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Abstract. In the present paper we consider two natural, elliptic, self-adjoint second order differential
operators acting on exterior differential forms on Riemannian manifolds. These operators are the well-
known Hodge-de Rham and little-known Tachibana operators. Basic properties of these operators are very
similar, or vice versa are dual with respect to each other. We review the results (partly obtained by the
authors) on the geometry of these operators and demonstrate the comparative analysis of their properties.

1. Introduction and notations

1.1. In the present paper we make overview and comparative analysis of the properties of the well-known
Hodge-de Rham and little-known Tachibana operators acting on exterior differential forms on Riemannian
manifolds.

The paper is based on our report at the International Conference ”XVIII Geometrical Seminar” (Serbia,
May 25-28, 2014).

1.2. Let (M, 1) be an n-dimensional Riemannian manifold with the Levi-Civita connection 5 and Ωr(M) be
the space of smooth r-forms on M for all r = 1, ...,n − 1. If (M, 1) is compact we can define the Hodge product
for ω, θ ∈ Ωr(M) by the formula 〈ω, θ〉 =

∫
M

1
r!1(ω, θ)dVol where 1(ω, θ) is the point-wise inner product.

Using the Hodge product, we can define the adjoint exterior codifferential d∗: Ωr+1(M)→ Ωr(M) to the exterior
differential d: Ωr(M)→ Ωr+1(M) via the formula 〈dω, θ〉 = 〈ω, d∗θ〉whenever ω ∈ Ωr−1(M) , θ ∈ Ωr+1(M)

2. A specification of the Bourguignons result and conformal Killing forms

2.1. J.P. Bourguignon (see [3]) considered the space of natural (with respect to isometric diffeomorphisms)
first-order differential operators on Ωr(M) with values in the space of homogeneous tensors on M. He proved
the existence of a basis of this space which consists of three operators {D1 = d; D2 = d∗; D3}.

As for the third operator D3, J.P. Bourguignon said that D3 does not have any geometric interpretation
for r > 1. It was also pointed out that in the case r = 1 the kernel of D3 consists of infinitesimal conformal
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transformations of (M, 1). We remark here that they are also called conformal Killing vector fields (see [14]; [36,
pp. 53-54]).

Improving Bourguignons result, we showed that

D1 =
1

r + 1
d ; D2 =

1
n − r + 1

1
∧

d∗ ;D3 = 5 −
1

r + 1
d −

1
n − r + 1

1
∧

d∗

and proved that the kernel of the third basis operator D3 consists of conformal Killing r-forms (see [23];
[24]).

Conformal Killing r-forms, 1 6 r 6 n−1, or conformal Killing-Yano tensors of rank r are a generalization
of conformal Killing vector fields (see [14]; [36, pp. 53-54]; [13, p. 309]). For r = 1, such forms are dual to
conformal Killing vector fields. The vector space of these r-forms will be denoted by Tr(M,R).

Remark We emphasize here that the conformal Killing r-forms, 1 < r < n, considered in the monograph
[36] have nothing in common (except the name) with those considered in the modern literature and, in
particular, in this paper; the notion was introduced by K. Yano as a generalization conformal Killing vector
fields but has not been developed further.

2.2. The vector space Kr(M,R) of co-closed conformal Killing r-forms is defined as Kr(M,R) = Tr(M,R) ∩
Fr(M,R) where Fr(M,R) is a vector space of co-closed r-forms. For r = 1, such forms are dual to Killing vector
fields (see [36, pp. 37-38]; [13, p. 237]). Therefore, these forms were called Killing forms or Killing tensors
(see [36, pp. 65-66]). In turn, the space Pr(M,R) of closed conformal Killing r-forms (or, planar r-forms) is
defined by the equation Pr(M,R) = Tr(M,R)∩Dr(M,R) where Dr(M,R) is a vector space of closed r-forms.
For r = 1, such forms are dual to concircular vector fields (see [14]).

Take a local orientation of (M, 1) and the corresponding the Hodge star operator ∗ : Ωr(M) → Ωn−r(M)
which is a linear isomorphism mapping any r-form on (M, 1) to (n− r)-form for an arbitrary r with 0 ≤ r ≤ n
(see [2, p. 33]; [17, p. 203]). Then the spaces Pr(M,R) and Kn−r(M,R) are isomorphic to each other with
respect to the Hodge star operator ∗ (see [23]).

Remark During the whole almost half-century history, beginning with Tachibana and Kashiwada papers
(see [31], [12]) and ending with recent works (see [19]; [18]; [27]), conformal Killing forms have caused
extensive interest of researchers, partly because of their numerous physical applications (see, for example,
[23], [1], [9, pp. 414,426], [35], [25] and etc.). A survey of results on the geometry of conformal Killing,
co-closed conformal Killing and closed conformal Killing forms and applications of these forms to General
Relativity can be found in the introduction of our paper [26].

3. Two elliptic operators on forms and a brief review of their basic properties

3.1. Using the basis operators D1 = d; D2 = d∗ and D3, we can define the well-known Hodge-de Rham
Laplacian (see [2, p. 34]; [17])

∆ = d∗ ◦ d + d ◦ d∗ : Ωr(M)→ Ωr(M)

and the Tachibana operator � = r(r + 1)D∗3D3 : Ωr(M)→ Ωr(M) such that (see [26])

D∗3 ◦D3 =
1

r(r + 1)

(
∆̄ −

1
r + 1

d∗ ◦ d −
1

n − r + 1
d ◦ d∗

)
where D∗3 is an adjoint operator to D3 and ∆̄ = 5∗ ◦ 5 is the Bochner rough Laplacian.
The exterior differential r-form ω on a compact (M, 1) is called harmonic if ∆ω = 0. Harmonic r-forms on

(M, 1) constitute a vector space denoted by Hr(M,R). By the Hodge theory (see [10]), the r-th Betti number
equals the dimension of Hr(M,R): br(M) = dimHr(M,R) for all r = 1, ...,n − 1. In particular, if (M, 1) is an

n-dimensional compact flat Riemannian torus Tn then br (Tn) =
n!

r!(n − r)!
.

An important property of the Hodge-de Rham Laplacian ∆ is that it commutes ∗∆ = ∆∗ . In particular, if
ω is a harmonic r-form, then ∗ω is a harmonic (n−r)-form too, i.e., Hr(M,R)→ Hn−r(M,R) is an isomorphism.
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This implies the following equation br(M) = bn−r(M) which is well known as the Poincare duality theorem for
Betti numbers. We remark further that the Betti numbers b0(M), b1(M), ..., bn(M) are topological invariants
of a compact manifold M.

Remark The results of the first section of this Paragraph were found in the 1940s by Weyl, Hodge, de
Rham and Kodaira.

3.2. On the other hand, the Tachibana operator � has the same properties as the Hodge-de Rham operator
∆. Namely, the following theorem holds (see [26]; [21]; [28]).

Theorem 3.1. Let (M, 1) be an n-dimensional compact oriented Riemannian manifold and � the Tachibana operator.
Then

1. � is an elliptic and self-adjoint operator;
2. the kernel of � consists of conformal Killing r-forms;
3. ∗� = �∗ and if ω is a conformal Killing form, so is ∗ω.

From the above properties we conclude that dimTr(M,R) = tr(M) < ∞ and tn−r(M) = tr(M) for all numbers
t1(M), ..., tn−1(M). These numbers have been named in [20] as the Tachibana numbers of (M, 1). Moreover, we
proved in [22] that these numbers are conformal invariants of (M, 1). In turn, we can state that the following
equalities dimKr(M,R) = kr(M) < ∞ and dimPr(M,R) = pr(M) < ∞ are true. The numbers kr(M) and pr(M)
we have called the Killing and planarity numbers of a compact Riemannian manifold (M, 1), respectively
(see [22]). These numbers satisfy the following duality property pr(M) = kn−r(M) for all r = 1, ...,n − 1
and are scalar projective invariant of (M, 1) (see [23] and [22]). In particular, we proved the equality

kr(Sn) =
(n + 1)!

(r + 1)!(n − r)!
for the standard sphere Sn in Euclidian spaceRn+1 (see [20]; [30]). As a consequence

of this statement, we obtain the following equalities pr(Sn) = kn−r(Sn) =
(n + 1)!

(n − r + 1)!r!
. In addition, we recall

that any two connected, simply connected complete Riemannian manifolds of constant sectional curvature

are isometric to each other (see [8, p. 265]). Therefore, the following equalities kr(M) =
(n + 1)!

(r + 1)!(n − r)!
and

pr(M) =
(n + 1)!

(n − r + 1)!r!
are true on an arbitrary connected, simply connected compact Riemannian manifold

(M, 1) of positive constant sectional curvature.

4. The vanishing theorems of the Tachibana numbers

4.1. Let R̄: Ω2(M) → Ω2(M) be the well-known symmetric Riemannian curvature operator (see [4]; [17]).
Namely, the curvature operator R̄ at any x ∈M is the linear symmetric bilinear map R̄: Λ2(TxM)→ Λ2(TxM)
characterized by the identity 1(R̄(X ∧ Y),V ∧ Z) = 1(R(X,Y)Z,V) for orthonormal vectors X,Y,Z,V ∈ TxM
and the Riemannian curvature tensor R. Since R̄ is symmetric, it makes sense to talk about the positivity
and the nonnegativity of R̄. In this case the following proposition holds (see [17, p. 212]): If (M, 1) is

compact oriented and its curvature operator R̄ ≥ 0 then br(M) ≤ br(Tn) =
n!

r!(n − r)!
where r = 1, ...,n − 1. In

addition, if R̄ > 0 then br(M) = 0 for all r = 1, ...,n − 1. This is known as the Mayer vanishing theorem of the
Betti numbers. In particular, for a compact Riemannian manifold of positive constant sectional curvature,
or for a compact conformally flat oriented Riemannian manifold with the positive-definite Ricci tensor Ric,
we have br(M) = 0 for all r = 1, ...,n − 1 (see [36, pp. 77-78]). On the other hand, we proved in [20] the
following proposition.

Theorem 4.1. The Tachibana numbers tr(M) = 0 , r = 1, ...,n − 1, vanish for an n-dimensional compact oriented
Riemannian manifold (M, 1) with the negative-definite curvature operator R̄ . In addition, if R̄ ≤ 0 , then tr(M) ≤

tr(Tn) =
n!

r!(n − r)!
.
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The above theorem is an analogue of the ”Mayer vanishing theorem” of the Betti numbers. In particular,
this theorem implies that for a compact Riemannian manifold of constant negative sectional curvature, or
for a compact conformally flat oriented Riemannian manifold with the negative-definite Ricci tensor Ric,
we have tr(M) = 0 for all r = 1, ...,n − 1.

4.2. We denote by S2
0M the vector space of covariant traceless symmetric 2-tensors over (M, 1). From the

symmetry properties of the Riemannian curvature tensor R we see that the curvature tensor actually defines
a symmetric bilinear map R

◦

: S2
0(TxM)→ S2

0(TxM) at every point x ∈M, such as (see [4]; [2, pp. 51-52])

1 (R
◦

(X ◦ Y),X ◦ Y) = 21(R(X,Y)Y,X)

where X ◦ Y = 2−1(X ⊗ Y + Y ⊗ X) for any orthogonal vectors X,Y ∈ TxM . The scalar product on the
left-hand side of the identity is the induced unity at the level of the vector space S2(TxM) of symmetric
bilinear two-forms. This relation defines an algebraic symmetric operator which is called the curvature
operator of the second kind (see [11]). Since R

◦

is symmetric, it makes sense to talk about the positivity and the
nonnegativity of R

◦

. In this case the following proposition holds (see [33]): If (M, 1) is compact oriented and
its curvature operator R

◦

> 0 then br(M) = 0 for all r = 1, ...,n − 1. This is known as the Tachibana vanishing
theorem of the Betti numbers. On the other hand, we proved in [30] the following dual proposition.

Theorem 4.2. The Tachibana numbers tr(M) , r = 1, ...,n − 1, vanish for an n-dimensional compact oriented
Riemannian manifold (M, 1) with the negative-definite curvature operator R

◦

.

5. A relationship between the Betti and Tachibana numbers

5.1. Sh. Tachibana has proved in [32] the following proposition: If (M, 1) is a 2r-dimensional compact
conformally flat Riemannian manifold with the constant scalar curvature s > 0 then the orthogonal decom-
position Tr(M,R) = Pr(M,R) ⊕ Kr(M,R) holds. In this case we can conclude that tr(M) = pr(M) + kr(M)
and br(M) = 0. On the other hand, we have proved in [26] and [21] the following theorem that generalizes
Tachibana’s proposition.

Theorem 5.1. Let (M, 1) be a connected compact oriented Riemannian n-manifold. Suppose that the Betti number
br(M) vanishes for some 1 ≤ r ≤ n− 1 and the corresponding Tachibana number tr(M) and Killing number kr(M) are
related by tr(M) > kr(M) > 0. Then the difference tr(M) − kr(M) is equal to the planarity number pr(M) of the given
manifold.

We can amplify this proposition by the following statement (see [21]).

Corollary 5.2. Suppose that, for a connected compact oriented n-dimensional Riemannian manifold (M, 1), the Betti,
Tachibana, and Killing numbers satisfy the conditions b1(M) = 0 and t1(M) > k1(M) > 0. Then t1(M) = 1

2 (n+1)(n+2)
and b2(M) = ... = bn−1(M) = 0 because the manifold (M, 1) is conformally diffeomorphic to the standard sphere Sn in
Euclidian space Rn+1.

The duality properties of the Betti, Killing and planarity numbers imply the following proposition.

Corollary 5.3. Suppose that, for a connected compact oriented n-dimensional Riemannian manifold (M, 1), the Betti
number bn−1(M) vanishes and the Killing number kn−1(M) does not vanish. Then t1(M) = 1

2 (n + 1)(n + 2) and
b2(M) = ... = bn−1(M) = 0 because the manifold (M, 1) is conformally diffeomorphic to the standard sphere Sn in
Euclidian space Rn+1.

5.2. Many propositions are concerned with the dimensions of vector spaces of conformal Killing and
Killing r-forms, 1 ≤ r ≤ n − 1, and vector fields in a neighborhood of an arbitrary point of the Riemannian
manifold (M, 1). We investigated the problem of the existence of compact Riemannian manifold with
nonzero Tachibana numbers tr(M) for all r = 1, ...,n− 1 in our paper [26]; [21]; [30] and [29]. In the theorems
of this section we discuss the dimensions of the vector spaces of conformal Killing, Killing and planarity
r-forms, 1 ≤ r ≤ n − 1, globally defined on an n-dimensional compact Riemannian manifold (see [27] and
[21]).
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Theorem 5.4. Let (M, 1) be a connected compact oriented n-dimensional Riemannian manifold. Suppose that one of
the following two conditions holds: 1. the Ricci tensor Ric is nonpositive and the Tachibana number t1(M) = p , 0;
2. the Ricci tensor Ric is nonnegative and the Betti number b1(M) = p , 0. Then the Tachibana numbers satisfy the

relations tr(M) = br(M) ≥
p!

r!(p − r)!
for all r ≤ p . If Ric ≤ 0 and t1(M) = n or Ric ≥ 0 and b1(M) = n, then (M, 1)

is a flat Riemannian n-torus.

Finally, in this paragraph we consider the Tachibana numbers tr(M), 1 ≤ r ≤ n − 1, of an n-dimensional
connected compact conformally flat Riemannian manifolds (M, 1).

First, we known (see [14]; [2, p. 62]) that an n-dimensional compact and a simply connected Riemannian
manifold which is locally conformally flat must be globally conformally equivalent with the standard sphere
Sn in Euclidian space Rn+1 and, therefore, b1(M) = ... = bn−1(M) = 0. Moreover, we recall that a compact
connected manifold is simply connected if and only if its first Betti number b1(M) = 0.

Second, from our Theorem 5.1 we conclude that for the standard sphere Sn in Euclidian space Rn+1 the

equalities tr(Sn) = kr(Sn) + pr(Sn) =
(n + 2)!

(r + 1)!(n − r + 1)!
are true. Then for an n-dimensional compact simply

connected conformally flat Riemannian manifold (M, 1) we have tr(M) = tr(Sn) =
(n + 2)!

(r + 1)!(n − r + 1)!
because

the Tachibana number tr(M) is a conformal invariant of (M, 1) for all r = 1, ...,n − 1.
In conclusion, we can state the ”existence theorem” of the Tachibana numbers (see [21] and [30]).

Theorem 5.5. If the first Betti number b1(M) of a connected compact conformally flat n-dimensional Riemannian

manifold (M, 1) vanishes, then tr(M) =
(n + 2)!

(r + 1)!(n − r + 1)!
and b2(M) = ... = bn−1(M) = 0.

We further remark that there are other interesting examples of compact Riemannian manifolds with
non-zero Tachibana numbers (see [26]).

6. Eigenvalues of the Hodge-de Rham and Tachibana operators and their boundary theorems

6.1. A real number λr for which there is an r-form ω which is not identically zero such that ∆ω = λrω
is called an eigenvalue of ∆ and the corresponding r-form ω an eigenform of ∆ corresponding to λr . The
eigenforms corresponding to a fixed λr form a subspace of Ωr(M) , namely the eigenspace of λr . In addition,
we denote by m(λr) = dimVλr the multiplicity of the eigenvalue λr of the Hodge-de Rham operator ∆. The
following statements about eigenvalues of ∆ and their corresponding forms are valid (see [5, p. 334-343];
[7, p. 273-321]).

1. The Laplacian ∆ has a positive eigenvalue λr and in fact a whole sequence of eigenvalues which
diverge to +∞.

2. λr = λn−r for all r = 1, ...,n.
3. The eigenspaces of λr are finite dimensional.
4. The eigenforms corresponding to distinct eigenvalues are orthogonal.
Let (M, 1) be a compact oriented manifold. If, in addition, the curvature operator R̄ satisfies the inequality

R̄ ≥ δ for some positive number δ at every point x ∈ M, then λr
≥ in f {r(n − r + 1)δ; (n − r)(r + 1)δ} and the

Betti numbers br(M) = 0 for all r = 1, ...,n − 1 (see [5, pp. 342-343]; [34]).
For n < 2r the equality λr

1 = (r + 1)(n − r)δ is attained for some eigenform ω ∈ Kr(Sn) on the Euclidian

n-sphere Sn of the constant curvature δ . In this case we have the inequality m(λr) ≤ kr(Sn) =
(n + 1)!

(r + 1)!(n − r)!
. On the other hand, for n > 2r the equality λr

1 = r(n − r + 1)δ is attained for some eigenform ω ∈
Pr(Sn) on the Euclidian n-sphere Sn of the constant curvature δ . In this case we have the inequality

m(λr) ≤ pr(Sn) =
(n + 1)!

(n − r + 1)!r!
. Finally, for n = 2r the equality λr

1 = r(r + 1)δ holds for some eigenform
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ω ∈ Tr(S2r) on the Euclidian 2r-sphere S2r of the constant curvature δ . In this case we have the inequality

m(λr) ≤ tr(S2r) = 2
(2r + 1)!
(r + 1)!r!

.

It is obvious that in the case n = 2r the Hodge-de Rham operator ∆ has the form ∆ = (r + 1)∆̄ − (r + 1)�.
In this case we have proved in [26] the following theorem.

Theorem 6.1. Let (M, 1) be a 2r-dimensional compact oriented conformally flat Riemannian manifold with positive
scalar curvature s. Then the eigenvalue λ of the Hodge Laplacian ∆ on r-forms satisfies the inequality λ ≥ (r +
1)(2r(2r− 1))−1s0 where s0 = in fx∈Ms(x) . If there exists an eigen r-form corresponding to λ = (r + 1)(2r(2r− 1))−1s0

then it is a conformal Killing form and the multiplicity of the eigenvalue λr satisfies the inequality m(λr) ≤ 2
(2r + 1)!
(r + 1)!r!.

6.2. The number λr
∈ R is called an eigenvalue if there exists some non-zero ω ∈ Ωr(M) , such as �ω = λrω

(see [26]). We denote by m(λr) := dim Vλr the multiplicity of the eigenvalue λr of the Tachibana operator �.
Using the general theory of elliptic operators it can be proved that the r-spectrum of � : Ωr(M)→ Ωr(M)

denoted by Spec(r)� lies on the non-negative real half line and is pure discrete, i.e., is given by a sequence
Spec(r)� = {0 ≤ λr

1 ≤ λ
r
2 ≤ ... → ∞} , where all eigenvalues are of finite multiplicity (see [5]; [7]). This

sequence begins with zero if and only if the Tachibana number tr(M) , 0. We have the following theorem
(see [28]).

Theorem 6.2. Let � be the Tachibana operator on Ωr(M) for a compact n-dimensional Riemannian manifold (M, 1).
Then the following four statements hold.

1. The r-spectrum Spec(r)� of � has the form Spec(r)� = {0 ≤ λr
1 ≤ λ

r
2 ≤ ...→∞}.

2. Spec(r)� = Spec(n−r)�.
3. All eigenspaces of � are finite dimensional.
4. Eigenspaces for different eigenvalues are orthogonal.

Remark The above theorem is an analogue of the well known theorem on the spectrum Spec(r)∆ of the
Hodge-de Rham Laplacian ∆ : Ωr(M)→ Ωr(M) (see [5]; [7]).

6.3. We say that the curvature operator R
◦

is negative and bounded from above if R
◦

satisfies the inequality
1
(
R
◦

(ϕ,ϕ
)
≤ −ε 1(ϕ,ϕ) for any traceless symmetric 2-tensor ϕ and a positive number ε. In view of the

above, we can formulate the theorem (see [28]).

Theorem 6.3. Let (M, 1) be a compact Riemannian manifold with the negative curvature operator R
◦

bounded above
by some negative number −ε . Then tr(M) = 0 and the first eigenvalue λr

1 of the Tachibana operator � satisfies the
inequality λr

1 ≥ r(n− r)ε > 0 . If (M, 1) admits an eigenform ω that corresponds to λr
1 = r(n− r)ε then ω is harmonic

and the multiplicity of the first eigenvalue λr
1 satisfies the inequality m(λr) ≤ br(M) for the Betti number br(M) of

(M, 1) and all r = 1, ...,n − 1.

It is obvious that in the case n = 2r the Tachibana operator � has the form � = ∆̄−
1

(r + 1)
∆ . In this case

we have proved in [28] the following theorem.

Theorem 6.4. Let (M, 1) be a 2r-dimensional compact oriented conformally flat Riemannian manifold with negative
scalar curvature s. Then the eigenvalue λ of any eigen r-form of � satisfies the inequality λr

≥ (2(2r − 1))−1s0 where
s0 = in fx∈M|s(x)| . If there exists an eigen r-form corresponding to the eigenvalue λr = (2(2r − 1))−1s0 then it is
harmonic and the multiplicity of the eigenvalue λr satisfies the inequality m(λr) ≤ br(M) for the Betti number br(M)
of (M, 1).

Finally, in this paragraph we consider an n-dimensional compact hyperbolic space Hn with standard
metric 10 having constant sectional curvature equal to −1. In this case, we obtain from Theorem 6.4 that
λr

1 ≥ r(n − r) for the first eigenvalue λr
1 of the Tachibana operator �. At the same time it is well known
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(see [8]) that L2-harmonic r-forms appear on a simply connected complete hyperbolic manifold (M, 1) of
constant sectional curvature −1 if and only if n = 2r. Therefore, if (M, 1) is a compact hyperbolic space
(Hn, 10) then the equality λr

1 = r(n − r) is attained if and only if n = 2r. In this case the multiplicity of λr is
equal to the Betti number br(H2r).

7. Table

In the following table we list the summary of basic properties of the Hodge-de Rham and Tachibana
operators.

Elliptic operators on forms from the basis d, d∗,D

The Hodge-de Rham Laplacian The Tachibana operator
∆ = d d∗ + d d∗ � = r(r + 1)D ∗D

Kernels of operators and their scalar invariants

The Hodge theorem: Tr(M,R) = Ker �
Hr(M,R) = Ker ∆ dim Tr(M,R) = tr(M) < ∞

dim Hr(M,R) = br(M) < ∞ tr(M) is a conformal invariant

Duality properties

The Poincare duality properties:
br(M) = bn−r(M) tr(M) = tn−r(M)

Vanishing theorems for Betti and Tachibana numbers

Meyer and Tachibana theorems:
R̄ > 0 or R

◦

> 0 ⇒ br(M) = 0 R̄ < 0 or R
◦

< 0 ⇒ tr(M) = 0

First eigenvalues of operators

The Meyer theorem:
R̄ > δ > 0 ⇒ R

◦

< −δ < 0⇒ λr
1 ≥ r(n − r)δ

λr
1 ≥ in f {r(n − r + 1)δ, (r + 1)(n − r)δ}

Multiplicities of Eigenvalues

The Tachibana theorem:
λr

1 = in f {r(n − r + 1)δ, (r + 1)(n − r)δ} λr
1 = r(n − r)δ ⇒

⇒ ω is conformal Killing and ⇒ ω is harmonic and m(λr) ≤ br(M)
m(λr) ≤ tr(M)
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8. Appendix

The theory of natural (with respect to isometric diffeomorphisms) first and second order differential
operators acting on exterior differential forms maybe extended to generalized Riemannian manifolds (see
[6], [15] and [16]). This is our future work.
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[26] S.E. Stepanov, J. Mikeš, Betti and Tachibana numbers of compact Riemannian manifolds, Differential Geom. Appl., 31: 4 (2013),

486-495.
[27] Stepanov S.E., Mikesh J., Betti and Tachibana numbers, Miskolc Math. Notes, 14 (2013), No. 2, pp. 475-486
[28] Stepanov S.E., Mikesh J., Eigenvalues of the Tachibana operator which acts on differential forms, Differential Geometry and its

applications (Available online: http://www.sciencedirect.com/science/article/pii/S0926224514000369).
[29] Stepanov S.E., Mikesh J., Hinterleitner I., Projective mappings and dimen-sions of vector spaces of three types of Killing-Yano

tensors on pseudo-Riemannian manifolds of constant curvature, American Institute of Physics. Conference Proceedings, 1460
(2012), 202-205.

[30] Stepanov S.E., Tsyganok I.I., Existence and nonexistence theorems for conformal Killing forms, Russian Mathematics (Izvestiya
VUZ. Matematica), 58:10 (2014), 54-61.

[31] Tachibana Sh. On conformal Killing tensor in a Riemannian space. Tohoku Math. Journal, 21 (1969), 56-64.
[32] Tachibana S., On the proper space of ∆ for m-forms in 2m-dimensional conformal flat Riemannian manifolds, Nat. Sci. Rep.

Ochanomizu Univ. 28 (1978), 111-115.
[33] Tachibana S., Ogiue K., Les variétés riemanniennes dont l’opéateur de coubure restreint est positif sont des sphères d’homologie
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