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Abstract.
Data Envelopment Analysis is a linear programming technique for assessing the efficiency and pro-

ductivity of decision making units (DMUs). Over the last decade, DEA has gained considerable attention
as a managerial tool for measuring performance. The flexibility in selecting the weights in standard DEA
models deters the comparison among DMUs on a common base. Moreover, these weights are unsuitable
to measure the preferences of a decision maker (DM). For dealing with these two difficulties simultane-
ously; we use preference common weights. This paper uses preference common weights for time-series
evaluations to calculate the global Malmquist productivity index (MPI) so that the productivity of changes
of all DMUs have a common basis for comparison, and DM’s preference information is incorporated in
calculating global MPI. The Malmquist Productivity Index (MPI) suggests a convenient way of measuring
the productivity change of a given unit between two consequent time periods.

1. Introduction

Data envelopment analysis(DEA) introduced by Charnes et al. (1978) is a mathematical programming
technique that calculates the relative efficiency of multiple decision making units(DMUs) based on observed
inputs and outputs, which may be expressed indifferent types of metrics. The original DEA model assesses
the relative efficiency of a DMU as the ratio of weighted outputs to weighted inputs, where the models elect
weights for each DMU to present it in the most favorable light (see Amirteimoori et al.; 2005, Amirteimoori
and Shafiei; 2006). By doing so it identifies its relative efficiency with respect to an ”efficiency frontier”
that is defined by all the assessed DMUs. However, in real-world applications, virtually unconstrained
weights are usually unacceptable (Roll and Golany; 1993). Likewise, large differences in the weight values
for different DMUs may be a concern. Restricted DEA approaches such as the concept of common weights
were developed to allow some control over the weights in the model (Amirteimoori and Kordrostami;
2009). However, none of the common weight approaches are suitable to measure the preferences of a DM.

In addition to comparing the relative efficiency of a set of DMUs at a specific time, the conventional
DEA can also be used to calculate the productivity growth of a DMU over the time.
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The computation of productivity growth by efficiency measures was introduced by Caves et al. (1982)
and developed by Nishimizu and Page (1982) and by Fre et al. (1994c), in the context of parametric and
non-parametric efficiency measurement, respectively. The Fre et al. (1994c) approach has become known
as the measurement of productivity of changes through Malmquist indices. The Malmquist index has been
defined by using distance functions. The distance functions allow us to describe a multi-input, multi-output
production technology without the need to specify the producer behavior (such as cost minimization or
profit maximization). The non-parametric Malmquist approach has been applied mostly in the analysis
of productivity growth, technical progress, and efficiency change at the firm level, for example, hospitals
(Fre et al.,1989), pharmacies (Fre et al.,1992; Suyanto and Salim, 2013), electricity (Hjalmarssonan and Vei-
derpass, 1992), natural gas (Price and Weyman-Jones, 1996), mobile operators (Usero and Asimakopoulos,
2013), services sector (Lee, 2013), agriculture (Taminia et al., 2012), Chinese state enterprises (Zheng et
al., 2003), Energy (Moroney, 1990), OECD countries (Yoruk and Zaim, 2005), Public Enterprise (Zaim and
Taskin, 1997) and airports (Abbot and Wu, 2002). Fre et al. (1994b) also used this method to compare the
productivity growth in the industrialized countries.

The objective of this paper is to design a Malmquist productivity index, which is based on a preference
common-weights DEA model, such as the productivity change of all DMUs over time can be compared on
a common basis, and the DM’s preference information can be incorporated.

The rest of this paper is organized as follows: The idea of the preference common-weights DEA model
based on DM’s preference information proposed by Jahanshahloo et al. (2011) is reviewed in Section 2.
The idea of common-weights based on DM’s preference is extended to calculate the MPI in Section 3, and
the global MPI proposed by Pastor and Lovell (2005) in Section 4. In Section 5, an example is designed for
illustration. The article is sum up with conclusions and some suggestions given in Section 6.

2. Preference Common Weights in DEA

Let each DMU j in the set of n DMUs be characterized by its input/output data collected into the row
vector (x j, y j), where we expect all entries are nonnegative and at least one input and one output are positive.
Each unit has m inputs and s outputs. Suppose xi j denotes the consumed amount of the ith input measure
and yrj denotes the amount produced of the rth output measure by the jth DMU. The production possibility
set (PPS) of most widely used DEA model, CCR (the proposed model by Charnes, Cooper and Rhodes;
1978) with constant returns to scale characteristic, is defined as semi-positive vectors (x,y) as follows:

Tc = {(x, y)|x ≥
n∑

j=1

λ jx j, y ≥
n∑

j=1

λ jy j, λ j ≥ 0, j = 1, 2, ...,n}.

Here, lambda j is the jth unknown decision variable for connecting inputs and outputs in the convex
combination.
A subset of Tc, consisting of the following set of input-output vectors:
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y
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)
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)}

is referred to as ”an efficiency
frontier”. Fre et al. (1994a) provide the following definition related to the return to scale (see Banker
and Thrall; 1992) for an equivalent definition. The technology exhibits constant returns to scale (CRS) if
αT = T, α > 0; it exhibits non-increasing returns to scale (NIRS) if βT ⊆ T, 0 < β ≤ 1; it exhibits non-
decreasing returns to scale (NDRS) if γT ⊆ T, γ ≥ 1 (or equivalently if T ⊆ δT, 0 < δ ≤ 1). On the basis of
the above RTS definition, we say that a DMU exhibits decreasing returns to scale (DRS) if it exhibits NIRS
but not CRS and increasing returns to scale (IRS) if it exhibits neither CRS nor DRS. Seiford and Zhu (1999)
have proposed that the efficient frontier obtained by the CCR model exhibits CRS and the efficient frontier
obtained by the BCC model exhibits variable returns to scale (VRS), i.e. IRS, CRS and DRS are all allowed
in the BCC model.
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Classical DEA models evaluate DMUs and specify reference points on the assumption that inputs have
to be minimized, and outputs have to be maximized. However, based on this assumption, specification of
reference points in DEA models could be expressed as an MOLP problem which their constraints are same
as the constraints which define PPS of standard DEA models, but applied to minimization of input variables
and maximization of output variables. Then, Jahanshahloo et al. (2011) proposed following MOLP model,
which is intellectually consistent with the DEA philosophy, to obtain an efficient reference point for the
virtual DMU (x, y):

max {−x1,−x2, ...,−xm, y1, y2, ..., yp}

s.t. (x1, x2, ..., xm, y1, y2, ..., yp) ∈ Tc
(1)

When this model is solved by Zionts-Wallenius (1976) approach, a proper set of preference weights could
be specified that reflect the relative degree of DM’s underlying value structure about inputs and outputs. In
other words, they produced a preference common weights and then efficiency score of DMU j, j = 1, 2, ...,n,

can be obtained by using these common weights as E j =
∑s

r=1 u∗r yrj∑m
i=1 v∗i xi j

.
In Zionts-Wallenius (1976) a man-machine interactive mathematical programming method was presented
for solving the multiple criteria problem involving a single decision maker. It was assumed that all decision-
relevant criteria or objective functions were concave functions to be maximized, and that the constraint
set was convex. The overall utility function was assumed to be unknown explicitly to the decision maker,
but was assumed to be implicitly a linear function, and more generally a concave function of the objective
functions. To solve a problem involving multiple objectives the decision maker was requested to provide
answers to yes and no questions regarding certain trade offs that he likes or dislikes.

3. Preference Common Weights Malmquist Productivity Index (MPI)

The MPI is a bilateral index that can be used to compare the production technology of two economies
or the productivity change of one economy over time. It was introduced by Caves et al. (1982) that named
it after Malmquist (1953), who proposed to construct quantity indices as ratios of distance functions for
use in consumption analysis. MPI has a number of desirable features. It does not require input prices
or output prices in their construction, which makes it particularly useful in situations in which prices
are distorted or non-existent. It does not require a behavioral assumption such as cost minimization or
profit maximization, which makes it useful in situations in which producers’ objectives differ, either are
unknown or are unachieved. Besides, the MPI is easy to compute, as Färe et al. (1992) have demonstrated,
and its various decompositions provide insight into the sources of productivity change. A functional
representation of production technology is provided by the following input distance function:

D(xo, yo) = in f {θ|(θxk, yk) ∈ PPS} (2)

This function, gives us the efficiency score of the unit o ∈ {1, 2, ...,n} relative to other units. Model (2) has
not the measurability of efficiency changes in two different times. Färe et al. (1994b) showed that it is
possible to decompose the Malmquist productivity index into two components: an index of the change
in efficiency and an index of technological change. We need to solve four linear programming models to
calculate Malmquist index.

Dt
k(xt

k, y
t
k) = Min θ

s.t.
n∑

j=1

λ jxt
i j ≤ θxt

ik, i = 1, 2, ...,m,

n∑
j=1

λ jyt
r j ≥ yt

rk, r = 1, 2, ..., s,

λ j ≥ 0 j = 1, 2, ...,n.

(3)
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Which Dt
k(xt

k, y
t
k) is the efficiency score of DMUk in the time of t and by putting t + 1 instead of t in the model

(3), the efficiency score of DMUk in time t + 1 show by Dt+1
k = (xt+1

k , yt+1
k ) is attainable.

We can calculate the efficiency score of DMUk in time t + 1 based on the frontier in time t, Dt
k = (xt+1

k , yt+1
k ),

from the model (4):

Dt
k(xt+1

k , yt+1
k ) = Min θ

s.t.
n∑

j=1

λ jxt
i j ≤ xt+1

ik , i = 1, 2, ...,m

n∑
j=1

λ jyt
r j ≥ yt+1

rk , r = 1, 2, ..., s

λ j ≥ 0 j = 1, 2, ...,n

(4)

Where (xt
k, y

t
k) and (xt+1

k , yt+1
k ) are inputs/outputs components of DMUk in the time t and next time, t + 1,

respectively.
We can calculate the efficiency score of DMUk in the time t based on the frontier in time t + 1, Dt+1

k (xt
k, y

t
k),

by replacement of t and t + 1. Sueyoshi (1998) introduced growth index for two times, t and t+1 as
the efficiency score of the consideration unit in the time t+1 based on production technology in time t.
Malmquist productivity index (MPI) based on the idea of Cave et al. (1982) is equal to the growth index
divided by the efficiency score of the current time. In general, we solve the following linear programming
in which is dual of model (4) for computation the growth index of kth unit in the time t + 1 based on
production technology in time t:

Dt
k(xt+1

k , yt+1
k ) = Max

s∑
r=1

uryt+1
rk

s.t.
m∑

i=1

vixt+1
ik = 1

s∑
r=1

uryt
r j −

m∑
i=1

vixt
i j ≤ 0 j = 1, 2, ...,n

ur ≥ 0 r = 1, 2, ..., s
vi ≥ 0 i = 1, 2, ...,m

(5)

Notice that growth index can be greater than one. Thus, MPI provided by Cave et al. (1982), which is
displayed with the sign of MPICCD is equal to:

MPICCD =
Dt

k(xt+1
k , yt+1

k )

Dt
k(xt

k, y
t
k)

Where Dt
k(xt

k, y
t
k) is the calculated efficiency score from model (3).

Since the weights used for calculating Dt
k(xt+1

k , yt+1
k ) and Dt

k(xt
k, y

t
k) are different, the MPI, which is the ratio

of Dt
k(xt+1

k , yt+1
k ) to Dt

k(xt
k, y

t
k), is not calculated on the same basis. Now, we calculate MPI by the ratio

of Dt+1
k (xt+1

k , yt+1
k ) to Dt+1

k (xt
k, y

t
k) and we show it as M̃PI

CCD
. To sum up MPICCD calculation is based on

production technology of the period t and M̃PI
CCD

calculation is based on production technology during

t + 1. We see that both indexes (M̃PI
CCD

and MPICCD) compare (x(
kt + 1), y(

kt + 1) ) to (xt
k, y

t
k ), but they use

different benchmarks. In order to provide the same basis for a consistent comparison and to incorporate
preference information in DEA, the preference common-weights (PCW) introduced in section 2 can be
applied. Since these preference common weights have this merit that DM preferences are considered
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for obtaining common weights; we call this index as preference common-weights MPI. We use PCW for
obtaining growth index and then MPI. To sum up, the procedure is to apply model (1) to find the PCW
(u∗, v∗) primarily and then, the efficiency of DMUk at the current time is calculated as:

EPCW
k =

s∑
r=1

u∗ryt
rk/

m∑
i=1

v∗i x
t
ik

And the growth index is calculated as:

Ẽk
PCW

=

s∑
r=1

u∗ryt+1
rk /

m∑
i=1

v∗i x
t+1
ik

and finally, we get MPI based on preference common weights for DMUk from the following ratio:

MPIPCW =
Ẽk

PCW

EPCW
k

4. Global Malmquist Productivity Index (global MPI)

Consider n DMUs (DMU j, j = 1, 2, ...,n) and t = 1, 2, ...,T time periods. Each DMU consume inputsX ∈
Rm

+ to produce outputs Y ∈ Rs
+.we define two PPS. A contemporaneous PPS is defined as Tt

c = {(xt, yt)|xtcanproduceyt
}

for t = 1, 2, ...,T. A global PPS is defined as TG
c = conv{T1

c , ...,TT
c }. The subscript c indicates that both PPSs

satisfy constant return to scale. Conv is abbreviation of convex set produced by T1
c
⋃
...

⋃
TT

c . A contempo-
raneous Malmquist productivity index is defined on Ts

c for DMUk as:

MPIs =
Ds

k(xt+1
k , yt+1

k )

Ds
k(xt

k, y
t
k)

s = t, t + 1. (6)

Since MPIt , MPIt+1 without restrictions on the two PPSs, in order to avoid choosing an arbitrary bench-
mark, Färe et al. (1989) specified the contemporaneous MPI as the geometric mean form as:

MPIFGNZ = (MPIt
×MPIt+1)

1
2 = ((

Dt
k(xt+1

k , yt+1
k

Dt
k(xt

k, y
t
k)

) × (
Dt+1

k (xt+1
k , yt+1

k )

Dt+1
k (xt

k, y
t
k)

))
1
2 (7)

The MPIFGNZ solves the disparity problem of using different base times in measuring productivity changes.
However, it is not circular (Pastor and Lovell; 2005). Considering that, Pastor and Lovell (2005) proposed a
global MPI which uses the data of all DMUs at all times to construct the frontier for calculating the MPI. A
global Malmquist productivity index for DMUk is defined on TG

c as:

MPIG =
DG

k (xt+1
k , yt+1

k )

DG
k (xt

k, y
t
k)

(8)

Where the input distance functions DG
k (x, y) = min{θ|(θxk, yk) ∈ TG

c }

To get the preference global Malmquist productivity index, at first, we calculate the preference common
weight for all DMUs at all times. In other words, if we have n units and T times, we compute preference
common weight for nT units. Suppose that we use the same weights such as v∗i and u∗r for calculating the
efficiency of all units in all times that these are the preference common weights, we can obtain the global
MPI based on PCW for DMUk between period t and t + 1 as follows:

GMPIPCW =

∑s
r=1 u∗ryt+1

rk /
∑m

i=1 v∗i x
t+1
ik∑s

r=1 u∗ryt
rk/

∑m
i=1 v∗i x

t
ik

(9)
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5. An Illustrative Example

In the current paper, we employ the Malmquist productivity index for evaluating 25 bank branches for
two period times by using the methodology developed above. This section describes the data and results.
Table 1 shows inputs and outputs of these banks at time period t and Table 2 shows inputs and outputs of
these banks at time period t+1. Each bank contains four inputs and four outputs.

Table 1: The data for 25 bank branches at time t

DEA Inputs DEA Outputs
Bank NO. I1 I2 I3 I4 O1 O2 O3 O4

1 9.38 34.33 3143 1 782449 250068 833004 101067.81
2 143.03 171.31 15747 31 652125 31068 338152 91873.74
3 1580.38 466.93 221300 51 4040385 701735 2424385 437267.97
4 735.84 513.55 252217 51 3409633 428514 2677324 1646423.34
5 53.44 340.92 71071 45 1224900 256802 1367283 379950.67
6 2535.54 254.98 43010 35 2156648 293247 2920857 1169735.81
7 1139.39 394.01 61841 45 3809482 374144 1665672 308032.42
8 4660.1 461.67 155558 51 3644455 1962969 4118313 834094.56
9 848.66 266.95 48677 48 799361 72616 574892 168866.35

10 0.99 141.63 18366 34 405501 12942 108368 35236.01
11 798.5 720.61 40157 141 2625840 106282 685899 221782.3
12 303.31 502.46 36920 98 1052064 35297 548749 149980.8
13 3.45 27.65 1146 6 43683 32492 5688 1415.17
14 51.1 182.14 15419 45 428114 16377 139570 41807.41
15 0.9 182.6 20131 48 339768 18213 164653 51807.24
16 839.56 666.05 83938 144 1874197 133063 1125711 475364.41
17 0.48 129.13 14954 33 259330 8657 162732 74421.66
18 0.11 44.09 11139 14 143857 4894 149931 55683.43
19 807.95 408.53 124600 89 1094242 85205 642039 246534.15
20 113.99 104.74 16822 28 259817 14174 201210 93034.64
21 29.42 147.54 18932 34 312741 20805 166018 57174.19
22 53.31 144.14 29997 30 282343 14441 264833 95249.99
23 71.81 409.25 27173 97 807147 25803 501600 166854.03
24 423.58 446.41 46793 80 935800 62753 608261 179386.4
25 4.74 127.53 14612 30 247707 6882 167085 59788

Table 2: The data for 25 bank branches at time t+1

DEA Inputs DEA Outputs
Bank NO. I1 I2 I3 I4 O1 O2 O3 O4

1 5482.32 33.17 3076 1 831750 268098 841725 177390.52
2 5451.58 169.88 17066 31 640258 33730 344091 97519.48
3 50633.58 464.89 217878 51 3936051 664068 2204346 482360.32
4 39453.29 513.04 252499 51 3394752 593271 3127005 1686407.04
5 10866.91 337.57 53427 45 1263973 323971 1412098 416052.9
6 29019.68 253.03 42722 35 2280451 409819 3130137 1267167.57
7 54914.42 395.71 61056 45 3911839 464597 1665863 318207.37
8 36562.67 463.52 162910 51 3531637 1881242 4202924 867748.67
9 8048.46 267.71 49346 48 805613 74521 574680 176427.9
10 2873.84 142.47 18292 34 399133 13851 109991 38641.25
11 33378.11 717.97 40561 141 2625625 142700 694756 236595.05
12 12108.04 502.29 37421 98 1052391 41562 552447 161991.54
13 267.45 26.96 1186 6 43451 51626 5689 1598.71
14 4115.57 181.66 15683 45 430320 23988 145108 43628.7
15 3489.83 183.46 19280 48 347016 17777 166013 54738.66
16 25014.61 668.66 84489 144 1896021 165423 1139098 499387.48
17 2106.56 129.02 14870 33 251780 11561 172155 78340.49
18 2116.09 44.33 10767 14 147085 4910 156281 58630.32
19 10539 409.08 127439 89 1098750 84289 649153 261217.3
20 1878.5 104.28 28090 28 258167 15995 198100 97676.95
21 2359.89 146.72 19663 34 315388 23664 172966 61480.53
22 3208.41 142.54 31008 30 283296 14941 266099 100696.8
23 5888.53 408.59 29186 97 805940 27801 511579 180677.36
24 8930.22 444.15 47296 80 942343 66846 629729 195533.16
25 1821.29 128.71 15341 30 245357 8563 175931 63273.62
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Table 3: Three forms of MPI for the Bank case

CCD base t PCW base t PCW global
Bank NO. E f f iciency Growth I MPI E f f iciency Growth I MPI GMPIPCW

1 1 1.8070 1.8070 0.9225 0.9037 0.9796 1.3529
2 0.6343 0.1936 0.3052 0.7043 0.6570 0.9328 0.4536
3 0.3797 0.3715 0.9784 0.4235 0.3920 0.9256 0.3657
4 1 0.8193 0.8193 0.9123 0.8978 0.9841 1.0023
5 0.5212 0.3043 0.5838 0.5934 0.5560 0.9370 0.7894
6 1 1.1116 1.1116 0.8763 0.8421 0.9610 1.1234
7 0.4107 0.4337 1.0560 0.4511 0.4367 0.9681 0.9566
8 0.6017 0.6045 1.0047 1 0.9231 0.9231 1.2453
9 0.1835 0.1807 0.9847 0.4341 0.2560 0.5897 1.1314
10 1 0.1229 0.1229 0.9536 0.8954 0.9390 0.4536
11 0.2627 1.2292 4.6791 0.3017 0.2960 0.9811 2.2425
12 0.1263 0.4715 3.7332 0.2560 0.2432 0.9500 1.3564
13 1 1.6295 1.6295 0.9430 0.9065 0.9613 0.8743
14 0.1115 0.9330 8.3677 0.4510 0.4123 0.9142 1.9879
15 1 0.0927 0.0927 0.8950 0.8256 0.9225 0.7643
16 0.2290 0.4261 1.8607 0.3541 0.3245 0.9164 0.9789
17 1 1.0317 1.0317 0.9672 0.9089 0.9397 1.3245
18 0.4358 0.3923 0.9002 0.5225 0.5036 0.9633 1.0045
19 0.4703 0.2068 0.4397 0.4156 0.3980 0.9577 0.9870
20 0.7445 0.2196 0.2950 0.4970 0.4786 0.9630 0.6787
21 0.1581 0.5248 3.3194 0.2154 0.2011 0.9336 1.5643
22 0.2245 0.1675 0.7461 0.2378 0.2032 0.8544 0.9521
23 0.2115 0.5507 2.6038 0.5690 0.5221 0.9176 1.3784
24 0.1314 0.3974 3.0244 0.4233 0.4102 0.9691 1.2536
25 0.9484 0.3190 0.3364 0.9730 0.9341 0.9600 0.8721

Average 0.5514 0.5816 1.6736 0.6117 0.5731 0.8929 0.8440

The efficiencies of the twenty five branches, under constant returns-to- scale, were calculated; the results
are presented in the second column of Table 3. Seven banks are efficient. The growth indexes of the all
branches were calculated by applying Model (4); the results are presented in the third column of Table 3.

The ratio of the growth index to the efficiency is the MPICCD and is shown in the fourth column of
Table 3. where thirteen have a value > 1 and twelve have a value < 1, with an average MPI of 1.6736.
Therefore, based on the conventional MPI, we concluded that, in general, time t + 1 had resulted in an
improvement in performance. As discussed in the preceding sections, the efficiency and growth index of a
DMU may have been calculated by using different frontier facets. It is inappropriate to use these numbers
for comparison. To make them comparable and incorporate DM’s preference information, the idea of the
preference common-weights MPI be used. By applying Model (1), a single-facet frontier using time t as the
base time is constructed. (u∗, v∗) is gradient vector of this supporting hyperplan. The efficiencies and growth
indexes of the twenty five branches are calculated as it was presented in the sixth and seventh columns of
Table 3, respectively. The ratio, which is the MPIPCW , is presented in the seventh column. None of the ratios
are greater than one, a result different from that obtained by conventional MPI shown in the fourth column.
This indicates that the conventional MPICCD may produce unreliable results. The results in the fourth and
seventh columns of Table 3 are both measures of the MPI. They both use time t as the base time. The
only difference is that the former applied the conventional piecewise frontier DEA while the latter used a
single-facet frontier DEA to calculate the efficiency and growth index. Obviously, if the base time is changed
during time t + 1, the results would be different. Following the discussion of the preceding sections, the
single- facet global MPI was calculated for each branch. The corresponding GMPIsPCW are listed in the last
column. The numbers in parentheses are their ranks. Regarding the performance improvement, the values
in the last column of Table 3 present that thirteen branches, have an MPI of > 1 and twelve branches, < 1.
The average MPI of the twenty five branches is 0.8440. Hence, in general, the performances of the twenty
five branches have declined during time t + 1. The conventional MPIsCCD in column four of Table 3 present
that DMU1, DMU6, DMU7, DMU8, DMU11, DMU12, DMU13, DMU14, DMU16, DMU17, DMU21, DMU23 and
DMU24 have improved and that other DMUs have declined after the reorganization. Seventeen branches
have the same direction of productivity change measured by the two methods. The results are similar,



S. Abbasian-Naghneh / Filomat 30:10 (2016), 2653–2661 2660

although those from the preference common-weights global MPI are more reliable. This case shows that
allowing the MPI of a DMU at different times to be calculated using different frontier facets may produce
misleading results. Even if a common single-facet frontier is used, the results may not be reliable if the base
time is not selected properly. The global MPI of Pastor and Lovell (2005) combined with the concept of a
single-facet frontier is suitable for measuring productivity changes.

6. Conclusion

MPI is used for time series evaluation that compares a DMU with itself at different time points. For time
series evaluation with DEA, due to differences of the frontier facet used for calculating the index, the results
from all DMUs are not comparable. To provide a common basis for comparison, this paper has adopted
a single-facet frontier and all DMUs refer to the same frontier in calculating the index. The single-facet
frontier is obtained by introducing an MOLP model which its objective functions are input/output variables
subject to the defining constraints of production possibility set (PPS) in standard DEA models. Then by
using the so-called Zionts-Wallenius approach, we aid DM in searching for the most preferred solution. A
special feature of using this method is generating objective’s weights as the DM’s underlying value structure
about objectives. In other words, considering the structure of objective functions of the proposed MOLP
model, these weights be considered as the preference weights produced based on the DM’s underlying
value structure about inputs/outputs. Using these input/output weights, we introduce a hyperplane which
all DMUs can be evaluated in common base. An example has showed that using the conventional piecewise
frontier to calculate the MPI produce misleading results. The preference common-weights DEA model, on
the other hand, produced reliable results. Moreover, the efficiencies and MPIs of all DMUs are comparable,
and can thus be used for ranking. The case of bank branches in time t and t+1 is consistent with this example.
The preference common-weights MPI using time t as the base time produced a result which is opposite to
that obtained from the conventional MPICCD. That is, the performance of the branches during time t + 1
actually became worse. Interestingly, the preference common-weights global MPI approach produced a
result similar to that obtained by conventional MPICCD, in that most branches showed an improvement
in performance. This similarity is a coincidence. In order to obtain persuasive and reliable results, the
preference common-weights global MPI is recommended. The cross-sectional evaluation identifies DMUs
with satisfactory performance in a group of DMUs and the time-series evaluation judges whether a DMU
is performing better than before. When these two types of comparison are conducted together, DMUs with
satisfactory performance relative to others that are actually declining overtime can be detected. A DMU
must perform not only better than others at the same time, but also more efficient than itself at different
time points.

Recently, the DEA approach has been extended to measure the efficiency of systems composed of two
stages (Cook et al; 2009) and of dynamic systems where the same process appears repeatedly (Tone and
Tsutsui; 2010) and for a semi-oriented radial measure (SORM) to deal with negative data (Emrouznejad et
al. 2010). How to apply the concept of preference common-weights MPI to these systems is a topic for
future research. Although the discussion in this paper was for cases of constant returns-to-scale, the idea
is readily applicable to variable returns-to-scale. In that case, the various kinds of decomposition of MPI
reported in the literature can be explored.
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