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A. Taherifara

aDepartment of Mathematics, Yasouj University, Yasouj, Iran

Abstract. Let A(X) be a subring of C(X) that contains C∗(X). In Redlin and Watson (1987) and in Panman et
al. (2012), correspondencesZA andZA are defined between ideals in A(X) and z-filters on X, and it is shown
that these extend the well-known correspondences studied separately for C∗(X) and C(X), respectively, to
any intermediate ring A(X). Moreover, the inverse map Z−1

A sets up a one-one correspondence between
the maximal ideals of A(X) and the z-ultrafilters on X. In this paper, first, we characterize essential ideals
in A(X). Afterwards, we show that Z−1

A maps essential (resp., free) z-filters on X to essential (resp., free)
ideals in A(X) and Z−1

A maps essential ZA-filters to essential ideals. Similar to C(X) we observe that the
intersection of all essential minimal prime ideals in A(X) is equal to the socle of A(X). Finally, we give a
new characterization for the intersection of all essential maximal ideals of A(X).

1. Introduction

In this paper, X is assumed to be a completely regular Hausdorff space and all rings are commutative,
reduced, and have an identity element. C(X) (C∗(X)) stands for the ring of all real valued (bounded)
continuous functions on X. A nonzero ideal I in a commutative ring R is called essential if it intersects
every nonzero ideal nontrivially. This concept was first introduced in [19] and plays an important role
in the structure theory of noncummutative Notherian rings. Essential ideals can also characterize for any
commutative ring R the Socle of R, denoted Soc(R), which is the sum of all minimal ideals of R. It is known
that the intersection of all essential ideals in any commutative ring R is Soc(R), see [14] or [21].

Essential ideals in C(X) and their intersections were investigated by F. Azarpanah in [3] and [4] (see also
[11]). We study essential ideals in subrings of C(X) that contain C∗(X) (as intermediate rings). Intermediate
rings of continuous functions have been studied by several authors in different forms and by different
names. Each intermediate ring A(X) forms an archimedean lattice-ordered algebra called a Φ-algebra,
which has been studied by A.W. Hager, M. Henrksen, J.R. Isbell, D.G. Johnson, P. Nanzetta, and D. Plank
in [15]-[17]. Intermediate rings have also been studied as algebras of functions by J.R. Isbell in [18], and as
β-subalgebras of C(X) by D. Plank in [23]. Also, they have been investigated as intermediate algebras by
H.L. Byun, L. Redlin and S. Watson in [6], [7] and [24], and also [22] and [26]. In 1997, J.M. Dominguez, J.
Gomez and M.A. Mulero showed in [8] that intermediate rings can be realized as certain rings of fractions
of C∗(X). Some examples and methods of constructing intermediate rings of continuous functions can be
found in [9] and [10]. In [2] a description is given for the intersection of the free maximal ideals in such
rings.
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In Section 3, we show that an ideal I of A(X) is essential if and only if ZA[I] is an essential z-filter on X if
and only if

⋂
ZA[I] is a nowhere dense subset of X if and only if ZA[I] is an essential z-filter on X. This leads

us to characterize essential prime (resp., maximal) ideals in A(X). As in C(X), we also show that every prime
ideal of A(X) is either essential or both minimal and maximal among prime ideals. Furthermore, maximal
ideals Mp

are essential ideals, where p ∈ βX \ I(X) and I(X) is the set of isolated points of X. It is shown
in [29] that the intersection of all essential minimal prime ideals in C(X) is yet another characterization
of Soc(C(X)). We show that in A(X) the intersection of all essential minimal prime ideals coincides with
Soc(C(X)). The mapZA was introduced in [24], and its properties were further investigated in [6], [7] and
[26]. In [22], another correspondence ZA between ideals of A(X) and z-filters on X is introduced. Using
some properties of ZA and ZA, we show that Z−1

A , maps essential (resp., free) z-filters on X to essential
(resp., free) ideals in A(X) and Z−1

A maps essential ZA-filters to essential ideals.
In Section 4, we characterize the intersection of all essential maximal ideals in A(X). It is proved that

f ∈ A(X) belongs to the intersection of all essential maximal ideals of A(X) if and only if for each 1 ∈ A(X)
and n ∈N, the set {x ∈ X : | f (x)||1(x)| ≥ 1

n } is a finite subset of I(X), where I(X) is the set of isolated points of
X.

2. Preliminaries

Definition 2.1. If f ∈ A(X) and H ∈ Z[X], then f is called H-regular if there is a 1 ∈ A(X) such that f (x)1(x) = 1
for all x ∈ H.

For each f ∈ A(X), ZA( f ) = {E ∈ Z[X] : f is EC-regular}. In other words, ZA( f ) consists of those zero
sets such that f is locally invertible in A(X) on their complements. In [24], Redlin and Waston defined
ZA[I] =

⋃
f∈IZA( f ) and Z−1

A [F ] = { f ∈ A(X) : ZA ⊆ F } for an ideal I of A(X) and a z-filter F on X. The
following lemma is used in the sequel.

Lemma 2.2. For f , 1 ∈ A(X) the following statements hold.

1. Z( f ) =
⋂
ZA( f ).

2. ZA( f ) ∩ZA(1) = ZA( f1).
3. If f ∈ A(X), then | f | ∈ A(X).

Item (1) is shown in [25, Proposition 2.2]. Item (2) is proved in [22, Lemma 1.5]. For item (3), see [6, Theorem
1.1].

Lemma 2.3. [24, Theorems 1 and 3] Let f ∈ A(X), I an ideal of A(X) and F a z-filter on X.

1. ZA( f ) is a z-filter on X if and only if f is not invertible in A(X).
2. ZA[I] is a z-filter on X.
3. Z−1

A [F ] is an ideal of A(X).

P. Panaman, J. Sack and S. Watson defined in [22] and [26] that for each f ∈ A(X), ZA( f ) = {E ∈ Z[X] : f is
H-regular in A(X) for all zero sets H ⊆ EC

}. They also introduced for an ideal I of A(X), ZA(I) =
⋃

f∈I ZA( f )
and for a z-filter F , Z−1

A [F ] = { f ∈ A(X) : ZA( f ) ⊆ F }.

Lemma 2.4. The following statements hold.

1. If I is an ideal in A(X), then ZA[I] is a z-filter on X.
2. IfU is a z-ultrafilter on X, thenZ−1

A [U] = Z−1
A [U] is a maximal ideal in A(X).

For the proof of the above lemma, see [22, Theorems 4.3 and 4.7].
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3. Essential Ideals in A(X)

We begin with the following lemma.

Lemma 3.1. Soc(A(X)) = Soc(C(X)) = { f ∈ C(X): X \ Z( f ) is finite }.

Proof. The second equality is proved in [20, Proposition 3.3]. We have A(X) ⊆ C(X). Therefore Soc(A(X)) ⊆
Soc(C(X)). Let us prove the other inclusion. Consider f ∈ Soc(C(X)). Then X \ Z( f ) is finite. Suppose that
X \ Z( f ) = {x1, ..., xn}. Each xi is an isolated point, so for each 1 ≤ i ≤ n, the ideal A(X)ei = C(X)ei ∩ A(X) is
a minimal ideal in A(X), where ei(xi) = 1 and ei(X \ {xi}) = 0. Therefore f = f (x1)e1 + f (x2)e2 + ... + f (xn)en ∈

Soc(A(X)).

Recall from [4], a z-filter F in a space X is called an essential z-filter if F ∩ F ′ , {X} for every nontrivial
z-filter F ′ (where the trivial z-filter is the z-filter {X}). F. Azarpanah showed in [4, Theorem 1.3] that an ideal
I of C(X) is essential if and only if

⋂
Z[I] is a nowhere dense subset of X. The following is a counterpart for

A(X).

Proposition 3.2. Let I be a non-zero ideal in A(X). Then the following statements are equivalent.

1. I is an essential ideal in A(X).
2. ZA[I] is an essential z-filter in X.
3.
⋂
ZA[I] is a nowhere dense subset of X.

4. ZA[I] is an essential z-filter on X.

Proof. (1)⇒(2) Let F be a non-trivial z-filter. ThenZ−1
A [F ] ∩ I , 0. This implies that F ∩ZA[I] , {X}.

(2)⇒(3) By Lemma 2.2(1), we have⋂
Z(I) =

⋂
f∈I Z( f ) =

⋂
f∈I(
⋂
ZA( f )) =

⋂⋃
f∈IZA( f ) =

⋂
ZA[I].

Now suppose that x ∈ int
⋂
ZA[I] = int

⋂
Z[I]. X being a completely regular space, so there exists

1 ∈ C∗(X) such that x < Z(1) and X \ int
⋂

Z[I] ⊆ Z(1). Therefore f1 = 0 for all f ∈ I. This implies that
ZA( f1) = ZA( f ) ∩ ZA(1) = {X} for all f ∈ I. Thus ZA[I] ∩ ZA(1) = {X}, but ZA(1) is a nontrivial z-filter, a
contradiction. So int

⋂
ZA[I] = ∅.

(3)⇒(1) Let 0 , f ∈ A(X) and I ∩ ( f ) = 0. Then
⋂

Z[I] ∪ Z( f ) = X. This says that X \ Z( f ) is a nonempty
open subset in

⋂
Z[I] =

⋂
ZA[I], a contradiction.

(2)⇒(4) It is easily seen that ZA[I] ⊆ ZA[I]. By essentiality of ZA[I], for every nontrivial z-filter F we
have ZA[I] ∩ F , {X}, which completes the proof.

(4)⇒(1) Assume that 0 , f ∈ A(X) and I ∩ ( f ) = 0. Then ZA( f ) ∩ ZA[I] = {X}. To see this, let
E ∈ ZA( f ) ∩ ZA[I]. Then E ∈ ZA( f ) ∩ ZA(1) = ZA( f1), for some 1 ∈ I. But f1 = 0. Thus E = X. On
the other hand ZA( f ) is a nontrivial z-filter. This shows that ZA[I] is a non-essential z-filter, which is a
contradiction.

Recall from [6] and [24], an ideal I of A(X) is fixed if
⋂
ZA[I] , ∅ (

⋂
Z[I] , ∅) and free if

⋂
ZA[I] = ∅.

Corollary 3.3. An ideal I of A(X) is essential (resp., free) if and only if IC(X) is essential (resp., free) in C(X).

Proof. It follows from Proposition 3.2 and this fact that
⋂
Z[I] =

⋂
Z[I] =

⋂
Z[IC(X)].

Remark 3.4. Every bounded ideal of C(X) (an ideal with bounded elements such as Soc(C(X)), CK(X) = { f ∈ C(X) :
clX(X \ Z( f )) is compact } and Cψ(X) = { f ∈ C(X) : clX(X \ Z( f )) is pseudocompact }) is an ideal of A(X). Note that
Cψ(X) is the largest bounded ideal in C(X), see [5]. Since Cψ(X) is an intersection of essential ideals in C(X), it is
also an intersection of essential ideals of A(X), by Corollary 3.3. Therefore Cψ(X) is essential in A(X) if and only if it
is essential in C(X).

Now, Proposition 3.2 implies the following result.

Corollary 3.5. Every free ideal in A(X) is an essential ideal.
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Recall from [26], a z-filter F on X is called a ZA- f ilter if ZA[Z−1
A [F ]] = F . If A(X) = C(X), then ZA-filters are

simply z-filters, by [22, Corollary 2.4]. If I is an ideal of C(X), then we can see that ZA[Z−1
A [ZA[I]] = ZA[I].

Thus ZA[I] is a ZA-filter on X. However, not every z-filter is a ZA-filter. For more details see [26]. The
next results (Proposition 3.4 and Theorem 3.5) show that the essential (resp., free) z-filters behave like the
z-ultrafilters.

Proposition 3.6. Let F be a z-filter on X and Z−1
A [F ] be an ideal of A(X).

1. If F is an essential ZA-filter, then Z−1
A [F ] is an essential ideal in A(X).

2. If Z−1
A [F ] is a free ideal, then F is a free z-filter.

3. If Z−1
A [F ] is an essential ideal, then F is an essential z-filter.

Proof. (1) Assume that 0 , f ∈ A(X) and Z−1
A [F ]∩ ( f ) = 0. We will show that it follows thatF ∩ZA( f ) = {X}.

Since F is an essential ZA-filter, this implies that ZA( f ) is a trivial z-filter, thus contradicting the assumption
that 0 , f and concluding the proof of this item. To see this, suppose that E ∈ F ∩ ZA( f ). By hypothesis,
E ∈ F = ZA[Z−1

A [F ]], so there exists h ∈ Z−1
A [F ] such that E ∈ ZA(h). Since Z−1

A [F ] is an ideal, we have
f h ∈ Z−1

A [F ]. Therefore f h ∈ Z−1
A [F ] ∩ ( f ) = 0. Thus E ∈ ZA(h) ∩ ZA( f ) = ZA( f h) = {X}.

(2) It is easy to see thatZA[Z−1
A [F ]] ⊆ F . By this and hypothesis, F is a free z-filter.

(3) By Proposition 3.2, the essentiality of the idealZ−1
A [F ] implies the essentiality of the z-filterZA[Z−1

A [F ]].
On the other handZA[Z−1

A [F ]] ⊆ F . Thus for each non-trivial z-filterF ′, we haveZA[Z−1
A [F ]]∩F ′ ⊆ F ∩F ′.

This and the essentiality of ZA[Z−1
A [F ]] imply that F is an essential z-filter.

In [7], a ring A(X) of continuous functions is called a C-ring if there is a completely regular space Y such that
A(X) is isomorphic to C(Y). Clearly C(X) and C∗(X) are C-rings. By the above theorem and [27, Theorem
14] (which states that for each z-filter F and intermediate C-ring A(X), Z−1

A [F ] is an ideal of A(X)), if A(X)
is a C-ring and F is an essential ZA-filter on X, then Z−1

A [F ] is an essential ideal in A(X).

Theorem 3.7. Let F be a z-filter on X. Then the following hold.

1. F is a free z-filter if and only if Z−1
A [F ] is a free ideal in A(X).

2. F is an essential z-filter if and only if Z−1
A [F ] is an essential ideal in A(X).

Proof. (1) It is enough to show that
⋂
ZA[Z−1

A [F ]] =
⋂
F . Always we have ZA[Z−1

A [F ]] ⊆ F . Thus⋂
F ⊆

⋂
ZA[Z−1

A [F ]]. Suppose, in order to obtain a contradiction, that there is an x ∈
⋂
ZA[Z−1

A [F ]]
and E ∈ F such that x < E. By complete regularity of X, there is a 1 ∈ C∗(X) such that x < Z(1) and
E ⊆ Z(1) =

⋂
ZA(1). Therefore ZA(1) ⊆ F . This implies that 1 ∈ Z−1

A [F ]], and so ZA(1) ⊆ ZA[Z−1
A [F ]].

But x < Z(1). So there is K ∈ ZA(1) such that x < K. This shows that x <
⋂
ZA[Z−1

A [F ]], a contradiction.
(2) Assume thatF is an essential z-filter, 0 , f ∈ A(X) andZ−1

A [F ]∩ ( f ) = 0. We show that it follows that
F ∩ZA( f ) = {X}. To see this, consider Z(1) ∈ F ∩ZA( f ). Then we haveZA(1) ⊆ F andZA(1) ⊆ ZA( f ). On
the other hand, f1 ∈ Z−1

A [F ]∩ ( f ) = 0. Thus by Lemma 2.2(2),ZA(1) = ZA(1)∩ZA( f ) = ZA( f1) = {X}, i.e.,
E = X. ButZA( f ) is a non-trivial z-filter, hence F ∩ZA( f ) = {X} contradicts the essentiality of F , so we are
done. Conversely, suppose thatZ−1

A [F ] is an essential ideal. By Proposition 3.2,ZA[Z−1
A [F ]] is an essential

z-filter. On the other handZA[Z−1
A [F ]] ⊆ F . Thus for each non-trivial z-filterF ′,ZA[Z−1

A [F ]]∩F ′ ⊆ F ∩F ′.
So F ∩ F ′ , {X}, i.e., F is an essential z-filter.

It is well known that any maximal ideal of A(X) is of the form Mp

A, where p ∈ βX and Mp

A = { f ∈ A(X) : p
is cluster point of ZA( f ) in βX}, see [24, Theorem 5]. We also note that a maximal ideal in A(X) is free if
and only if it is of the form Mp

A for some p ∈ βX \ X. H.L. Byun and S. Watson in [6] defined the ideal
Op

A = { f ∈ A(X) : p ∈ intβXclβXZA( f )}, where clβXZA( f ) =
⋂

E∈ZA( f ) clβXE. It is an analogue of the ideal Op
in

C(X) for each p ∈ βX. Afterwards, J.M. Dominguez and J. Gomez showed that intβXclβXZA( f ) = intβXclβXZ( f )
for each f ∈ A(X), and therefore Op

A = Op
∩ A(X), see also [9, Proposition 3.4]. Now, by [6, Theorem 4.1],

which states that
⋂
ZA[Op

A] =
⋂
ZA[Mp

A], Proposition 3.2 and Corollary 3.5, we have the following result.
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Corollary 3.8. The following statements are equivalent.

1. The ideal Mp

A is essential.
2. The ideal Op

A is essential
3. p ∈ βX \ I(X), where I(X) is the set of isolated points of X.

If x ∈ X \ I(X), then by Corollary 3.8, Mx

A is an essential ideal which is not a free ideal.

Remark 3.9. Every prime ideal of A(X) is either an essential ideal or a maximal ideal which is at the same time a
minimal prime ideal. For, every prime ideal P of A(X) is contained in a unique maximal ideal Mp

A for some p ∈ βX
(see [6, Corollary 1.9]), and a prime ideal P in A(X) is contained in Mp

A if and only if P contains Op

A (see [23, p. 48]
and the proof of [6, Theorem 4.2]). Now, if p ∈ I(X), then Op

A = P = Mp

A and so it is maximal which is at the same
time a minimal prime ideal. Otherwise, by Corollary 3.8, Op

A is essential and so P is essential.

Corollary 3.10. X is finite if and only if A(X) has no proper essential ideals.

Proof. If X is finite, then we are done. Conversely, by hypothesis, the ideal Mp
is a non-essential ideal for

each p ∈ βX, and hence by Corollary 3.8, βX \ I(X) = ∅, i.e., βX = I(X). Thus βX is finite.

It was proved in [29, Theorem 3.6] that the intersection of all essential minimal prime ideals of C(X) and
Soc(C(X)) are equal. Now, we see that this result is true for any subring A(X). To achieve this goal, we need
the following lemma. Before we recall that for S ⊆ βX, MS

A =
⋂

p∈S Mp

A and OS

A =
⋂

p∈S Op

A (see [6]).

Lemma 3.11. The intersection of all essential prime ideals in A(X) is equal to the intersection of all essential minimal
prime ideals of A(X).

Proof. Always we have the intersection of all essential prime ideals is contained in the intersection of all
essential minimal prime ideals. Now let f be an element of the intersection of all essential minimal prime
ideals of A(X), P be an essential prime ideal and Q be a minimal prime ideal contained in P (see [28, 3.53]).
Then by reasoning given in Remark 3.9, there is a unique p ∈ βX such that Op

A ⊆ Q ⊆ P ⊆ Mp

A. The
essentiality of P implies that Mp

A is an essential ideal. By Corollary 3.8, Op

A is essential and therefore Q is
essential. Thus f ∈ Q ⊆ P, so we are done.

Proposition 3.12. The intersection of all essential minimal prime ideals of A(X) coincides with the Soc(A(X)) (i.e.,
Soc(C(X))).

Proof. First we show that the intersection of all essential minimal prime ideals of A(X) is equal to the ideal
OβX\I(X)

A . Let P be an essential minimal prime ideal of A(X). Then by reasoning given in Remark 3.9, there
is a unique p ∈ βX such that Op

A ⊆ P ⊆ Mp

A. The essentiality of P implies that Mp

A is essential and so by
Corollary 3.8, Op

A is an essential ideal. This shows that OβX\I(X)

A is contained in the intersection of all essential
minimal prime ideals of A(X). Now let f be an element of the intersection of all essential minimal prime
ideals of A(X) and p ∈ βX \ I(X). By Corollary 3.8, Op

A is an essential ideal. By [9, Remark 3.14], Op

A is
an intersection of prime ideals. Since any ideal containing an essential ideal is essential, each of these
prime ideals containing Op

A is essential. Now Lemma 3.11 implies that f ∈ Op

A. Hence the intersection
of all essential minimal prime ideals of A(X) is contained in OβX\I(X)

A . Finally, by [9, Proposition 3.4] (i.e.,
Op

A = Op
∩C(X) for each p ∈ βX), [29, Theorem 3.6] which states that OβX\I(X)

= Soc(C(X)) and Lemma 3.1, we
have OβX\I(X)

A = OβX\I(X)
∩ A(X) = Soc(C(X)) ∩ A(X) = Soc(A(X)).

Corollary 3.13. The intersection of all essential minimal prime ideals of A(X) coincides with the intersection of all
essential minimal prime ideals of C(X) (i.e., OβX\I(X)

A = OβX\I(X) ).

Proof. This follows from [29, Theorem 3.6], Lemma 3.1 and Proposition 3.12.
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4. Intersection of Essential Maximal Ideals in A(X)

Let An( f1) = {x ∈ X : | f (x)||1(x)| ≥ 1
n }, where f , 1 ∈ A(X) and n ∈N.

Theorem 4.1. [2, Theorem 2.2] The intersection of all free maximal ideals in A(X) is equal to KA = { f ∈ A(X) :
An( f1) is compact ∀1 ∈ A(X) and ∀n ∈N}.

We are ready to present our characterization of the intersection of all essential maximal ideals of A(X). Note
that the set of those points of a space X with compact neighborhoods is denoted by XL.

Theorem 4.2. The following statements hold.

1. The intersection of all essential maximal ideals of A(X) is equal to JA = { f ∈ A(X) : An( f1) ⊆ I(X) is finite
∀n ∈N and ∀1 ∈ A(X)}

2. The intersection of all free maximal ideals and the intersection of all essential maximal ideals in A(X) are equal
if and only if I(X) = XL.

Proof. (1) Let f be an element of the intersection of all essential maximal ideals of A(X). Then by Corollary
3.8, f ∈ MβX\I(X)

A . Thus βX \ I(X) ⊆ clβXZA( f ). So An( f1) ⊆ X \ Z( f ) ⊆ I(X) for each 1 ∈ A(X). By Corollary

3.5, every free ideal is essential. Therefore f ∈MβX\X
A . By Theorem 4.1, An( f1) is compact. Hence An( f1) is a

finite subset of I(X), i.e., f ∈ JA. Now let f ∈ JA and M be an essential maximal ideal such that f <M. Then
there is a 1 ∈ A(X) such that 1 − f1 ∈ M. By hypothesis, G = {x ∈ X : f (x)1(x) > 1

2 } ⊆ {x ∈ X : | f (x)1(x)| ≥ 1
2 }

is a finite subset of I(X). Put h = |1 − f1| + χG , where χG is the characteristic function of the subset G. Then
χG ∈ C(X) and X \ Z(χG ) is finite, so by Lemma 3.1, χG ∈ Soc(C(X)) ⊆ M. Also, we have |1 − f1| ∈ M. Thus
h ∈ M. We claim that h is a unit in A(X). To see this, define k(x) = 1

1+|1− f (x)1(x)| for x ∈ G and k(x) = 1
|1− f (x)1(x)|

for x < G. Then k ∈ C∗(X) ⊆ A(X) (since x < G implies that 1
|1− f (x)1(x)| ≤ 2 and G is finite) and hk = 1; this is a

contradiction, so f is an element of any essential maximal ideal of A(X).
(2) Suppose that MβX\X

A = MβX\I(X)

A . Always I(X) ⊆ XL holds. Now let x ∈ XL. Then there is a compact
subset U in X such that x ∈ intU ⊆ U. By complete regularity of X there exists a function f ∈ C∗(X) such
that x ∈ X \ Z( f ) ⊆ U. Therefore An( f1) ⊆ X \ Z( f ) is compact for each 1 ∈ A(X), n ∈ N, and so f ∈ KA. By
hypothesis and Theorem 4.1, f ∈MβX\I(X)

A . So x ∈ X \ Z( f ) ⊆ I(X).
Conversely, by hypothesis and [1, Theorem 2.2] which states that XL = intβXX, we have intβXX = I(X).

This implies that clβX(βX \ X) = βX \ I(X). On the other hand for each S ⊆ βX, S ⊆ clβXZA( f ) implies

clβXS ⊆ clβXZA( f ), so MS

A ⊆ M
clβXS

A and of S ⊆ clβXS we obtain M
clβXS

A ⊆ MS

A. Hence M
clβXS

A = MS

A. Therefore

MβX\X

A = M
clβX (βX\X)

A = MβX\I(X)

A . Thus the proof is complete.

M. Ghirati and A. Taherifar proved in [12, Theorem 2.2(3)] that the intersection of all essential maximal
ideals of C(X) coincides with the intersection of all free maximal ideals if and only if I(X) = XL. So by the
above theorem, the equality of the intersection of all free maximal ideals and the intersection of all essential
maximal ideals in A(X) implies the equality of them in C(X) and vice versa.

Corollary 4.3. The intersection of all essential maximal ideals in C∗(X) is equal to { f : {x : | f (x)| ≥ 1
n } ⊆ I(X) for

each n ∈N and is finite}.

Proof. It is enough to take A = C∗(X) in Theorem 4.2.
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