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On a Property of Moduli of Smoothness and K-Functionals
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Abstract. A new property of moduli of smoothness associated to functions belonging to some certain
spaces is revealed. In terms of statistical convergence, we determine the behavior of these special functions
at the point δ = 0. In this respect, Peetre’s K-functional is also investigated.

1. Introduction

Moduli of smoothness represent important tools in obtaining quantitative estimates of the error of
approximation for positive processes. There are many such special functions associated with wide classes
of function spaces. Investigate their properties are useful in evaluating the rate of convergence induced by
linear operators used in approximation. Among the essential properties is the right continuity in origin of
a given modulus, say ω∗( f ; ·), where f belongs to a certain space S. More precisely, let (δn)n≥1 be a positive
real sequence. Over time, a justified concern was to find answer to the following question

if lim
n
δn = 0, then will result lim

n
ω∗( f ; δn) = 0? (1.1)

For example, we refer at k-th modulus of smoothness ωk( f ; ·) of f (k ∈N) defined by

ωk( f ; δ) = sup
|h|≤δ

x,x+kh∈I

|∆k
h f (x)|, δ > 0, (1.2)

where f : I→ R is a bounded real function and ∆k
h f (x) represents the k-th difference of f with step h (h , 0)

at the point x ∈ I. It satisfies lim
δ→0+

ωk( f ; δ) = 0 provided f belongs to UCB(I), the space of all uniformly

continuous and bounded real valued functions defined on the interval I, see, e.g., the monograph [1, Lemma
5.1.1].

Motivation to write this note comes from the following considerations. In Approximation Theory one
recent topic is the analysis of linear and positive processes by using statistical convergence, the first step
being done by Gadjiev and Orhan [5]. The main idea of statistical convergence of a sequence is that
the majority (in a certain sense) of its elements converges and we are not concerned in what happens to
the remaining elements. The advantage of replacing the ordinary convergence by statistical convergence
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consists in the fact that the second convergence is efficient in summing divergent sequences which may
have unbounded subsequences. This way, the approach provides an optimization of the technique to
approximate a signal by linear and positive operators.

In this context, we are interested to give a general answer to question (1.1) replacing the classical
convergence by statistical convergence. Even if it seems like a basic problem, this has not been yet treated.
The property which we will highlight is useful in the study of statistical convergence for sequences of linear
approximation operators to the identity operator.

2. Results

At first we recall the concept of statistical convergence that was introduced by Fast [4] and Steinhauss
[10]. It is based on the notion of the asymptotic density of subsets ofN. The density of S ⊆ N denoted by
δ(S) is given by

δ(S) = lim
n

n−1
n∑

j=1

χS( j),

where χS stands for characteristic function of the set S. A sequence (xn)n≥1 of real numbers is said to be
statistically convergent to a real number l if, for every ε > 0,

δ({n ∈N : |xn − l| ≥ ε}) = 0,

this limit being denoted by st − lim
n

xn = l.

We answer to question (1.1) reformulated in terms of statistical convergence by using a general modulus
introduced by Nishishiraho [7]. This modulus is useful to determine quantitative estimates of the rates
of convergence for positive approximation processes on spaces of real continuous functions defined on a
convex compact set.

Let F be a locally convex Hausdorff space over the field of real numbers and F′ the space consisting of
all linear functionals on F. Let X be a compact convex subset of F. Set B(X), C(X) the Banach lattice of all
real-valued bounded, respectively continuous functions on X endowed with the supremum norm ‖ · ‖∞.
The set of all restrictions of functions in F′ to X is denoted by F′X. Following [7, Definition 1] and [1, page
270], let {11, . . . , 1k} be a finite subset of F′X. We define on R+ the modulus of smoothness of f ∈ B(X) with
respect to 11, . . . , 1k as

ω( f ; 11, . . . , 1k; δ) = sup
{
| f (x) − f (y)| : (x, y) ∈ X×X and

k∑
j=1

(1 j(x) − 1 j(y))2
≤ δ2

}
. (2.1)

The total modulus of smoothness of f ∈ B(X) is defined on R+ as follows

Ω( f ; δ)= inf
{
ω( f ; 11, . . . , 1k; δ) : k∈N, 11, . . . , 1k∈F′X,

∥∥∥∥ k∑
j=1

12
j

∥∥∥∥
∞

=1
}
. (2.2)

Theorem 2.1. Let f ∈ C(X) and let the modulus of smoothness of f with respect to 11, . . . , 1k be defined by (2.1). If
(δn)n≥1 is a positive real sequence such that st − lim

n
δn = 0, then

st − lim
n
ω( f ; 11, . . . , 1k; δn) = 0. (2.3)

Proof. We use the following characterization of statistical convergence established by Šalát [9, Lemma 1.1].
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A sequence x = (xn)n≥1 converges statistically to l ∈ R if and only if there exists a set S = {n j : n j <
n j+1, j ∈N} ⊂Nwith the properties

δ(S) = 1 and lim
j

xn j = l.

According to this criterion, since st− lim
n
δn = 0, a strictly increasing sequence (n j) j≥1 of positive integers

exists such that lim
j
δn j = 0 and the set S = {n1,n2, . . .} has full density, i.e., δ(S) = 1.

Since f ∈ C(X) and ω( f ; 11, . . . , 1k; ·) is right continuous at zero, the relation lim
j
δn j = 0 implies

lim
j
ω( f ; 11, . . . , 1k; δn j ) = 0.

Applying again the Šalát’s result, this time for the sequence (ω( f ; 11, . . . , 1k; δn))n≥1 and the same set of
indices S, we arrive at (2.3) and the proof is completed. �

Starting from the above result, we can assert

Corollary 2.2. Let f ∈ C(X) and let the total modulus of smoothness of f be defined by (2.2). If (δn)n≥1 is a positive
real sequence such that st − lim

n
δn = 0, then

st − lim
n

Ω( f ; δn) = 0.

The result of Theorem 2.1 includes the following special case. Choosing F = Rk, X = I1 × . . . × Ik

a k-dimensional interval, 1i = pri : Rk
→ R the i-th canonical projection map, i = 1, k, the modulus of

smoothness of f ∈ B(X) with respect to pr1, . . . , prk is given by

ω( f ; pr1, . . . , prk; δ) = sup{| f (x) − f (y)| : (x, y) ∈ X × X, ‖x − y‖Rk < δ},

in brief ω( f ; δ), where ‖ · ‖Rk is the Euclidian distance in Rk. For k = 1, the property established in this
theorem refers to the one-dimensional classical modulus of continuity, see (1.2) with k = 1 and I = I1. In
one-dimensional case this property was often used. Best of our knowledge, it has appeared for the first
time in [3].

So called Peetre’s K-functional introduced in [8] represents another way for measuring the smoothness
of a function in terms of how well it can be approximated by smoother functions.

We consider the space Lp(I), 1 ≤ p < ∞, I = (a, b), where a = −∞ or a = 0 and n = 0 or b = ∞. Let ϕ be a
compatible step-weight function, subject to certain restrictions. The K-functional is given by

Kr,ϕ( f ; δ)p = inf
1
{‖ f − 1‖p + δ‖ϕr1(r)

‖p : 1(r−1)
∈ A.C.loc}, (2.4)

δ ≥ 0, where 1(r−1)
∈ A.C.loc means that 1 is (r− 1)−times differentiable and 1(r−1) is absolutely continuous in

every compact interval J such that J ⊂ I.

Theorem 2.3. If (δn)n≥1 is a positive real sequence such that st − lim
n
δn = 0, then the K-functional defined by (2.4)

satisfies

st − lim
n

Kr,ϕ( f ; δn)p = 0.

Proof. In the proof of this limit we turn to the connection between this functional and Ditzian-Totik modulus
of smoothness ωr

ϕ( f ; ·)p given by

ωr
ϕ( f ; δ)p = sup

0<h≤δ
‖∆r

hϕ f ‖p,
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see [2, Eq. (2.1.2)], where ∆r
hϕ f represents the r-th central difference of the function f , i.e.,

∆r
hϕ(x) f (x) =

r∑
k=0

(−1)k
(
r
k

)
f
(
x +

( r
2
− k

)
hϕ(x)

)
.

If x + rhϕ(x)/2 or x − rhϕ(x)/2 do not belong to I, then we consider ∆r
hϕ(x) f (x) = 0.

According to [2, Theorem 2.1.1], one has

M−1ωr
ϕ( f ; δ)p ≤ Kr,ϕ( f ; δr)p ≤Mωr

ϕ( f ; δ)p, 0 < t ≤ t0, (2.5)

for some constants M > 0 and t0. Let st − lim
n
δn = 0. Since

lim
δ→0+

ωr
ϕ( f ; δ)p = 0 for all f ∈ Lp(I) if 1 ≤ p < ∞,

following the same technique as in the proof of Theorem 2.1, we get

st − lim
n
ωr
ϕ( f ; δn)p = 0.

Relation (2.5) leads us to the desired result. �

Remark 2.4. Statistical convergence implies statistical σ-convergence, a concept based on invariant mean and re-
cently introduced [6]. Consequently the proven statements of this section are also valid for this new type of convergence.
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