q−1(x) of q, and all x, y ∈ X. The following theorem is stated in [16,
Theorem 2, Chapter 2] as the Monodromy Principle.

Theorem 4.3. Let X be a connected and simply-connected space, let W be a connected neigbourhood of the diagonal of
X×X such that each section Wx = {y ∈ X : (x, y) ∈W} is connected. Let φ : W → Sq be a morphism of pregroupoids.
Suppose e0 ∈ E is given. Then there is a unique function ψ : X → E which assigns to every x ∈ X an element
ψ(x) ∈ Ex such that (ψq)(e0) = e0 and ψ(y) = φ(x, y)ψ(x) whenever φ(x, y) is defined.

As related to Theorem 4.3 we now state a monodromy principle for internal groupoids in C, which we
call “weak” because it involves no continuity conditions on maps.

Theorem 4.4. (Weak Monodromy Principle) Let G be an internal groupoid in TopC and let W be an open subset
of G containing OG and W is star connected. Suppose that G is star simply connected. Let H be an internal groupoid
over OG in C and let φ : W → H be a morphism of pregroupoids which is the identity on OG and preserves the group
operations. Then φ extends uniquely to a morphism φ̃ : G→ H of internal groupoids in C.

Proof: By [13, Proposition 2.5] Mon(G,W) is star connected, and by [13, Proposition 2.3], p : Mon(G,W)
→ G is, when restricted to stars, a covering map of connected spaces. Since G is star simply connected,
it follows that p is an isomorphism. By the universal property of Mon(G,W) the pregroupoid morphism
φ : W → H extends uniquely to a morphism φ̃ : G → H of groupoids and which preserves the group
operations by the interchange rule. Hence φ̃ : G→ H becomes a morphism of internal groupoids in C. �

Note that in Theorem 4.4 and Theorem 4.3 there is no topology given on H or Sq and there are no
assumptions of continuity of φ.

5. Conclusion

To explain and clarify the relations between graph and free object in internal groupoids we first recall
a fact on semi-abelian categories: The notion of semi-abelian category as proposed in [24] (see also [40]
and [41]) has typical categorical properties such as possessing finite products, coproducts, a zero object and
hence kernels, pullbacks of monomorphisms and coequalizers of kernel pairs. Groups, rings, algebras and
all abelian categories are semi-abelian, say.

In [6] for a certain algebraic theory the term ‘algebraic model’ is used for the objects of the semi-abelian
category. Let T be an algebraic theory whose category is semi-abelian. A topological model of T is a model
of the theory of T with a topology which makes all the operations of the theory continuous. The category
TopT, for a semi-abelian theory T, is generally no longer semi-abelian because it is not Bar exact. But in [6]
the category TopT of the topological models T is studied and some classical results in topological groups is
generalized to this category TopT.

Hence this paper might be useful to allow for the notion of free objects, and in particular free groupoids
on graph objects in internal groupoids. Therefore it could be possible to obtain Mon(G,W) as an internal
groupoid dealing graph and free object terms in a similar way to that in [6]. It could also be possible to have
a topology on Mon(G,W), may be using holonomy theorem in [4, Theorem 2.1], such that Mon(G,W) is an
internal groupoid in TopC and obtain a strong monodromy principle for this type of internal groupoids.



O. Mucuk, H. F. Akız / Filomat 29:10 (2015), 2355–2366 2365

Acknowledgements

We are grateful to the referee for his very useful comments and for bringing the paper [6] to our attention
after this paper was written, and hope to work on the relationship to the current work in somewhere. We
would also like to thank to Prof. R. Brown for his comments and help to improve the paper.

References

[1] H. F. Akız, N. Alemdar, O. Mucuk and T. Şahan, Coverings of internal groupoids and crossed modules in the category of groups
with operations, Georgian Math. Journal, 20-2 (2013) 223-238.

[2] N. Alemdar and O. Mucuk, Existence of covering topological R-modules, Filomat 27- 6 (2013) 1121-1126.
[3] N. Alemdar and O. Mucuk, The liftings of R-modules to covering groupoids, Hacettepe Journal of Mathematics and Statistics,

41 (6), (2012) 813-822.
[4] M.E.-S.A.-F. Aof, R. Brown, The holonomy groupoid of a locally topological groupoid, Top. Appl., 47 (1992) 97-113.
[5] J. C. Baez, and A.D. Lauda, Higher-dimensional algebra. V. 2-groups. Theory Appl. Categ. 12 (2004) 423–491 (electronic).
[6] F. Borceux and Maria Manuel Clementino, Topological semi-abelian algebras, Advances in Mathematics 190 (2005) 425-453
[7] R. Brown, Topology and groupoids, BookSurge LLC, North Carolina, 2006.
[8] R. Brown and G. Danesh-Naruie, The fundamental groupoid as a topological groupoid, Proc. Edinburgh Math. Soc. 19 (2), (1975)

237-244.
[9] R. Brown and J. P. L. Hardy , Topological groupoids I: Universal constructions, Math. Nachr. 71 (1976) 273-286.

[10] R. Brown, G. Danesh-Naruie and J. P. L. Hardy, Topological groupoids II: Covering morphisms and G-spaces, Math. Nachr. 74
(1976) 143-156.
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[31] O. Mucuk, T. Şahan and N. Alemdar Normality and qoutients in crossed modules and group-groupoids Group-groupoids,

Applied Categorical Structures, DOI 10.1007/s10485-013-9335-6
[32] O. Mucuk, Coverings and ring-groupoids, Georgian Mathematical Journal, 5 (1998) 475-482
[33] G. Orzech, Obstruction theory in algebraic categories I and II, J. Pure. Appl. Algebra 2 (1972) 287-314 and 315-340.
[34] J. Phillips, The holonomic imperative and the homotopy groupoid of a foliated manifold, Rocky Mountain J. Math., 17 (1987)

151-165.
[35] T. Porter, Extensions, crossed modules and internal categories in categories of groups with operations, Proc. Edinb. Math. Soc.

30 (1987) 373-381.
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