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Abstract. Let L be a countable first-order language such that its set of constant symbols Const(L) is
countable. We provide a complete infinitary propositional logic (formulas remain finite sequences of
symbols, but we use inference rules with countably many premises) for description of C-valued L-structures,
where C is an infinite subset of Const(L). The purpose of such a formalism is to provide a general
propositional framework for reasoning about F-valued evaluations of propositional formulas, where F is a
C-valued L-structure. The prime examples ofF are the field of rational numbersQ, its countable elementary
extensions, its real and algebraic closures, the field of fractions Q(ε), where ε is a positive infinitesimal and
so on.

1. Introduction

The present paper is an extended version of our talk presented at the FLINS 2012 conference [8], where we
have introduced infinitary propositional logic for reasoning about countable first-order structures of some
recursive first-order language L. What we have in mind is to provide a general propositional framework for
reasoning about F-valued evaluations of propositional formulas of various probability logics, fuzzy logics
and possibility and necessity logics, where F is a recursive L-structure. The central technical result is the
proof of the strong completeness theorem (every consistent set of formulas is satisfiable) for the introduced
system.

1.1. Motivation

Our main motive was to try to identify semantical essence behind various formal systems that capture
numerous aspects of so called weighted logics (probability logics, possibilistic logics, fuzzy logics etc). It
turns out that any concept of weighted logic can semantically be reduced to evaluations of certain syntactical
objects in some type of a first-order structure. In propositional setting, one of the important tasks is to study
effective methods for extending evaluations of propositional letters to the set of all propositional formulas.
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1.2. Axiomatization issues

Propositional logic Lω1 (countable conjunctions and disjunctions and inference rules with countably
many premises are allowed) is expressive enough for description of any countable structure of a recursive
first-order language L: we can literally write entire diagram of the underlying structure. However, expres-
siveness of Lω1 has its price – non-recursive set of formulas and failure of the completeness and compactness
theorems.

Completeness issue can be partially solved by restrictions on admissible fragments LA of Lω1 . Since many
important mathematical concepts can be coded by Σ1-theories, this approach leads to various interesting
applications of Barwise compactness theorem (see for instance [53]).

Even more tamed fragments of Lω1 can be obtained by restricting to finite formulas and application of
infinitary inference rules. We have used such fragments to obtained various recursive strongly complete
axiomatizations of probability and temporal logics.

The main challenge was to construct the adequate infinitary inference rule that will allow us to adapt
Henkin’s completion technique for the first-order logic. In order to achieve this, our language must have
names for all elements of a model, so we consider recursive languages with countably many symbols for
constants. The set of all names is denoted by C.

Similarly as in the Henkin’s construction, the universe of the canonical model of a complete L-theory T
is the set C/∼, where c ∼ d iff T ` c = d. So, we need to provide that each term f has a value in C. In other
words, we need to satisfy the following condition:∨

c∈C

f = c.

This Lω1 formula can be represented by the infinitary inference rule

{φ→ f , c | c ∈ C}
φ→ ⊥

.

The implicative form of premises and conclusion is the standard technical requirement for the proof of the
deduction theorem. In particular, introduced infinitary rule allows us to prove that for every consistent
theory T and any term f exists c ∈ C such that T, f = c is consistent. Note that this property is a propositional
counterpart of the elimination of ∃xφ(x) in the Henkin’s construction.

1.3. Related work

There are many books and papers that are closely related to the work presented here. Though the list of
references seems extensive (61 entry), it is actually quite narrow both in size and scope.

Our infinitary techniques have root in the work of Jon Barwise, Jerome Keisler and Douglas Hoover
in admissible set theory, infinitary predicate and propositional logics and infinitary logics with probability
quantifiers [1, 26, 28–32].

Zadeh’s seminal work on fuzzy sets [61] and Nilsson’s work on probability logics and their application in
expert systems [43] have launched [0, 1]-valued logics as important and useful scientific tools in engineering
community. Soon the rapid theoretical development of so called weighted logics has followed. The most
notable are operator probability logics, fuzzy logics and possibilistic logics. We have tried to credit some of
this huge amount of work throughout the paper.

The turning point in mathematical representation of non-monotonic consequence relations and default
reasoning was the work of Sarit Kraus, Daniel Lehmann and Menachem Magidor [33, 35]. In particular,
characterization theorem of Lehmann and Magidor has provided an essential connection between rational
relations and hyperreal-valued conditional probabilities, which we have used in the formalization presented
in [57, 58].
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1.4. Organization of the paper
The rest of the paper is organized as follows: in Section 2 we introduce syntax and semantics of our

system, which can be briefly described as the logic of Σ0–sentences of L; in Section 3 we prove the strong
completeness theorem; in Section 4 we show how to code Q-valued probabilities, Q(ε)-valued conditional
probabilities and possibility distributions in our formalism; concluding remarks are in the final section.

2. Syntax and Semantics

Recall that a first-order language L is a (possibly empty) set of pairwise distinct symbols that are
categorized in three groups: symbols for constants, which are the elements of Const(L); symbols for
relations, which are the elements of Rel(L); symbols for functions, which are the elements of Fun(L). Note
that each of these three sets can be empty. In addition, for each relation and function symbol is provided its
arity (the number of arguments). The arity of a symbol S will be denoted by ar(S). From now on, we will
consider only countable languages with countably many symbols for constants.

Let L be such a language. The shortest description of our syntax is the following one: our formulas are
Σ0 L-sentences. However, it seems prudent to present the extended version of definition as well.

Definition 2.1. The set Term of terms is the smallest superset of Const(L) that is closed for all F ∈ Fun(L), i.e. if
F ∈ Fun(L) and f1, . . . , far(F) ∈ Term, then F( f1, . . . , far(F)) ∈ Term.

Terms will be denoted by f , 1 and h, indexed if necessary.

Definition 2.2. Atomic formulas are formulas of the form f = 1 and R( f1, . . . , far(R)), where f , 1, fi ∈ Term and
R ∈ Rel(L).

Definition 2.3. The set For of formulas is the smallest set containing all atomic formulas that is closed under negation
and conjunction.

Formulas will be denoted by φ, ψ and θ, indexed if necessary. The other connectives (disjunction,
implication, equivalence) are defined as usual. We conclude the introduction of our syntax by the convention
that C would from now on represent some fixed infinite subset of Const(L).

Concerning semantics, our models are so called C-valued L-structures, i.e. L-structures of the form
A = (A, . . . ), where each a ∈ A is an interpretation of some c ∈ C. Our satisfiability relation coincides with
the restriction of the first-order satisfiability relation on Σ0-sentences. Precise definitions can be found in
any graduate textbook of Mathematical logic or some more specialized branches of it such is Model theory,
see for instance [41].

3. Complete Axiomatization

The basic axiom system AS that we are going to introduce here is fairly simple - it contains only two
groups of axioms and two types of inference rules.

Propositional axioms

A1 Substitutional instances of classical tautologies;

Equality axioms

A2 f = f ;
A3 f = 1→ (φ(. . . , f , . . . )→ φ(. . . , 1, . . . );

Inference rules

R1 Modus ponens: from φ and φ→ ψ infer ψ;
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R2 f -rule: from the set of premises {φ→ f , c | c ∈ C} infer φ→ f , f .

Note that R2 is a schemata rule - one instance for each f ∈ Term. The purpose of R2 is to ensure that value
of each term lies in the set of interpretations of C. The implicative form of premises and conclusion in R2 is
the standard technical detail that provides an easy proof of the deduction theorem.

As it is usual, sets of formulas will be called theories. Due to the presence of infinitary inference rules,
the notion of an inference is somewhat different.

Definition 3.1. Suppose that T is a theory and that φ is a formula. We say that φ is syntactical consequence of T,
or that φ can be deduced or inferred from T, if there exists a countable ordinal ξ and a ξ + 1-sequence of formulas
φ0, φ1, . . . , φξ such that φξ = φ and, for all i 6 ξ, φi is an instance of an axiom, or φi ∈ T, or φi can be derived from
some previous members of the sequence by some inference rule.

Note that the length of an inference is always at most countable successor ordinal. The notions of
satisfiability, finite satisfiability, validity, consistency etc. are defined as usual. As it is usual, T ` φ reads “φ
is syntactical consequence of T”, while T |= φ reads “φ is semantical consequence of T”.

Theorem 3.2. The compactness theorem fails forAS.

Proof. Suppose that d ∈ Const(L) \ C. Let T = T1 ∪ T2, where T1 = {d , c | c ∈ C} and T2 = {c1 , c2 | c1, c2 ∈

C and c1 , c2 (syntactically)}. Furthermore, let A = (A, . . . ) be any L-structure that satisfies T2. Since all
elements of A are interpretations of some elements of C, it is easy to see that T1 is not satisfiable inA. On the
other hand, A |= T2 implies that A is countable, so we can use A to construct a model for any finite subset
of T1. Hence, T is both unsatisfiable and finitely satisfiable, so compactness theorem fails forAS.

Deduction theorem forAS can be shown by induction on the length of the inference similarly as in [58],
where the variant of the R2 rule is present. In any case we have

Theorem 3.3 (Deduction theorem). Let T be a theory and φ,ψ ∈ For. Then, T, φ ` ψ iff T ` φ→ ψ.

The completion technique that we will present here follows the guidelines from [58]. Roughly speaking,
we will start with an adaptation of Lindenbaum’s lemma (every consistent theory can be maximized), then
present a modification of the Henkin’s completeness proof.

Lemma 3.4. Suppose that T is a consistent theory and that f is an arbitrary term. Then, there exists c ∈ C such that
T, f = c is consistent.

Proof. Contrary tho the statement of the lemma, suppose that T, f = c is inconsistent for all c ∈ C. Let
φ be any syntactical consequence of T. Then, for all c ∈ C, T, f = c ` ¬φ, so by Theorem 3.3 we obtain
T ` f = c → ¬φ, which is equivalent to T ` φ → f , c. This is true for all c ∈ C, so by R2, T ` φ → ⊥, i.e.
T ` ¬φ. Hence, T is inconsistent - a contradiction. By the excluding middle, the statement of the lemma
must be true.

Lemma 3.5. (Lindenbaum’s lemma)
Every consistent theory can be maximized, i.e. extended to a complete consistent theory.

Proof. Suppose that T is a consistent theory. Since L is countable, sets For, Term and C are all countable. Let
For = {φn | n ∈ ω}, C = cn | n ∈ ω and Term = { fn | n ∈ ω}. We define an ω-sequence T0,T1,T2 . . . of theories
as follows:

1. T0 = T;

2. T2n+1 =

{
T2n ∪ {φn} , T2n ∪ {φn} is consistent

T2n ∪ {¬φn} , T2n ∪ {φn} is inconsistent ;

3. T2n+2 = T2n+1 ∪ { fn = cm}, where m is the least natural number such that T2n+1 ∪ { fn = cm} is consistent
(the existence of m is provided by Lemma 3.4).
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Let T̄ =
⋃

n∈ω Tn. By (2), T̄ is complete, i.e. T̄ ` φ of T̄¬φ for all φ ∈ For. In order to see that T̄ is consistent,
it is sufficient to show that T̄ is deductively closed. This fact can be shown by induction on the length of
inference similarly as in [58]. As an illustration of the mentioned argument, we will show the following
step: if φ→ f , c ∈ T̄ for all c ∈ C, then ¬φ ∈ T̄.

Contrary to the assumption, suppose that φ ∈ T̄ (T̄ is complete so φ ∈ T̄ or ¬φ ∈ T̄). By the construction
of T̄, there exist m ∈ ω and c ∈ C such that φ, f = c, φ → f , c ∈ Tm. By contraposition, Tm ` f = c → ¬φ,
so by modus ponens Tm ` ¬φ, hence Tm is inconsistent. However, by the construction of T̄, each Tk is
consistent, so the assumption φ ∈ T̄ fails.

Theorem 3.6 (Completeness theorem). Every consistent theory is satisfiable.

Proof. Suppose that T is a consistent theory. By Lemma 3.5, there exists a complete consistent theory T̄ that
extends T. Similarly as in the Henkin’s construction, let c ∼ d iff T̄ ` c = d, where c, d ∈ C. The domain A of
the canonical model A is defined as the quotient set C/∼. The corresponding interpretation I of L is defined
as follows:

1. If c ∈ C, then I(c) =def c/∼;
2. If d ∈ Const(L) \ C, then I(d) =def c/∼, where c ∈ C satisfies condition T̄ ` d = c. The existence of such c

is provided by the construction of T̄, see the proof of Lemma 3.5;
3. If f is a functional symbol of arity n and c1, . . . , cn ∈ C, then let

I( f )(I(c1), . . . , I(cn)) =def I(c),

where c ∈ C satisfies condition T̄ ` f (c1, . . . , cn) = c;
4. If R is a relational symbol of arity n and c1, . . . , cn ∈ C, then let

I( f )(I(c1), . . . , I(cn)) iff T̄ ` R(c1, . . . , cn).

Firstly we are going to show the correctness of the above definition. Let ci ∼ di, i = 1, . . . , k, f is a k-ary
function symbol and R is a k-ary relation symbol. Then, T̄ ` ci = di for all i = 1, . . . , k, so by equality axioms

T̄ ` f (c1, . . . , cn) = f (d1, . . . , dn) and T̄ ` R(c1, . . . , cn)↔ R(d1, . . . , dn),

which establishes correctness of I( f ) and I(R).
It remains to show that A is a model of T̄, i.e. that A |= φ for all φ ∈ T̄. Since we only have Σ0-formulas,

the only nontrivial step is the verification of validity in A for atomic formulas in T̄.
Let T̄ ` f (u1, . . . ,uk) = 1(v1, . . . , vk), where ui, v j are arbitrary L-terms and f , 1 are k-ary function symbols.

By the construction of T̄ (see the proof of Lemma 3.5), there are c, d ∈ C so that

T̄ ` f (u1, . . . ,uk) = c and T̄ ` 1(v1, . . . , vk) = d.

By equality axioms, T̄ ` c = d, so the following holds:

• I( f )(I(u1), . . . , I(uk)) = I(c)1);

• I(1)(I(v1), . . . , I(vk)) = I(d);

• I(c) = I(d).

As a consequence we have that
A |= f (u1, . . . ,uk) = 1(v1, . . . , vk).

Let T̄ ` R(v1, . . . , vk), where v1, . . . , vk are arbitrary terms and R is a k-ary relation symbol. By the
construction of T̄, there are c1, . . . ck ∈ C so that T̄ ` vi = ci for all i = 1, . . . , k. By equality axioms,
T̄ ` R(c1, . . . , cn. Furthermore, I(vi) = I(ci) for all i = 1, . . . , k, so I(R)(I(v1), . . . , I(vk)) is satisfied in A, i.e.
A |= R(v1, . . . , vk).

1)Interpretation I(t) of any L-term t (in other words the value of t in A) can be naturally defined as follows:

– For any constant symbol c let I(c) = c/∼;
– For any k-ary function symbol f and any terms t1, . . . , tk let I( f (t1, . . . , tn)) = I( f )(I(t1), . . . , I(tn)).
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4. Some Examples

In this section we will show how probabilistic evaluations, possibilistic evaluations and evaluations in
Gödel’ s logic can be represented asAS theories.

4.1. Simple probabilities
Modal variants of probability logics are logics with modal like operators that formally capture the mea-

sure of the truthfulness of formulas in some underlying formalism. Usually, the basic syntactical construct
involves a formula of the underlying formalism (say classical propositional logic) and the subinterval of the
real unit interval [0, 1] which refers to the estimation of the probability of the given formula. For example,
formulas

w(p) > 0.5, [0.5, 1]p, P>0.5p and 0.5→L p

have the same meaning: the probability of the propositional letter p is between 0.5 and 1. Some of books
and papers that are relevant for our previous and current work are [13, 14, 21–23, 25, 27, 34, 37–39, 42–
50, 53–56, 59, 60].

In the single agent case we will assume that L = {+,−, ·,6}∪ConstL, where − is a unary function symbol,
+ and · are binary function symbols, 6 is a binary relation symbol and

ConstL = {P(α) | α ∈ ForCl} ∪Q.

Here ForCl is the set of classical propositional formulas and C = Q. Now we can assure that P actually
behaves like probability by the followingAS-theory:

• Diagram of the ordered field of rational numbers;

• f + 1 = 1 + f ;

• f + (1 + h) = ( f + 1) + h

• f + 0 = f ;

• f − f = 0 ( f − 1 is an abbreviation for f + (−1));

• f · 1 = 1 · f ;

• f · (1 · h) = ( f · 1) · h;

• f · 1 = f ;

• f · (1 + h) = ( f · 1) + ( f · h);

• f 6 f ;

• f 6 1 ∧ 1 6 f → f = 1;

• f 6 1 ∧ 1 6 h→ f 6 h;

• f 6 1 ∨ 1 6 f ;

• f 6 1↔ f + h 6 1 + h;

• f 6 1↔ (h > 0→ f · h 6 1 · h);

• 0 6 P(α) 6 1;

• P(α) = 1, whenever α is a tautology;

• P(α) = P(β), whenever α and β are equivalent;
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• P(α ∨ β) = P(α) + P(β) − P(α ∧ β);

• P(¬α) = 1 − P(α).

In the multi agent case the main idea is to use indices for designation of probability estimations for each
agent.

Though probabilities are not truth-functional, they can be effectively applied on certain classification
problems (such as Grabisch problem of student classification [20]). Namely, it is easy to see that value of
each probability µ on formulas is uniquely determined by its values on conjunctions of pairwise distinct
propositional letters. As a consequence, any effective method of evaluation of finite conjunction of pairwise
distinct propositional letters (say product of values of letters, or its minimum) would yield an effective
procedure for computation of probability of any formula. As a consequence, we have gained an effective
method for extending valuations of propositional letters to valuation of all formulas. We will illustrate this
in the formalization of the well known Grabisch’s classification example treated in [20, 51].

Originally Grabisch has considered the classification of students according to their academic scores in
three courses. As a preprocessing, academic scores should be normalized in the usual way: if we have n
grades displayed increasingly as a1, a2, . . . , an, than their normalization is defined by ‖ai‖ = i

n . Courses C1,
C2 and C3 can be represented by propositional letters p1, p2 and p3 respectively. So, normalized academic
scores of the each student generate evaluation of propositional letters p1, p2 and p3. As we have shown
in [51], the obvious classification can be derived if we extend those evaluations on entire ForC by means
of probability. Namely, if A is a nonempty finite set of pairwise disjoint propositional letters, then let
e
(∧

p∈A p
)

=
∏

p∈A e(p). Here e(pi) coincides with normalized academic score in i-th course of some student
and e(p) = 1 for p < {p1, p2, p3}. What follows is a slight generalization of the original Grabisch’s example.

Objects A, B, C and D are described by quality attributes p1, p2 and p3, whose values are given in the
following table:

object p1 p2 p3

A 0.75 0.9 0.3
B 0.75 0.8 0.4
C 0.3 0.65 0.1
D 0.3 0.55 0.2

Objects A, B, C and D should be classified according to the following criteria:

φ1: The average value of quality attributes;
φ2: If the analyzed object is good with respect to p1, then p3 is more important than p2. Otherwise, p2 is

more important than p3.

According to the first criterion, A and B are incomparable, C and D are incomparable, and both A and B are
better than C and D. According to the second criterion, B is slightly better than A and C is slightly better
than D. Hence, we get D < C < A < B.

In order to formally express described problem, we will assume the multi-agent formalization of simple
probabilities. The second classification criterion can be propositionally coded by the formula (p1 ∧ p3) ∨
(¬p1 ∧ p2) (of course, this is not the only way). We will assume that p1, p2 and p3 are independent. In terms
of probability this transcribes as follows:

• Pi(p1 ∧ p2) = Pi(p1) · Pi(p2);

• Pi(p1 ∧ p3) = Pi(p1) · Pi(p3);

• Pi(p2 ∧ p3) = Pi(p2) · Pi(p3);

• Pi(p1 ∧ p2 ∧ p3) = Pi(p1) · Pi(p2) · Pi(p3).

Moreover, we will formalize the given table in the obvious way:
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• Pi(p j) = qi, j (for instance q1,1 = 0.75).

Now for each i we can formally compute

1/6 · (Pi(p1) + Pi(p2) + Pi(p3)) + 1/2Pi((p1 ∧ p3) ∨ (¬p1 ∧ p2)),

compare calculated values and deduce the intended classification.

4.2. Rational relations
In [35] Lehmann and Magidor have shown that for each rational consequence relation ρ on ForCl there

exists a hyper-real probability measure µ : ForCl −→ [0, 1]∗ such that αρ β iff µ(β|α) ≈ 1 (i.e. 1 − µ(β|α) is an
infinitesimal. More on non-monotonic reasoning the reader can found in [3, 5–7, 17–19, 33, 62, 63].

In [58] we have presented an infinitary propositional logic for reasoning about Q(ε)-valued conditional
probabilities (ε is a positive infinitesimal), which provides a complete and decidable formal system for
reasoning about rational relations. Here we will rewrite this system as anAS-theory a.

Let L = {+,−, ·,6,≈} ∪Q(ε) ∪ {P(α),CP(α, β) | α, β ∈ ForCl}. Here P(α) reads “the probability of α”, while
CP(α, β) reads “the conditional probability of α given β”.

• Diagram of the ordered field Q(ε);

• f + 1 = 1 + f ;

• f + (1 + h) = ( f + 1) + h

• f + 0 = f ;

• f − f = 0 ( f − 1 is an abbreviation for f + (−1));

• f · 1 = 1 · f ;

• f · (1 · h) = ( f · 1) · h;

• f · 1 = f ;

• f · (1 + h) = ( f · 1) + ( f · h);

• f 6 f ;

• f 6 1 ∧ 1 6 f → f = 1;

• f 6 1 ∧ 1 6 h→ f 6 h;

• f 6 1 ∨ 1 6 f ;

• f 6 1↔ f + h 6 1 + h;

• f 6 1↔ (h > 0→ f · h 6 1 · h);

• 0 6 CP(α, β) 6 1;

• P(α) = CP(α,>);

• CP(α, β) = CP(α′, β′), where α is equivalent to α′ and β is equivalent to β′;

• P(¬α) = 1 − P(α);

• P(α ∨ β) = P(α) + P(β) − P(α ∧ β);

• P(β) = 0→ CP(α, β) = 1;
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• P(β) = b ∧ P(α ∧ β) = a ∧ b > 0→ CP(α, β) = a
b ;

• CP(α, β) = a→ CP(α, β) ≈ st(a), where st(a) is the standard part of a;

• CP(α, β) ≈ 0→ CP(α, β) 6 1
n+1 ;

• CP(α, β) ≈ 1→ CP(α, β) > n
n+1 ;

• CP(α, β) ≈ r→ s 6 CP(α, β) 6 t, for all r, s, t ∈ (0, 1)Q so that s < r < t.

Let us show that T = {s 6 CP(α, β) 6 t, | s, t ∈ (0, 1)Q and s < r < t} ` CP(α, β) ≈ r, r ∈ (0, 1)Q.
Indeed, suppose that T 0 CP(α, β) ≈ r. Then, T′ = T ∪ {¬CP(α, β) ≈ r} is a consistent theory. Let T∗ be

any completion of T′. There is unique a ∈ [0, 1]Q(ε) such that CP(α, β) = a. It is easy to see that |a− r|must be
an infinitesimal (this is a straightforward consequence of T). Consequently, st(a) = r, so T∗ ` CP(α, β) ≈ r;
contradiction.

4.3. Possibility and necessity functions
Possibility theory is one of the prominent branches of research in the field of nonmonotonic reasoning and

reasoning under uncertainty, see [2, 4, 9–11, 15, 52]. Qualitative possibilities were introduced independently
by Lewis in [36] and Dubois in [9], while qualitative necessities were introduced by Dubois in [9]. Though
possibility and necessity relations are originally defined on algebras of sets, it is quite natural to treat them as
relations on propositional formulas since all Boolean algebras are, up to isomorphism, Lindenbaum–Tarski
propositional algebras.

A binary relation 6Π on the set ForC of classical propositional formulas is a qualitative possibility if it
satisfies the following conditions:

• 6Π is a nontrivial weak order, i.e. it is linear (each pair of formulas is comparable), transitive and
⊥ <Π >, where ⊥ is any contradiction, > is any tautology and <Π has the obvious meaning α 6Π β
and β 
Π α;

• 6Π is compatible with the equivalence of classical propositional formulas. More precisely, if α is
equivalent to α′ and β is equivalent to β′, then α 6Π β iff α′ 6Π β′;

• For all α ∈ ForC, ⊥ 6Π α;

• 6Π satisfies so called disjunctive stability: if β 6Π γ, then, for all α, α ∨ β 6Π α ∨ γ.

A binary relation 6N on ForC is a qualitative possibility if it has the following properties:

• 6N is a nontrivial weak order;

• 6N is compatible with the equivalence of classical propositional formulas;

• For all α ∈ ForC, α 6N >;

• 6N satisfies so called conjunctive stability: if β 6Π γ, then, for all α, α ∧ β 6Π α ∧ γ.

It is quite natural to treat qualitative possibilities and necessities as dual notions, since any qualitative
possibility relation 6Π generates the unique qualitative necessity relation 6NΠ

by

α 6NΠ
β iff ¬β 6Π ¬α,

and vice versa. Moreover, for any possibility (necessity) relation 6R, the quotient structure 〈ForC/∼,6R/∼〉

(α ∼ β iff α 6 β and β 6 α) is at most countable (ForC is countable) linear ordering with endpoints, so it can
be embedded into 〈[0, 1],6〉. If F is one such embedding, then by f : α 7→ F(α/∼) is defined a distribution f
of 6R, i.e. α 6R β iff f (α) 6 f (β). Such functions are also called possibility (necessity) functions.
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If 6Π is a qualitative possibility relation and π its arbitrary distribution, then

π(α ∨ β) = max(π(α), π(β)) (maxitivity condition).

Moreover, if f : ForC −→ [0, 1] satisfies maxitivity condition, then the relation 6 f defined by

α 6 f β iff f (α) 6 f (β)

is a qualitative possibility relation. Dually, minitivity condition

ν(α ∧ β) = min(ν(α), ν(β))

fully characterizes qualitative necessity relations.
Hence, in order to formally capture evaluations that behaves like possibility functions and necessity

functions, we just need to provide fulfillment of the corresponding characterizing condition (maxitivity for
possibility functions, minitivity for necessity functions). Again we will only discuss the single agent case.

Let L = {6} ∪ [0, 1]Q ∪ {Π(α),N(α) | α ∈ ForCl}, where C = [0, 1]Q. Here Π(α) stands for the possibility
measure of α, while N(α) stands for the necessity measure of α. We can obtain desired properties of Π and
N by the followingAS-theory:

• Diagram of 〈[0, 1]Q,6〉;

• f 6 f ;

• f 6 1 ∧ 1 6 f → f = 1;

• f 6 1 ∧ 1 6 h→ f 6 h;

• f 6 1 ∨ 1 6 f ;

• Π(α) = Π(β), if α and β are equivalent;

• Π(⊥) = 0; Π(>) = 1;

• Π(α) 6 Π(β)→ Π(α ∨ β) = Π(β);

• N(α) = N(β), if α and β are equivalent;

• N(⊥) = 0; ≺ N(>) = 1;

• N(α) 6 N(β)→ N(α ∧ β) = N(α).

4.4. Evaluations in Gödel’s fuzzy logic
Roughly speaking, Gödel’s fuzzy logic is an extension of the basic logic (BL) with axioms that ensures

that conjunction and disjunction behaves like min and max respectively. Furthermore, Gödel’s implication
(residuum of min) and negation are defined by

x⇒ y =

{
1 , x 6 y
y , y < x

and

¬x =

{
0 , x > 0
1 , x = 0 .

More information on fuzzy logic the reader can found in [12, 16, 21, 23, 24, 39, 40, 61].
Let L = {6}∪ [0, 1]Q∪{G(α) | α ∈ ForCl}. The followingAS-theory formally captures semantics of Gödel’s

logic in the single agent case:
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• Diagram of 〈[0, 1]Q,6〉;

• f 6 f ;

• f 6 1 ∧ 1 6 f → f = 1;

• f 6 1 ∧ 1 6 h→ f 6 h;

• f 6 1 ∨ 1 6 f ;

• 0 < G(α)→ G(¬α) = 0;

• G(α) = 0→ G(¬α) = 1;

• G(α) 6 G(β)→ G(α→ β) = 1;

• G(α) > G(β)→ G(α→ β) = G(β);

• G(α) 6 G(β)→ G(α ∧ β) = G(α);

• G(α) 6 G(β)→ G(α ∨ β) = G(β).

It is easy to see that in any model M of the introduced theory, by e(α) = GM(α) is correctly defined an
evaluation in Gödel’s logic.

5. Conclusion

Motivation for our research was prior work on uncertainty reasoning based on numerical-valued evalu-
ation of propositional formulas. Our goal was to develop a general formal environment for modelling main
numerical-valued concepts such as probability and possibility logics, and different types of fuzzy logics,
which were investigated in various papers [9, 11, 12, 21, 24, 37, 38, 48, 53, 58].

This paper deals with F-valued evaluations, where F is a recursive structure of a given first-order
recursive language. We investigated the logical language appropriate for description of many-valued
logics. We axiomatized this language and we proved that the axiomatization is sound and complete with
respect to corresponding semantics. Then we showed how the logics mentioned above may be represented
as theories in our formalism. The examples include simple and conditional probabilities, possibility and
necessity functions and evaluations in Gödel’s fuzzy logics.

We showed that logic presented here is not compact. Hence, any finitary axiomatization would be
incomplete, so we achieved completeness using infinitary inference rules.
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[3] H. Bezzazi, R. Pino Pérez, Rational Transitivity and its models. In: Proceedings of the 26th International Symposium on

Multiple-Valued Logic, 160–165, IEEE Computer Society Press, 1996.
[4] C. Boutilier, Modal logics for qualitative possibility theory, International Journal of Approximate Reasoning 10 (1994) 173–201.
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