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Abstract. We introduced concept of meander knots, 2-component meander links and multi-component
meander links and derived different families of meander knots and links from open meanders with n ≤ 16
crossings. We also defined semi-meander knots (or knots with ordered Gauss code) and their product.

1. Introduction

Meanders are combinatorial objects with some topological properties. They represent the systems
formed by the intersections of two curves in the plane. Two meanders are equivalent if they are homeo-
morphic within the plane. They occur in the physics of polymers, algebraic geometry, mathematical theory
of mazes, and planar algebras, in particular the Temperley-Lieb algebra. As the main source to the theory
of meanders we used the paper [1]. For applications of meanders, the reader is referred to [2–4].

Definition 1.1. An open meander is a configuration consisting of an oriented simple curve, and a line in the plane,
the axis of the meander, that cross a finite number of times and intersect only transversally. Two open meanders are
equivalent if there is a homeomorphism of the plane that maps one meander to the other.

The order of a meander is the number of crossings between the meander curve and meander axis. Since
a line (meander axis) and a simple curve (meander curve) are homeomorphic, their roles can be reversed.
However, in the enumeration of meanders we will always distinguish the meander curve from the meander
line - the axis. Usually, meanders are classified according to their order. One of the main problems the
theory of meanders is their enumeration.

A open meander curve and meander axis have two loose ends each. Depending on the number of
crossings, the loose ends of the meander curve belong to different half-planes defined by the axis for open
meanders with an odd order, and to same half-plane for meanders with an even number of crossings. We
will first consider the first case. In this case we are able to make a closure of the meander: to join each
of loose ends of the meander curve with an end of the axis, and obtain a knot or link shadow that will be
called meandric knot shadow. Because for making a closure we have two possibilities, we will always choose
this one producing meandric knot shadow without loops. After that, by introducing undercrossings and
overcrossings along the meander knot shadow axis, we will turn it into a knot diagram.
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Definition 1.2. An alternating knot which has a minimal meander diagram is called meander knot.

For representing meanders we will use their corresponding arch configurations.

Definition 1.3. An arch configuration is a planar configuration consisting of pairwise non-intersecting semicircular
(or piecewise-linear) arches lying on the same side of an oriented line, arranged such that the feet of the arches are
equally spaced along the line (Definition 1.1.1 [1]).

Arch configurations play an essential role in the enumerative theory of meanders. They are used to
obtain the canonical representatives of meanders that are used in subsequent constructions. They also have
a natural link to the Temperley-Lieb algebra. A meandric system is the superposition of an ordered pair
of arch configurations of the same order, with the first configuration as the upper configuration, and the
second as the lower configuration.

The meanders enumeration problem started to be considered after work by Poincare on differential
geometry. The modern study of this problem is inspired by Arnold in [2]. If the intersections along the axis
are enumerated by 1, 2, 3, ..., n every open meander can be described by a meander permutation of order n:
the sequence of n numbers describing the path of the meander curve. For example, the open meander (Fig.
1a) is coded by the meander permutation (1, 10, 9, 4, 3, 2, 5, 8, 7, 6).Hence, enumeration of open meanders
is based on the derivation of meander permutations. Meander permutations play an important role in
the mathematical theory of mazes [5]. In every meander permutation alternate odd and even numbers,
i.e., to the upper and lower arch configuration correspond sequences of opposite parity. However, this
condition does not completely characterize meander permutations. E.g., the sequence (1, 4, 3, 6, 5, 2) is not a
meander permutation, since it not satisfies planarity condition: arc (1, 4) and (3, 6) will produce a nugatory
crossing (Fig. 1b). Hence, the most important property of meander permutations is that all arcs must be
nested, in order to not produce nugatory crossings. Among different techniques to achieve this, the fastest
algorithms for deriving meanders are based on encoding of arch configurations as words in the Dyck
language. The description of Dyck language the reader can find in various sources, including Wikipedia
(http://en.wikipedia.org/wiki/Dyck -language): it is the language of balanced strings of parentheses
on the alphabet {x, y}which can be generated by the following rules:

s→ e, s→ xsys

where e is empty word. Arch configurations of order n are in bijective correspondence with Dyck words
of length 2n. E.g., to arch configuration from Fig. 1c corresponds the Dyck word (()(()(()))). Every
open meander can be uniquely described by Dyck words corresponding to upper and lower arch con-
figuration, with two additional symbols 1 for positions of loose ends. E.g., the open meander coded by
the meander permutation (1, 10, 9, 4, 3, 2, 5, 8, 7, 6) (Fig. 1a) is defined by upper and lower Dyck word:
{(()((()))), 1(())1()()}. Algorithms for meander enumeration can be found in different sources (e.g., [9, 10]).
For the derivation of open meanders we used the Mathematica program ”Open meanders” by David Be-
van (http://demonstrations.wolfram.com/OpenMeanders/) [11], which we modified in order to compute
open meander permutations instead of Dyck words.

Obtained meander knots and links will be given by their Gauss codes, Dowker-Thisllethwaite codes,
and Conway symbols [6–8]. All computations are made in the program ”LinKnot” [8].

2. Meander knots

Gauss codes of alternating meander knot diagrams can be obtained if to the sequence 1, 2, . . .n we add
a meander permutation of order n (and/or its reverse), where n is an odd number and in the obtained
sequence alternate the signs of successive numbers. E.g., from meander permutation (1, 8, 5, 6, 7, 4, 3, 2, 9)
we obtain Gauss code

{−1, 2,−3, 4,−5, 6,−7, 8,−9, 1,−8, 5,−6, 7,−4, 3,−2, 9}
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Figure 1: (a) Open meander given by meander permutation (1, 10, 9, 4, 3, 2, 5, 8, 7, 6); (b) non-realizable sequence (1, 4, 3, 6, 5, 2); (c)
piecewise-linear upper arch configuration given by Dyck word (()(()(()))) [1].

which corresponds to rational alternating knot 97 given by the Conway symbol 3 4 2. The same knot can be
obtained from meander permutations (1, 8, 7, 6, 5, 2, 3, 4, 9) and (1, 8, 7, 4, 5, 6, 3, 2, 9), giving Gauss codes

{−1, 2,−3, 4,−5, 6,−7, 8,−9, 1,−8, 7,−6, 5,−2, 3,−4, 9}

and

{−1, 2,−3, 4,−5, 6,−7, 8,−9, 1,−8, 7,−4, 5,−6, 3,−2, 9},

which can be converted to Dowker-Thistlethwaite codes {{9}, {4, 12, 16, 18, 14, 2, 10, 8, 6}}, {{9}, {4, 12, 16, 18, 14,
2, 10, 8, 6}}, and {{9}, {4, 12, 18, 16, 14, 2, 10, 6, 8}}, corresponding to 3 non-isomorphic minimal diagrams of
the knot 97 = 3 4 2 (Fig. 2). The reverse of a meander permutation we add only if the absolute value of
the last number of the first sequence is different from the absolute value of the first number of the second
sequence, in order to avoid curls. However, if an alternating knot has an alternating minimal meander
diagram, all its minimal diagrams are not necessarily meander diagrams. E.g., knot K11a192 = 3 1 2 1 2 2
has 10 non-isomorphic flype-equivalent minimal diagrams, but only two of them are meander diagrams.
Hence, an alternating knot will be called meander knot if it has at least one minimal meander diagram. Every
alternating meander diagram is a positive knot diagram. From every alternating diagram, by crossing
changes we obtain (minimal and non-minimal) meander diagrams of different knots. Among meander
knots we can also obtain non-prime meander knots, so our discussion we will restrict only to prime
meander knot diagrams.

Figure 2: Non-isomorphic minimal meander diagrams of the knot 97 = 3 4 2.
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The natural question which arises is: find all alternating meander knots with n crossings, where n is an
odd number. In the following table is given the number of open meanders OM with n crossings and the
number AMK of their corresponding alternating meander knots.

n OM AMK
1 1 1
3 2 1
5 8 2
7 42 5
9 262 15

11 1828 52
13 13820 233
15 110954 1272

Alternating meander knots with at most n = 9 crossings are illustrated in Fig. 3. Notice that alternating
meander knots are organized in families. E.g., the family 31 = 3, 51 = 5, 71 = 7, 91 = 9, K11a367 = 11, . . ., or
the family of twist knots 52 = 3 2, 72 = 5 2, 92 = 7 2, K11a247 = 9 2, . . .. Since all arcs have an integer radius,
for every alternating meander knot we can define its height: minimal vertical dimension of its minimal
meander diagrams. This dimension is the same for all meander knots belonging to a family. Every meander
diagram produces very nice checkerboard coloring (Fig. 4).

Figure 3: Alternating meander knots with at most n = 9 crossings.

All the tables following this paper can be downloaded from the address:

http://www.mi.sanu.ac.rs/vismath/meanderknottables.pdf
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Figure 4: Checker-board colorings of meander diagrams of meander knots with at most n = 7 crossings.

In Table 1 are given all alternating meander prime knots with at most n = 11 crossing. Every knot
is given by its standard symbol from Rolfsen book [7] or ordering number from ”Knotscape”, Conway
symbol, Dowker-Thistlethwaite code of its meander diagram and short Gauss code. Short Gauss code
means that Gauss code of every meander knot is beginning with the sequence (−1)ii (1 ≤ i ≤ n), followed
by meander permutation part, so the first sequence is omitted.

We mentioned that all alternating meander knots are positive, but they represent a proper subset of
all positive knots. E.g., the alternating positive knots K11a43 = 2 1, 2 1, 2 1, 2, K11a123 = 6∗2.2 2 0 : 2 0,
K11a124 = 6∗2 1.2 : 2 1 0, K11a227 = 6∗2.2 1.2 : 2 0, and K11a329 = 8∗2 : 2 : .2 0 are not meander knots.

The following question can be posed about non-alternating knots with an odd number of crossings:
which non-alternating knots have minimal meander diagrams. For 9 ≤ n ≤ 11 crossings their list is given
in Table 2, where every knot is given by its standard symbol or the ”Knotscape” ordering number, Conway
symbol, meander Dowker-Thistlethwaite code and short Gauss code (i.e., its meandering part).

The next question is: which knots can be represented by non-minimal meander diagrams. E.g.,
figure-eight knot 41 = 2 2 can be represented by non-minimal meander diagram given by Gauss code
{−1, 2,−3,−4, 5, 3,−2, 1, 4,−5} with n = 5 crossings (Fig. 5). This means that for every knot which is not
meander knot (i.e., knot with a minimal meander diagram), and which can be represented by some non-
minimal meander diagram we can define its meander number: the minimum number of crossings of its
meander diagrams, where the minimum is taken over all its meander diagrams. However, we first need
to check which knots have meander diagrams. Except alternating meander knots, we are sure that non-
alternating knots with the same shadows will have the meander diagram, with some crossings changed
from overcrossings to undercrossings or vice versa. The next step is to make all possible crossing changes
in alternating minimal meander diagrams, i.e., in Gauss codes of alternating meander knots an see which
knots will be obtained.

Theorem 2.1. Every knot with at most n = 9 crossings has a meander diagram.

Conjecture 2.2. Every knot has a meander diagram.

For n = 10 we have not succeeded to find meander diagrams for only three knots: 1096 = .2.2 1.2,
1099 = .2.2.2 0.2 0, and 10123 = 10∗.

In Table 3 are given non-alternating meander diagrams of all knots with n ≤ 9 crossings which are
not alternating meander knots. As a representative of meander diagrams, for every knot is taken a non-
alternating meander diagram with the minimal number of crossings. Every knot is given by its standard
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Figure 5: Non-minimal meander diagrams of knots 41, 61, 62, 63, 76, and 77.

symbol, Conway symbol, meander Dowker-Thisltlethwaite code, short Gauss code, and meander number.
For non-alternating meander diagrams, short Gausse code is the meander part of the Gauss code, from
which the complete Gauss code can be reconstructed: the first part of the complete code will be the sequence
of the numbers from 1 to n, where each of them has the opposite sign then the same number from the given
meander sequence. E.g., short Gauss code of the figure-eight knot is {3,−2, 1, 4,−5}, and its complete Gauss
code will be {−1, 2,−3,−4, 5, 3,−2, 1, 4,−5}.

3. 2-component meander links

Open meanders with an even number of crossings offer another interesting possibility: to join in pairs
loose ends of the meander axis, and loose ends of the meander curve. As a result, we obtain a shadow of a
2-component link with one component in the form of a circle, and the other component meandering around
it. Natural question is: which alternating links can be obtained from these shadows, and, in general: which
2-component links have meander diagrams. It is clear that every component has no self-intersections, so the
set of 2-component meander link coincides with the set of alternating 2-component links with components
without self-intersections, and all their minimal diagrams will preserve this property. Among meander
links we can also obtain non-prime meander links, so our discussion we will restrict only to prime meander
link diagrams. Every minimal diagram of a 2-component meander link is a meander diagram.

In the following table is given the number of open meanders OM with n crossings for even n, and the
number AML of their corresponding alternating prime meander links.

n OM AML

2 1 1
4 3 1

6 14 2

8 81 3
10 538 8

12 3926 17

14 30694 56
16 252939 202

In Table 4 is given the complete list of alternating meander links up to n = 12 crossings. Meander links
are given by their symbols (up to n = 10 crossings), Dowker-Thisltlethwaite meander codes, and short
Gauss codes, where the first sequence (−1)ii (1 ≤ i ≤ n) corresponding to the axis component is omitted,
so every meander link is given by its corresponding meander permutation corresponding to the other
component.
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Figure 6: Meander links up to n = 10 crossings.

Same as for knots, we can pose for 2-component links the natural question: which 2-component links
have meander diagrams. From the definition of meander links it is clear that this will be links with both
components which are unknots. Moreover, every component will have no self-crossings, i.e., it will be a
shadow of a circle. In the case of alternating minimal meander diagrams, all such diagrams of a 2-component
link will have this property. However, in the case of non-minimal meander diagrams, some links with an
odd number of crossings can be represented by meander diagrams. Moreover, their minimal diagrams
have components with self-intersections, but in their non-minimal meander diagrams none of components
has self-intersections. E.g., Whitehead link 52

1
= 2 1 2 can be represented by non-minimal meander diagram

with the Gauss code {{1,−2, 3,−4,−5, 6,−7, 8, 9, 10}, {−1,−6, 7,−8,−3, 4, 5, 2,−9,−10}with n = 10 crossings.
In the same way, by crossing changes, we obtained non-minimal meander diagrams of 2-component links
with an odd number of crossings: 72

1
, 72

2, 72
3, 72

6, 92
1
, 92

2, 92
3, 92

4
, 92

5, 92
6, 92

7, 92
8, 92

9, 92
11

, 92
12

, 92
24

, 92
34

, 92
35, 92

41
, 92

42
, 92

53,

92
54

, 92
57, 92

58, and 92
61

.

4. Multi-component meander links

In this section we will consider meander links with at least 3 components. An alternating link will
be called meander link if it has an alternating minimal diagram with the property that every pair of its
components represents a 2-component meander link (Fig. 7). According to this definition every component
has no self intersection. Moreover, in the list of meander links will de not included links with some disjoint
components or links where some components make 2-component split link. E.g., in this list will be not
included link 84

1
= 2, 2, 2, 2 since it contains pairs of disjoint components, or Borromean rings 63

2
= 6∗ since

they contain pairs of components making a split link. Every multi-component meander link has an even
number of crossings.

For n ≤ 16 crossings we have the following numbers of the c-component prime alternating meander
links:

n c = 3 c = 4
6 1
8 2

10 12
12 59 4
14 383 32
16 3200 388
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Figure 7: A 3-component and 4-component meander link with n = 16 crossings.

Multi-component meander links are selected from the unpublished lists of links derived by Morwen
Thistlethwaite, using the criteria that every component of a multi-component meander link has no self-
intersection and that every 2-component sublink of a meander multi-component link is a 2-component
meander link.

In Table 5 are given all meander links with at most n = 12 crossings. Every link is given by its standard
symbol from the Rolfsen’s book [7] or from Thistlethwaite’s list, by its Conway symbol, meander Dowker-
Thistethwaite code and Gauss code. In Table 5 are not given symbols from Thistlethwaite’s list, because
there is no standardized notation for links with n ≥ 12 crossings.

The next question is: which multi-component links can be represented by meander diagrams. Same as
before, all multi-component meander links belong to their corresponding families: if p is a twist in some
meander link, its replacement by p + 2 results in the meander link with the same number of components.

5. Sum of meander knots and links

For two open meander sequences we can define a sum or concatenation: the operation of joining their
Dyck words and connecting the second loose end of the first with the first loose end of the second and
making a closure in order to obtain a meander knot or link (KL) diagram (Fig. 8). The same definition
extends to meander knots and links where we concatenate the meander parts of their Gauss codes. From
the parity reasons, the sum of two meander knot diagrams or the sum of two meander link diagrams is a
meander link diagram, and the sum of a meander knot diagram and meander link diagram or vice versa is a
meander knot diagram. Sum of a meander knot diagram and its mirror image is a 2-component unlink. An
interesting question is to analyze sums of meander KL diagrams from the point of view of tangle operations
which can be recognized from Conway symbols of KLs and their sums. Some artistic meander knots and
links can be obtained by iterative sum (Fig. 9).

6. Semi-meander or ordered Gauss code knots

In the case of meanders the axis of a meander is infinite. If the axis is finite, as the result we obtain
semi-meanders, where after the end(s) of the axis meander curve can pass from one side of the axis to
the other without crossing the axis. A Gauss code of every knot depends from the choice of the initial
(basic) point belonging to some arc and from the orientation of the knot. This means that every rotation or
reversal of a sequence of length 2n representing a Gauss code of a knot with n crossings represents the same
(non-oriented) knot. A Gauss code will be called ordered if the absolute value of the first part of its Gauss
code is the sequence 1, 2, . . . , n. An alternating knot will be called Gauss code ordered (OGC) or semi-meander
knot if it has at least one minimal diagram with ordered Gauss code. The name semi-meander knot follows
from the fact that the shadow of such a knot represents a meander or semi-meander. It is clear that every
meander knot is GCO, and that meander knots represent the proper subset of GCO knots. For OGC knots
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Figure 8: Sum of a 39-crossing meander knot and 48-crossing meander link giving the 87-crossing meander knot.

Figure 9: A 48-crossing meander link obtained by iterative sum.

there is no parity restriction to the number of crossings, so there exist OGC knots which are not meander
knots: OGC knots with an even number of crossings. Moreover, some OGC knots with an odd number of
crossings are not meander knots, e.g., knot 76 = 2 2 1 2 which has two minimal diagrams, and among them
only one is OGC diagram with ordered Gauss code {1,−2, 3,−4, 5,−6, 7,−5, 4,−1, 2,−7, 6,−3}. Every OGC
diagram is completely determined by the second half of its ordered Gauss code, which will be called short
Gauss code. Fig. 10 shows all semi-meander knots with n ≤ 7 crossings which are not meander knots, and
Fig. 11 their checker-board colorings. All alternating OGC knots are members of their corresponding knot
families.

First alternating knots which are not OGC knots occur for n = 8, and they are knots 816 = .2.2 0 and
818 = 8∗, for n = 9 there are 6 knots that are not OGC: 929 = .2.2 0.2, 932 = .2 1.2 0, 933 = .2 1.2, 934 = 8∗2 0,
940 = 9∗, 941 = 2 0 : 2 0 : 2 0, etc. In the following table is given the number of alternating knots with n
crossings (3 ≤ n ≤ 12), the number of OGC knots, and the number of OGC knots that are not meander
knots.

In Table 6 are given all alternating OGC knots with 4 ≤ n ≤ 9 crossings which are not meander knots.
Every knot is given by its standard symbol, Conway symbol, OGC diagram Dowker-Thistlethwaite code
and short OGC Gauss code.

In the following table is given the number of non-alternating knots for a given number of crossings n
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Figure 10: Semi-meander knots with n ≤ 7 crossings which are not meander knots.

Figure 11: Checker-board colorings of knots from Fig. 10.

(8 ≤ n ≤ 12), the number of OGC knots, and the number of OGC knots which are not meander knots:

n No. of knots OGC OGC non-meander

8 3 3 3

9 8 7 6
10 42 39 39

11 187 141 73
12 888 636 636

In Table 7 are given OGC diagrams of all non-alternating knots with n ≤ 10 crossings which don’t have
a meander diagram with the number of crossings equal to the crossing number. Every knot is given by its
standard symbol, Conway symbol, OGC diagram Dowker-Thistlethwaite code and short OGC Gauss code.

For knots that don’t have minimal OGC diagrams, we can search for their non-minimal OGC diagrams.
Notice that some knots that can be represented only by a non-minimal meander diagram can have non-
minimal OGC diagram with a smaller number of crossings. E.g., knot 949 = −2 0 : −2 0 : −2 0 has a meander
diagram given by the short Gauss code {7,−4, 3,−8, 9, 2, 5,−6,−1,−10, 11}with n = 11 crossings, and non-
minimal OGC diagram {−2, 5,−6, 1,−10,−3, 4, −9, 8,−7} with n = 10 crossings. We have not succeeded
to find meander diagrams for only three knots with n = 10 crossings, 1096 = .2.2 1.2, 1099 = .2.2.2 0.2 0,
and 10123 = 10∗. Knowing that knot 1099 has a minimal OGC diagram given by the short Gauss code
{−4, 5,−8, 1,−2, 9,−10, 3,−6, 7}, that knots 1096 has non-minimal OGC diagram given by the short Gauss
code {−6, 5,−12, 7, 2,−1, 8, 11,−4, 3,−10, 9}with n = 12 crossings, and that knot 10123 has non-minimal OGC
diagram given by the short Gauss code {−6, 1,−8, 11, 4,−3, 10,−9,−2, 5,−12, 7}with n = 12 crossings, we
have the following theorem:

Theorem 6.1. Every knot with at most n = 10 crossings has an OGC diagram.



Lj. Radović, S. Jablan / Filomat 29:10 (2015), 2381–2392 2391

Conjecture 6.2. Every rational knot is OGC knot.

Conjecture 6.3. Every knot has an OGC diagram.

6.1. Product of OGC knots

Definition 6.4. A graph consisting of a circle and n chords joining 2n different points on it is called chord diagram
of order n.

Planar diagrams of oriented knots are characterized by their Gauss diagrams. A Gauss diagram of
a classical knot projection is an oriented circle considered as the preimage of the immersed circle with
chords connecting the preimages of each crossing. To maintain information about overcrossings and
undercrossings, the chords are oriented toward the undercrossing point and can be also signed in accordance
with crossing signs.

Fig. 12 shows the chord diagram of a figure-eight knot given by the Gauss code {1,−2, 3,−4, 2,−1, 4,−3}.
Following the orientation of the circle we draw the sequence of numbers 1,−2, 3,−4, 2,−1, 4,−3 and join
(1,−1), (2,−2), (3,−3), and (4,−4) by oriented chords.

Figure 12: Chord diagram of figure-eight knot.

Let be given two alternating OGC knots with the same number of crossings n with their ordered Gauss
codes G1 and G2. If in G1 and G2 every first half of the code is the sequence of n numbers beginning with 1
and the absolute value of this sequence is 1, 2, . . . , n, G′

1
and G′

2
are the second halves of the codes, the new

Gauss code obtained as concatenation of G′
1

and −G′2 we call the product of ordered Gauss codes G1 and G2.

Theorem 6.5. Product of ordered Gauss codes can be transformed into an ordered Gauss code.

This statement follows immediately from the fact that the first half of the code obtained by the concate-
nation contains n different numbers. Such a product of ordered Gauss codes is well defined only for knots
with the same odd number of crossings, and for knots with an even number of crossings it results in non-
realizable Gauss codes. E.g., from ordered Gauss codes {1,−2, 3,−4, 5,−6, 7,−8,9,−7, 6,−5, 4,−3, 2,−1, 8,−9}
and {1,−2, 3,−4, 5,−6, 7,−8, 9,−5, 4,−3, 2,−1,6,−7, 8,−9}of knots 92 = 7 2 and 94 = 5 4 we obtain the code of
the product {−7, 6,−5, 4,−3, 2,−1, 8,−9, 5,−4, 3,−2, 1,−6, 7,−8, 9}, corresponding to the knot 96 = 5 2 2. By
using chord diagrams of the knots, the product can be modeled if we take second halves of chord diagrams,
make from them an oriented circle and join the corresponding points defining chords (Fig. 13). It is clear
that the product of a knot with an odd number of crossings given by its ordered Gauss code and its mirror
image represents an unknot. Product of every knot with an odd number of crossings 2n + 1 with itself is a
torus knot T(2n + 1, 2), i.e., knot 31, 51, 71, 91, . . ..

For ordered Gauss codes G1 and G2 of knots with the same even number of crossings we can define
another kind of product, resulting in a meander link given by the Gauss code {{G′

1
}, {G′2}}. E.g., the product

of Gauss codes {1,−2, 3,−4, 5,−6, 7,−8, 6,−5, 4,−3, 2,−1, 8,−7}and {1,−2, 3,−4, 5,−6, 7,−8,4,−3, 2,−1, 8,−7,
6,−5} of knots 81 = 6 2 and 83 = 4 4 is the Gauss code {{6,−5, 4,−3, 2,−1, 8,−7}, {−4, 3,−2, 1,−8, 7,−6, 5}} of
the meander link 82

1
= 8.
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Figure 13: Chord diagrams of (a) knot 92; (b) knot 94; (c) their product, knot 96; (d) chord diagram of the ordered Gauss code of the
knot 96.

In a similar way we can define a product of two 2-component meander links G1 and G2 with the same
number of crossings n as a Gauss code {{G′

1
}, {G′

2
}} consisting from the second parts of their codes, i.e.,

their short Gauss codes. E.g., the product of 12-crossing meander links 7 5 given by Gauss code {{−1, 2,−3,
4,−5, 6,−7, 8,−9, 10,−11, 12}, {1,−6, 5,−4, 3,−2, 7,−8, 9,−10, 11,−12}} and 6∗4.2 : 2 0.2 given by Gauss code
{{−1, 2,−3, 4,−5, 6,−7, 8,−9, 10,−11, 12}, {−2, 7,−6, 3,−12, 11,−10, 9,−4, 5,−8, 1}} is the meander link given
by Gauss code {{1,−6, 5,−4, 3,−2, 7,−8, 9,−10, 11,−12}, {2,−7, 6,−3, 12,−11, 10,−9, 4,−5, 8,−1}} that can be
ordered as {{1,−2, 3,−4, 5,−6, 7,−8, 9,−10, 11,−12}, {6,−7, 2,−5, 12,−11, 10,−9, 4,−3, 8,−1}}.
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