
Filomat 29:7 (2015), 1507–1513
DOI 10.2298/FIL1507507E

Published by Faculty of Sciences and Mathematics,
University of Niš, Serbia
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Abstract. In this paper, we introduce and investigate the concept of ward continuity in 2-normed spaces. A
function f defined on a 2-normed space (X, ||., .||) is ward continuous if it preserves quasi-Cauchy sequences,
where a sequence (xn) of points in X is called quasi-Cauchy if limn→∞ ||∆xn, z|| = 0 for every z ∈ X. Some
other kinds of continuities are also introduced, and interesting theorems are proved in 2-normed spaces.

1. Introduction

The concept of a 2-norm is needed if there is a physical situation or an abstract concept where norm
topology does not work but 2-norm topology does work, especially in the cases when one needs two-inputs
for a particular output but with one main input and other input is required to complete the process. So
that one may expect the concept of continuity and any concept involving continuity in 2-normed spaces
find very important roles not only in pure mathematics but also in other branches of sciences involving
mathematics especially in computer science, information theory, and biological science.

About 90 years ago, Menger ([20]) introduced a notion called a generalized metric. But many mathemati-
cians had not paid attentions to Menger theory about generalized metrics. In 1937 Vulich ([27]) introduced
a notion of higher dimensional norm in linear spaces. Unfortunately, this study had been neglected by
many analysists for a long time. Then a new development began with 1962 by Gähler ([12], [13], and [14]).
The notion of a 2-norm has been extensively studied in ([2, 15–17]) in which a lot for the extension of this
branch of mathematics is contributed. Recently many mathematicians came out with results in 2-normed
spaces, analogous with that in classical normed spaces and Banach spaces (see for example [21], [23], and
[8]).

The concepts of ward continuity of a real function and ward compactness of a subset of the set of real
numbers are introduced by Cakalli in [4] (see also [1], and [7]). A real function f is called ward continuous
on E if the sequence ( f (xn)) is quasi-Cauchy whenever x = (xn) is a quasi-Cauchy sequence of points in E.

The aim of this paper is to investigate ward continuity in 2-normed spaces, and prove interesting
theorems.
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2. Preliminaries

Now we give some notation and definitions which will be needed in the paper. Throughout this paper,
N andRwill denote the set of positive integers and the set of real numbers, respectively. First we recall the
definition of a 2-normed space.

Definition 2.1. ([12]) Let X be a real linear space with dim X > 1 and ||., .|| : X2
→ R a function. Then

(X, ||., .||) is called a linear 2-normed space if

1. ||x, y|| = 0⇔ x and y are linearly dependent,
2. ||x, y|| = ||y, x||,
3. ||αx, y|| = |α| ||x, y||,
4. ||x, y + z|| ≤ ||x, y|| + ||x, z||

for α ∈ R and x, y, z ∈ X. The function ||., .|| is called a —emph2-norm on X.

Observe that in any 2-normed space (X, ||., .||) we have ||., .|| is nonnegative, ||x− z, x− y|| = ||x− z, y− z||, and
∀x, y ∈ X, α ∈ R ||x, y + αx|| = ||x, y||. Throughout this paper by X we will mean a 2-normed space with a
2-norm ||., .||.

A classical example is the 2-normed space X = R2 with the 2-norm ||., .|| defined by ||a, b|| = |a1b2 − a2b1|

where a = (a1, a2), b = (b1, b2) ∈ R2. This is the area of the parallelogram determined by the vectors a and b.
A sequence (xn) of points in X is said to be convergent to an element x ∈ X if limn→∞ ||xn − x, z|| = 0 for

every z ∈ X. This is denoted by limn→∞ ||xn, z|| = ||x, z||. A sequence (xn) of points in X is called Cauchy if
limn,m→∞ ||xn − xm, z|| = 0 for every z ∈ X (see [12]).

A sequence of functions ( fn) is said to be uniformly convergent to a function f on a subset E of X if for
each ε > 0, an integer N can be found such that || fn(x) − f (x), z|| < ε for n ≥ N and for all x, z ∈ X.

3. Ward Continuity in 2-Normed Spaces

In this section we investigate the notions of ward continuity and ward compactness on a 2-normed
space. Now we give some definitions that are used to describe the subject.

Definition 3.1. A sequence (xn) of points in a 2-normed (X, ||., .||) is called quasi-Cauchy if limn→∞ ||∆xn, z|| = 0
for every z ∈ X where ∆xn = xn+1 − xn for every n ∈N.

We note that any convergent sequence is quasi-Cauchy, and any Cauchy sequence is quasi-Cauchy. Any
subsequence of a Cauchy sequence is Cauchy. The analogous property fails for quasi-Cauchy sequences.
A counter example is provided in the following.

Example 3.2. The subsequence (an2 ) = (n,n) of the quasi-Cauchy sequence (an) = (
√

n,
√

n) of points in the
2-normed space R2 is not quasi-Cauchy.

Definition 3.3. A subset E of X is called ward compact if any sequence of points in E has a quasi-Cauchy
subsequence.

First, we note that any finite subset of X is ward compact, the union of two ward compact subsets
of X is ward compact and the intersection of any family of ward compact subsets of X is ward compact.
Furthermore any subset of a ward compact set is ward compact.

For any given 2-norm we can define norms by using 2-norm values. Consider the norm ||.|| defined on
a linear 2-normed space (X, ||., .||) by the function

||x|| = ||x, y|| + ||x, z||

for any fixed y, z ∈ X and ||y, z|| , 0. The function ||.|| defined on X is a norm on X ([11]). On the other
hand, ||x|| = maxy,z{||x, y||, ||x, z||} is also a norm on X. We see that these norms can be defined for any linearly
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independent pair of y, z of points in X. It is obvious that any convergent sequence on a 2-normed space
(X, ||., .||) is also convergent on the normed space (X, ||.||), and any quasi-Cauchy sequence in a 2-normed
space (X, ||., .||) is quasi-Cauchy on the normed space (X, ||.||). If a subset E of a 2-normed space (X, ||., .||)
is ward compact, then it is also ward compact in the normed space (X, ||.||). Moreever any ward compact
subset of a 2-normed space (X, ||., .||) is totally bounded in the normed space (X, ||.||) ([5, Theorem 3]).

Let (X, ||., .||) be a linear 2-normed space. For x, z ∈ X, let pz(x) = ||x, z||. Then, for each z ∈ X, pz is a
real-valued function on X such that pz(x) = ||x, z|| ≥ 0, pz(αx) = |α|||x, z|| = |α|pz(x) and pz(x + y) = ||x + y, z|| =
||z, x + y|| ≤ ||z, x|| + ||z, y|| = ||x, z|| + ||y, z|| = pz(x) + pz(y) for all α ∈ R and all x, y ∈ X. Thus pz is a semi-norm
for each z ∈ X. For x ∈ X, if ||x, z|| = 0 for all z ∈ X then x = 0 ([22, Lemma 1.2]). Thus 0 , x ∈ X implies that
there is some z ∈ X satisfying pz(x) = ||x, z|| , 0. With this additional condition the family {pz : z ∈ X} is to
be a separating family of semi-norms.

For ε > 0 and z ∈ X, let Uz,ε = {x ∈ X : pz(x) < ε} = {x ∈ X : ||x, z|| < ε}. Let S0 = {Uz,ε : ε > 0, z ∈ X} and
B0 = {

⋂
F : F is a finite sub-collection of S0}. Define a topology τ on X by saying that a set U is open if and

only if for every x ∈ U there is some N ∈ B0 such that x + N = {x + y : y ∈ N} ⊂ U. That is, τ is the topology
on X that has a subbase as the sets

{x ∈ X : pz(x − x0) < ε}, z ∈ X, x0 ∈ X, ε > 0.

The topology τ gives X the structure of topological vector space. Since the collection B0 is a local base
whose members are convex, X is locally convex ([22]).

Now we introduce a definition of ward continuity in a 2-normed space.

Definition 3.4. A function f : X → X is called ward continuous if it preserves quasi-Cauchy sequences, i.e.
limn→∞ ||∆ f (xn),w|| = 0 for every w ∈ X whenever limn→∞ ||∆xn, z|| = 0 for every z ∈ X.

In connection with quasi-Cauchy sequences and convergent sequences the problem arises to investigate
the following types of continuity of functions on X.

1. (xn) is quasi-Cauchy⇒ ( f (xn)) is quasi-Cauchy.
2. (xn) is quasi-Cauchy⇒ ( f (xn)) is convergent.
3. (xn) is convergent⇒ ( f (xn)) is convergent.
4. (xn) is convergent⇒ ( f (xn)) is quasi-Cauchy.

It is obvious that (2)⇒ (1) while (1) does not imply (2), (1)⇒ (4) while (4) does not imply (1), (2)⇒ (3)
while (3) does not imply (2) and lastly (3) is equivalent to (4). We see that (1) is ward continuity of f and
(3) is ordinary continuity of f . We give the definition of sequential continuity in 2-normed spaces in the
following before proving that (1) implies (3).

Definition 3.5. A function f on a subset E of a 2-normed space (X, ||., .||) is said to be sequentially continuous
at x0 if for any sequence (xn) of points in E converging to x0, we have ( f (xn)) converges to f (x0) (see [19] for
the definition for the special case when f is linear).

Theorem 3.6. If f : X→ X is ward continuous on a subset E of X, then it is sequentially continuous on E.

Proof. Let (xn) be any convergent sequence of points in E with

lim
n→∞
||xn − x0, y|| = 0

for all y ∈ X. Then the sequence ξ = (ξn) defined by

ξn =

xk , if n = 2k − 1 for a positive integer k
x0 , if n is even
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is also convergent to x0. Therefore it is a quasi-Cauchy sequence. As f is ward continuous on E, the
sequence f (ξ) = ( f (ξn)) obtained by

f (ξn) =

 f (xk) , if n = 2k − 1 for a positive integer k
f (x0) , if n is even

is also quasi-Cauchy. Now it follows that limn→∞ || f (xn) − f (x0), z|| = 0 for every z ∈ X. It implies that the
sequence ( f (xn)) converges to f (x0). This completes the proof of the theorem.

The converse of this theorem is not always true. We give the following example.

Example 3.7. Let f (x, y) = (x2, y2) be the function from R × R into R × R. We define a 2-norm by
||(a1, a2), (b1, b2)|| = |a1b2 − a2b1|. ∀z = (z1, z2) ∈ R ×R

lim
n→∞
||∆xn, z|| = lim

n→∞
||xn+1 − xn, z||

= lim
n→∞
||(
√

n + 1,
√

n + 1) − (
√

n,
√

n), (z1, z2)||

= lim
n→∞
||(
√

n + 1 −
√

n,
√

n + 1 −
√

n), (z1, z2)||

= 0.

Thus the sequence xn = (
√

n,
√

n) is quasi-Cauchy. On the other hand ( f (xn)) = ( f (
√

n,
√

n)) = (n,n) is not
quasi-Cauchy. Since we have for w = (1, 2)

lim
n→∞
||∆ f (xn),w|| = lim

n→∞
|| f (xn+1) − f (xn),w||

= lim
n→∞
||(n + 1,n + 1) − (n,n),w||

= lim
n→∞
||(1, 1), (1, 2)|| = 1 , 0.

Observing that any normed space (single normed) is a first countable topological Hausdorff group,
we have the following result related to G-sequential continuity (see [3] for the definition of G-sequential
continuity).

Corollary 3.8. Let X be a finite dimensional 2-normed space with dimension m, and {e1, e2, ..., em} be a base of X.
Consider the norm defined by ||x||∞ = maxi=1,2,...,m ||x, ei||. If f : X → X is ward continuous on a subset E of the
2-normed space X, then it is G-sequentially continuous on E in the normed space X for every regular subsequential
method G.

Corollary 3.9. Let X be a finite dimensional 2-normed space with dimension m, and {e1, e2, ..., em} be a base of X.
Consider the norm defined by ||x||∞ = maxi=1,2,...,m ||x, ei||. If f : X → X is ward continuous on a subset E of the
2-normed space X, then it is sequentially continuous on E in the normed space (X, ||.||∞).

The following theorem guarantees that the ward continuous image of a ward compact subset of X is
ward compact.

Theorem 3.10. Let E be a ward compact subset of X. If f : X → X is ward continuous on E, then f (E) is ward
compact.

Proof. Ward compactness of E implies that there is a subsequence z = (zk) of x = (xn) with limk→∞ ||∆zk, y|| =
0,∀y ∈ X. Let (tk) = ( f (zk)). (tk) is the subsequence of the sequence f (x) with limk→∞ ||∆tk, f (y)|| = 0. This
completes the proof of the theorem.

Definition 3.11. A function f : X → X is called uniformly continuous on a subset E of X if for any ε > 0 and
for any w ∈ X there exist positive real numbers δ1, δ2, ..., δp and z1, z2, ..., zp ∈ X such that || f (x) − f (y),w|| < ε
whenever ||x − y, zk|| < δk, k = 1, 2, ..., p.
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We note that a function f : X → X is uniformly continuous on a subset E of X if for any finite choose
of ε1, ε2, ..., εm and w1,w2, ...,wm there exist δ1, δ2, ..., δp and z1, z2, ..., zp such that || f (x) − f (y),w j|| < ε j for
j = 1, 2, ...,m whenever ||x − y, zk|| < δk, k = 1, 2, ..., p. On the other hand, taking one ε and one δ in the
consideration we give the following definition.

Definition 3.12. A function f : X → X is called u-continuous on a subset E of X if for any given ε > 0 there
exists a δ > 0 such that || f (x)− f (y),w|| < ε for any w ∈ X whenever ||x− y, z|| < δ for any x, y ∈ E, and z ∈ X.

Theorem 3.13. If a function f : X→ X is u-continuous on a subset E of X, then it is ward continuous on E.

Proof. Let f be u-continuous on E, and (xn) be any quasi-Cauchy sequence of points in E. Then for given
any ε > 0 there exists a δ > 0 such that || f (x) − f (y),w|| < ε for any w ∈ X whenever ||x − y, z|| < δ for any
x, y, z ∈ X. For the choice of δ > 0, there exists an N = N(δ) = N1(ε) ∈ N such that ||∆xn, z|| < δ for every
n > N. So ||∆ f (xn), f (z)|| < ε for every n > N. This completes the proof of the theorem.

Corollary 3.14. Any u-continuous function is sequentially continuous.

Proof. Proof follows easily from Theorem 3.6, so is omitted.

Corollary 3.15. u-continuous image of any ward compact subset of X is ward compact.

Any u-continuous function is uniformly-continuous. But the converse is not always true. It is not
difficult to construct an example.

Theorem 3.16. If a function f : X → X is uniformly continuous on a subset E of X, then it is ward continuous on
E.

Proof. Although the proof can be obtained by Theorem 3.13 we give a proof for completeness. Let f be
uniformly continuous on E, and (xn) be any quasi-Cauchy sequence of points in E. Choose any ε > 0 and
any w ∈ X. As f is uniformly continuous on E for this ε and w there exist δ1, δ2, ..., δp and z1, z2, ..., zp such that
|| f (x)− f (y),w|| < εwhenever ||x− y, zk|| < δk, k = 1, 2, ..., p. Since (xn) is a quasi-Cauchy sequence, for δ1 there
exists a positive integer n1 such that ||xn+1−xn, z1|| < δ1. Similarly for δ2 there exists a positive integer n2 such
that ||xn+1 − xn, z2|| < δ2. Having found positive integers n3, n4, .., and so on we finally can find a positive
integer np such that ||xn+1 − xn, zp|| < δp. Now write n0 = max{n1,n2,n3, ...,np}. Then || f (xn+1) − f (xn),w|| < ε
for n ≥ n0. Hence ( f (xn)) is a quasi-Cauchy sequence, therefore f preserves quasi-Cauchy sequences. This
completes the proof of the theorem.

It is a well known result that the uniform limit of a sequence of continuous functions is continuous.
Some related results in 2-normed spaces are obtained in [25]. For the case of u-continuity, we have the
following.

Theorem 3.17. If ( fn) is a sequence of u-continuous functions defined on a subset E of X, and ( fn) is uniformly
convergent to a function f , then f is u-continuous on E.

Proof. Since ( fn) is uniformly convergent to f , for given any ε > 0 there exists a positive integer N such
that || fn(x) − f (x),w|| < ε

3 whenever n ≥ N for all x,w ∈ E. Since fN is u-continuous on E, for ε
3 , there exists

a positive real number δ such that || fN(x) − fN(y),w|| < ε
3 for any w ∈ X whenever ||x − y, z|| < δ for any

x, y, z ∈ X. Then whenever ||x − y, z|| < δ, we have

|| f (x) − f (y),w|| ≤ || f (x) − fN(x),w|| + || fN(x) − fN(y),w|| + || fN(y) − f (y),w||

≤
ε
3

+
ε
3

+
ε
3

= ε

for every w ∈ X. So f is u-continuous on E, and the proof is completed.
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In the real case it was proved that uniform limit of a sequence of ward continuous functions is ward
continuous ([4]). It is also true in 2-normed spaces.

Theorem 3.18. If ( fn) is a sequence of ward continuous functions defined on a subset E of X, and ( fn) is uniformly
convergent to a function f , then f is ward continuous on E.

Proof. To prove that f is ward continuous on E, take any quasi-Cauchy sequence (xn) of points in E. Let ε
be any positive real number. Since ( fn) is uniformly convergent to f , for ε

3 > 0 there exists a positive integer
N such that || fn(x) − f (x), z|| < ε

3 whenever n ≥ N for all x, z ∈ E. Since fN is ward continuous on E, there
exists a positive integer N1 ≥ N such that || fN(xn+1) − fN(xn), z|| < ε

3 for n ≥ N1. Then we have for n ≥ N1

|| f (xn+1) − f (xn), z||
≤ || f (xn+1) − fN(xn+1), z|| + || fN(xn+1) − fN(xn), z|| + || fN(xn) − f (xn), z||

≤
ε
3

+
ε
3

+
ε
3

= ε

for every z ∈ X. So f is ward continuous on E, and the proof is completed.

4. Conclusion

The concept of a 2-normed space was extensively studied by Gähler who asked what the real motivation
for studying 2-norm structure is, and if there is a physical situation or an abstract concept where norm
topology does not work but 2-norm topology does work. We observe that if a term in the definition of
2-norm represents the change of a shape, and the 2-norm stands for the associated area, we can think of
some plausible application of the notion of a 2-norm, and then the generalized convergence make sense.
This can also be viewed as: suppose for a particular output we need two-inputs but with one main input
and other input is required to complete the process. So that one may expect to be a more useful tool in
the field of a 2-normed space in modelling various problems, occuring in many areas of science, especially
in computer science and information theory. Such possible applications attract researchers to be involved
in investigation on 2-normed spaces. We note that the present work contains not only an investigation
of quasi-Cauchy sequences as it has been presented in a very different setting, i.e. in a 2-normed space
which is quite different from the real case, and metric case, but also an investigation of some other kinds of
sequential continuities.

We note that the study in this paper can be carried to n-normed spaces without much effort (see for
example [24] for the definition of an n-normed space). For a further study, we suggest to investigate quasi-
Cauchy sequences of points and fuzzy functions in a 2-normed fuzzy space. However due to the change
in the setting, the definitions and methods of proofs will not always be analogous to those of the present
work (for example see [6], [26], and [18]). For another further study we suggest to investigate quasi-Cauchy
sequences of double sequences in 2-normed spaces (see for example [8], [9], [21], and [10] for the definitions
and related concepts in the double case).
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