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Abstract. We study the short-time Fourier transform on the space K ′1(Rn) of distributions of exponential
type. We give characterizations of K ′1(Rn) and some of its subspaces in terms of modulation spaces. We
also obtain various Tauberian theorems for the short-time Fourier transform.

1. Introduction

The short-time Fourier transform (STFT) is a very effective device in the study of function spaces. The
investigation of major test function spaces and their duals through time-frequency representations has
attracted much attention. For example, the Schwartz class S(Rn) and the space of tempered distributions
S
′(Rn) were studied in [10] (cf. [9]). Characterizations of Gelfand-Shilov spaces and ultradistribution

spaces by means of the short-time Fourier transform and modulation spaces are also known [11, 17, 26] (cf.
[4, 5]).

The purpose of this paper is two folded. On the one hand we study the short-time Fourier transform in
the context of the space K ′1(Rn) of distributions of exponential type, the dual of the space of exponentially
rapidly decreasing smooth functions K1(Rn) (see Section 2 for the definition of all spaces employed in this
article). We will obtain various characterizations of K ′1(Rn) and related spaces via the short-time Fourier
transform. The space K ′1(Rn) was introduced by Silva [24] and Hasumi [12] in connection with the so-
called space of Silva tempered ultradistributionsU′(Cn). Let us mention thatK ′1(Rn) andU′(Rn) were also
studied by Morimoto through the theory of ultra-hyperfunctions [16] (cf. [18]). We refer to [7, 14, 25, 30]
for some applications of the Silva spaces. Our second goal is to present a new kind of Tauberian theorems.
In such theorems the exponential asymptotics of functions and distributions can be obtained from those of
the short-time Fourier transform. Let us state a sample of our results. In the next statement L stands for a
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locally bounded Karamata slowly varying function [2, 15], namely, a positive function that is asymptotically
self-similar in the sense:

lim
x→∞

L(ax)
L(x)

= 1, ∀a > 0.

Theorem 1.1. Let f be a positive non-decreasing function on [0,∞) and let ψ be a positive function such that
ψ′′ ∈ L1

loc(R) and
∫
∞

−∞
(ψ(t) + |ψ′(t)| + |ψ′′(t)|)eβt+ε|t|dt < ∞, where β ≥ 0 and ε > 0. Suppose that the limits

lim
x→∞

e2πiξx

eβxL(ex)

∫
∞

0
f (t)ψ(t − x)e−2πiξt dt = J(ξ) (1.1)

exist for every ξ ∈ R, then

lim
x→∞

f (x)
eβxL(ex)

=
J(0)∫

∞

−∞
ψ(t)eβtdt

. (1.2)

Furthermore, if L satisfies L(xy) ≤ AL(x)L(y) for all x, y > 0 and some constant A, the requirements over ψ can be
relaxed to

∫
∞

−∞
(ψ(t) + |ψ′(t)| + |ψ′′(t)|)L(e|t|)eβtdt < ∞.

It turns out that Theorem 1.1 can be deduced from a more general type of Tauberian theorems. In
Section 6 we shall give precise descriptions of the S-asymptotic properties [21] of a distribution in terms
of the asymptotic behavior of its short-time Fourier transform (S-asymptotics stands for shift-asymptotics).
The notion of S-asymptotics measures the asymptotic behavior of the translates of a distribution T−h f with
respect the parameter h and it is closely related to the extension of Wiener’s Tauberian ideas [15, 29] to the
context of Schwartz distributions [20]. We would like to point out that there is an extensive literature about
Tauberian theorems for Schwartz distributions, see, e.g., the monographs [21, 28] and references therein.
We also mention the article [22], where Tauberian theorems for the short-time Fourier transform were also
studied, though with a different approach.

The plan of this article is as follows. In Section 3 we shall present continuity theorems for the STFT
and its adjoint on the test function spaceK1(Rn) and the topological tensor productK1(Rn)⊗̂U(Cn), where
U(Cn) is the space of entire rapidly decreasing functions in any horizontal band of Cn. We then use
such continuity results to develop a framework for the STFT on K ′1(Rn). We also introduce in this paper
the space B′ω(Rn) of ω-bounded distributions and its subspace Ḃ′ω(Rn) with respect to an exponentially
moderate weight ω; when ω = 1, these spaces coincide with the well-known Schwartz spaces [23, p. 200]
of bounded distributions B′(Rn) and Ḃ′(Rn), which are of great importance in the study of convolution
and growth properties of distributions. Notice that the distribution space B′(Rn) also plays an important
role in Tauberian theory; see, for instance, Beurling’s theorem [6, p. 230] and the distributional Wiener
Tauberian theorem from [20]. The spaces B′ω(Rn) and Ḃ′ω(Rn) will be characterized in Section 4 in terms
of the short-time Fourier transform and also in terms properties of the set of translates of their elements.
Section 5 is devoted to the characterization of K ′1(Rn) and related spaces via modulation spaces. The
conclusive Section 6 deals with Tauberian theorems, where in particular we give a proof of Theorem 1.1.
Our Tauberian hypotheses are actually in terms of membership to suitable modulation spaces, this allows
us to reinterpret the S-asymptotics in the weak∗ topology of modulation spaces.

2. Preliminaries

2.1. Notation

We use the constants in the Fourier transform as

F (ϕ)(ξ) = ϕ̂(ξ) =

∫
Rn

e−2πix·ξϕ(x)dx. (2.1)
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The translation and modulation operators are defined by Tx f ( · ) = f ( · − x) and Mξ f ( · ) = e2πiξ · f ( · ),
x, ξ ∈ Rn. The operators MξTx and TxMξ are called time-frequency shifts and we have MξTx = e2πix·ξTxMξ.
The notation 〈 f , ϕ〉 means dual pairing whereas ( f , ϕ)L2 stands for the L2 inner product. All dual spaces
in this article are equipped with the strong dual topology. We denote by f̌ the function (or distribution)
f̌ (t) = f (−t).

2.2. The STFT
The short-time Fourier transform (STFT) of a function f ∈ L2(Rn) with respect to a window function

ψ ∈ L2(Rn) is defined as

Vψ f (x, ξ) = 〈 f ,MξTxψ〉 =

∫
Rn

f (t)ψ(t − x)e−2πiξ·t dt, x, ξ ∈ Rn. (2.2)

There holds
∥∥∥Vψ f

∥∥∥
2

=
∥∥∥ f

∥∥∥
2

∥∥∥ψ∥∥∥
2
. The adjoint of Vψ is given by the mapping

V∗ψF(t) =

"
R2n

F(x, ξ)ψ(t − x)e2πiξ·tdxdξ,

interpreted as an L2(Rn)-valued weak integral. If ψ , 0 and γ ∈ L2(Rn) is a synthesis window for ψ, namely,
(γ, ψ)L2 , 0, then for any f ∈ L2(Rn),

f =
1

(γ, ψ)L2

"
R2n

Vψ f (x, ξ)MξTxγdξdx. (2.3)

Whenever the dual pairing in (2.2) is well-defined, the definition of Vψ f can be generalized for f in
larger classes than L2(Rn), for instance: f ∈ D′(Rn) and ψ ∈ D(Rn). In fact, it is enough to have ψ ∈ A(Rn)
and f ∈ A′(Rn), where A(Rn) is a time-frequency shift invariant topological vector space. Note also that
the inversion formula (2.3) holds pointwisely when f is sufficiently regular, for instance, for function in the
Schwartz class S(Rn). For a complete account on the STFT, we refer to [9].

2.3. Spaces
The Hasumi-Silva [12, 24] test function spaceK1(Rn) consists of those ϕ ∈ C∞(Rn) for which all norms

νk(ϕ) := sup
t∈Rn, |α|≤k

ek|t|
|ϕ(α)(t)|, k ∈N0,

are finite. The elements of K1(Rn) are called exponentially rapidly decreasing smooth functions. It is easy
to see thatK1(Rn) is an FS-space and therefore Montel and reflexive. The spaceK1(Rn) is also nuclear [12].

Note that if ϕ ∈ K1(Rn), then the Fourier transform (2.1) extends to an entire function. In fact, the
Fourier transform is a topological isomorphism from K1(Rn) onto U(Cn), the space of entire functions
which decrease faster than any polynomial in bands. More precisely, a entire function φ ∈ U(Cn) if and
only if

ν̇k(φ) := sup
z∈Πk

(1 + |z|2)k/2
|φ(z)| < ∞, ∀k ∈N0,

where Πk is the tube Πk = Rn + i[−k, k]n.
The dual space K ′1(Rn) consists of all distributions f of exponential type, i.e., those of the form

f =
∑
|α|≤l(es| · | fα)(α), where fα ∈ L∞(Rn) [12]. The Fourier transform extends to a topological isomorphism

F : K ′1(Rn)→U′(Cn), the latter space is known as the space of Silva tempered ultradistributions [12] (also
called the space of tempered ultra-hyperfunctions [16]). The space U′(Cn) contains the space of analytic
functionals. See also the textbook [14] for more information about these spaces.

We introduce a generalization of the Schwartz space of bounded distributions B′(Rn) [23, p. 200]. Let
ω : Rn

→ (0,∞) be an exponentially moderate weight, namely, ω is measurable and satisfies the estimate

ω(x + y) ≤ Aω(y)ea|x|, x, y ∈ Rn, (2.4)
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for some constants A > 0 and a ≥ 0. For instance, any positive measurable function ω which is submulti-
plicative, i.e., ω(x + y) ≤ ω(x)ω(y), and integrable near the origin must necessarily satisfy (2.4), as follows
from the standard results about subadditive functions [1, 13]. Extending the Schwartz space DL1 (Rn), we
define the Fréchet space DL1

ω
(Rn) = {ϕ ∈ C∞(Rn) : ϕ(α)

∈ L1
ω(Rn),∀α ∈ Nn

0}, provided with the family of
norms

‖ϕ‖1,ω,k := sup
|α|≤k

∫
Rn
|ϕ(α)(t)|ω(t)dt, k ∈N0.

Then, B′ω(Rn) stands for the strong dual of DL1
ω
(Rn), i.e., B′ω(Rn) = (DL1

ω
(Rn))′. Since we have the dense

embedding K1(Rn) ↪→ DL1
ω
(Rn), we have B′ω(Rn) ⊂ K ′1(Rn). We call B′ω(Rn) the space of ω-bounded

distributions. We also define Ḃ′ω(Rn) as the closure ofD(Rn) in B′ω(Rn).
Next, we shall considerK1(Rn)⊗̂U(Cn), the topological tensor product space obtained as the completion

of K1(Rn) ⊗ U(Cn) in, say, the π- or the ε- topology [27]. Explicitly, the nuclearity of K1(Rn) implies that
K1(Rn)⊗̂U(Cn) = K1(Rn)⊗̂πU(Cn) = K1(Rn)⊗̂εU(Cn). Thus, the topology of K1(Rn)⊗̂U(Cn) is given by the
family of the norms

ρk(Φ) := sup
(x,z)∈Rn×Πk, |α|≤k

ek|x|(1 + |z|2)k/2
∣∣∣∣∣ ∂α∂xα

Φ(x, z)
∣∣∣∣∣ , k ∈N0,

and we also obtain (K1(Rn)⊗̂U(Cn))′ = K ′1(Rn)⊗̂U′(Cn).
Finally, let m be a weight on R2n, that is, m : R2n

→ (0,∞) is measurable and locally bounded. Then, if
p, q ∈ [1,∞], the weighted Banach space Lp,q

m (R2n) consists of all measurable functions F such that

‖F‖Lp,q
m

:=

∫
Rn

(∫
Rn
|F(x, ξ)|pm(x, ξ)pdx

)q/p

dξ

1/q

< ∞.

(With the obvious modification when p = ∞ or q = ∞.)

3. Short-Time Fourier Transform of Distributions of Exponential Type

In this section we study the mapping properties of the STFT on the space of distributions of exponential
type. Note that the STFT extends to the sesquilinear mapping ( f , ψ) 7→ Vψ f and its adjoint induces the
bilinear mapping (F, ψ) 7→ V∗ψF.

We start with the test function spaceK1(Rn). If f , ψ ∈ K1(Rn), then we immediately get that (2.2) extends
to a holomorphic function in the second variable, namely, Vψ f (x, z) is entire in z ∈ Cn. We write in the
sequel z = ξ + iη with ξ, η ∈ Rn. Observe also that an application of the Cauchy theorem shows that if
Φ ∈ K1(Rn)⊗̂U(Cn) and ψ ∈ K1(Rn), then for arbitrary η ∈ Rn we may write V∗ψΦ as

V∗ψΦ(t) =

"
R2n

Φ(x, ξ + iη)ψ(t − x)e2πi(ξ+iη)·tdxdξ. (3.1)

Our first proposition deals with the range and continuity properties of V and V∗ on test function spaces.

Proposition 3.1. The following mappings are continuous:

(i) V : K1(Rn) ×K1(Rn)→ K1(Rn)⊗̂U(Cn).

(ii) V∗ : (K1(Rn)⊗̂U(Cn)) ×K1(Rn)→ K1(Rn).

Proof. For part (i), let ϕ,ψ ∈ K1(Rn). Let k be an even integer. If (x, z) ∈ Rn
×Πk and |α| ≤ k, then
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ek|x|(1 + |z|2)k/2
∣∣∣∣∣ ∂α∂xα

Vψϕ(x, z)
∣∣∣∣∣

≤ (1 + nk2)k/2ek|x|
∣∣∣∣∣∫
Rn

(1 − ∆t)k/2(ϕ(t)ψ(α)(t − x)e2πη·t)dt
∣∣∣∣∣

≤ C̃k

∑
|β1 |+|β2 |≤k

ek|x|
∫
Rn

∣∣∣∣ϕ(β1)(t)ψ(α+β2)(t − x)
∣∣∣∣ e2πk|t|dt,

which shows that ρk(Vψϕ) ≤ Ckν8k(ϕ)νk(ψ). For (ii), if Φ ∈ K1(Rn)⊗̂U(Cn), ψ ∈ K1(Rn), and |α| ≤ k, we
obtain

ek|t|
∣∣∣∣∣ ∂α∂tα

V∗ψΦ(t)
∣∣∣∣∣ ≤ (2π)|α|

∑
β≤α

(
α
β

)
ek|t|
"
R2n
|ξ|k|Φ(x, ξ)||ψ(β)(t − x)|dxdξ

≤ (4π)|α|νk(ψ)
"
R2n
|ξ|kek|x|

|Φ(x, ξ)|dxdξ

≤ Ak,nνk(ψ)ρk+n+1(Φ);

hence ρk(V∗ψΦ) ≤ Ak,nνk(ψ)ρk+n+1(Φ).

Observe that if the window ψ ∈ K1(Rn) \ {0} and γ ∈ K1(Rn) is a synthesis window, the reconstruction
formula (2.3) reads as:

1
(γ, ψ)L2

V∗γVψ = idK1(Rn). (3.2)

We now study the STFT on K ′1(Rn). Notice that the modulation operators Mz operate continuously on
K1(Rn) even when z ∈ Cn. Thus, if f ∈ K ′1(Rn) and ψ ∈ K1(Rn) then Vψ f , defined by the dual pairing in
(2.2), also extends in the second variable as an entire function Vψ f (x, z) in z ∈ Cn. Furthermore, it is clear
that Vψ f (x, z) is C∞ in x ∈ Rn. We begin with a lemma.

Lemma 3.2. Let ψ ∈ K1(Rn).

(a) Let B′ ⊂ K ′1(Rn) be a bounded set. There is k = kB′ ∈N0 such that

sup
f∈B′, (x,z)∈Rn×Πλ

e−k|x|−2πx·=m z(1 + |z|)−k
|Vψ f (x, z)| < ∞, ∀λ ≥ 0. (3.3)

(b) For every f ∈ K ′1(Rn) and Φ ∈ K1(Rn)⊗̂U(Cn),

〈Vψ f ,Φ〉 =
〈

f ,V∗ψΦ
〉
. (3.4)

Proof. Part (a). By the Banach-Steinhaus theorem, B′ is equicontinuous, so that there are C > 0 and k ∈ N0
such that |〈 f , ϕ〉| ≤ Cνk(ϕ), ∀ f ∈ B′,∀ϕ ∈ K1(Rn). Hence, for all f ∈ B′ (z = ξ + iη),∣∣∣Vψ f (x, z)

∣∣∣ ≤ C sup
t∈Rn,|α|≤k

ek|t|
∣∣∣∣∣ ∂α∂tα

(
e−2πiz·tψ(t − x)

)∣∣∣∣∣
≤ (2π)kC(1 + |z|2)k/2 sup

t∈Rn,|α|≤k
ek|t|+2πη·t

∑
β≤α

(
α
β

) ∣∣∣ψ(β)(t − x)
∣∣∣

≤ (4π)kC(1 + |z|2)k/2ek|x|+2πη·xνk+1+b2π|η|c(ψ),
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where
⌊
2π|η|

⌋
stands for the integral part of 2π|η|.

Part (b). We first remark that the left hand side of (3.4) is well defined because of part (a). To show (3.4),
notice that the integral in (3.1), with η = 0, can be approximated by a sequence of convergent Riemann
sums in the topology ofK1(Rn); this justifies the exchange of integral and dual pairing in〈

f (t),
"
R2n

Φ(x, ξ)e−2πiξ·tψ(t − x)dxdξ
〉

t
=

"
R2n

Φ(x, ξ)〈 f ,MξTxψ〉dxdξ,

which is the same as (3.4).

In particular, if B′ is a singleton, part (a) of Lemma 3.2 gives the growth order of the function Vψ f on
every set Rn

×Πλ.
Let us define the adjoint STFT on ∈ K ′1(Rn)⊗̂U′(Cn).

Definition 3.3. Let ψ ∈ K1(Rn). The adjoint STFT V∗ψ of F ∈ K ′1(Rn)⊗̂U′(Cn) is the distribution V∗ψF ∈ K ′1(Rn)
whose action on test functions is given by

〈V∗ψF, ϕ〉 :=
〈
F,Vψϕ

〉
, ϕ ∈ K1(Rn). (3.5)

The next theorem summarizes our results.

Theorem 3.4. The two STFT mappings

(i) V : K ′1(Rn) ×K1(Rn)→ K ′1(Rn)⊗̂U′(Cn)
(ii) V∗ : (K ′1(Rn)⊗̂U′(Cn)) ×K1(Rn)→ K ′1(Rn)

are hypocontinuous. Let ψ ∈ K1(Rn) \ {0} and let γ ∈ K1(Rn) be a synthesis window for it. The following inversion
and desingularization formulas hold:

1
(γ, ψ)L2

V∗γVψ = idK ′1(Rn), (3.6)

and, for all f ∈ K ′1(Rn), ϕ ∈ K1(Rn), and η ∈ Rn,

〈 f , ϕ〉 =
1

(γ, ψ)L2

"
R2n

Vψ f (x, ξ + iη)Vγϕ(x,−ξ − iη)dxdξ. (3.7)

Proof. That V and V∗ are hypocontinuous on these spaces follows from Proposition 3.1 and the formula
(3.4) from Lemma 3.2; we leave the details to the reader. By the Cauchy theorem, it is enough to show
(3.7) for η = 0. Using (3.5), (3.4), and (3.2), we have 〈V∗γVψ f , ϕ〉 = 〈Vψ f ,Vγϕ〉 = 〈 f ,V∗ψVγϕ〉 = (γ, ψ)L2〈 f , ϕ〉,
namely, (3.6) and (3.7).

The next corollary gives the converse to part (a) of Lemma 3.2 under a weaker inequality than (3.3),
namely, a characterization of bounded sets inK ′1(Rn) in terms of the STFT.

Corollary 3.5. Let B′ ⊂ K ′1(Rn) and ψ ∈ K1(Rn) \ {0}. If there are η ∈ Rn and k ∈N0 such that

sup
f∈B′,(x,ξ)∈R2n

e−k|x|(1 + |ξ|)−k
|Vψ f (x, ξ + iη)| < ∞, (3.8)

then the set B′ is bounded inK ′1(Rn). Conversely, if B′ is bounded inK ′1(Rn) there is k ∈N0 such that (3.3) holds.

Proof. In view of the Banach-Steinhaus theorem, we only need to show that B′ is weakly bounded. Let γ be
a synthesis window for ψ and let ϕ ∈ K1(Rn). Then, by the desingularization formula (3.7), we have

sup
f∈B′

∣∣∣〈 f , ϕ
〉∣∣∣ ≤ Cη

(γ, ψ)L2

"
R2n

ek|x|(1 + |ξ|)k
∣∣∣Vγϕ(x,−ξ − iη)

∣∣∣ dxdξ < ∞,

because Vγϕ ∈ K1(Rn)⊗̂U(Cn). The converse was already shown in Lemma 3.2.
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4. Characterizations ofB′ω(Rn) and Ḃ′ω(Rn)

We now turn our attention to the characterization of the space ofω-bounded distributionsB′ω(Rn) and its
subspace Ḃ′ω(Rn). Recall thatω stands for an exponentially moderate weight, i.e., a positive and measurable
function satisfying (2.4).

Theorem 4.1. Let f ∈ K ′1(Rn) and ψ ∈ K1(Rn) \ {0}.

(i) The following statements are equivalent:

(a) f ∈ B′ω(Rn).

(b) The set {T−h f/ω(h) : h ∈ Rn
} is bounded inK ′1(Rn).

(c) There is s ∈ R such that

sup
(x,ξ)∈R2n

(1 + |ξ|)−s |Vψ f (x, ξ)|
ω(x)

< ∞. (4.1)

(ii) The next three conditions are equivalent:

(a)′ f ∈ Ḃ′ω(Rn).

(b)′ lim|h|→∞ T−h f/ω(h) = 0 inK ′1(Rn).
(c)′ There is s′ ∈ R such that

lim
|(x,ξ)|→∞

(1 + |ξ|)−s′ |Vψ f (x, ξ)|
ω(x)

= 0. (4.2)

Remark 4.2. Theorem 4.1 remains valid if we replaceK ′1(Rn) andK1(Rn) byD′(Rn) andD(Rn) everywhere in the
statement. Schwartz has shown in [23, p. 204] the equivalence between (a) and (b) for ω = 1 by using a much more
complicated method involving a parametrix technique.

Proof. Part (i). (a) ⇒ (b). Let f ∈ B′ω(Rn), since K1(Rn) is barreled, we only need to show that the f ∗ ϕ is
bounded by ω for fixed ϕ ∈ K1(Rn). Let B := {φ ∈ D(Rn) :

∫
Rn |φ(x)|ω(x)dx ≤ 1}. By the assumption (2.4),

‖ϕ̌ ∗ φ‖1,ω,k ≤ A max
|α|≤k

∫
Rn
|ϕ(α)(x)|ea|x|dx, ∀k ∈N0, ∀φ ∈ B,

namely, the set ϕ̌ ∗B is bounded inDL1
ω
(Rn). Consequently, supφ∈B |〈 f ∗ϕ,φ〉| = supφ∈B |〈 f , ϕ̌ ∗φ〉| < ∞. Since

D(Rn) is dense in L1
ω(Rn), this implies that f ∗ ϕ ∈ (L1

ω(Rn))′, i.e., suph∈Rn |( f ∗ ϕ)(h)|/ω(h) < ∞, as claimed.
(b)⇒ (c). Notice that (VψT−h f )(x, z) = e2πiz·hVψ f (x + h, z). Fix λ ≥ 0. By Corollary 3.5 (cf. (3.3)), there are

k ∈N0 and Cλ > 0 such that, for all x, h ∈ Rn and z ∈ Πλ,

|e2πiz·hVψ f (x + h, z)| ≤ Cλω(h)(1 + |z|)ke(k+2πλ)|x|.

Taking x = 0 and =m z = 0, one gets (4.1).
(c)⇒ (a). Fix a synthesis window γ ∈ K1(Rn). In view of (2.4), one has that if j is any non-negative even

integer and λ ≥ 0, then, for all ϕ ∈ DL1
ω
(Rn),

sup
z∈Πλ

(1 + |z|2) j/2
∫
Rn

e−2πx·=m zω(x)|Vγϕ(x, z)|dx

≤ C̃ j

∑
|β1 |+|β2 |≤ j

"
R2n
ω(x)|ϕ(β1)(t)γ(β2)(t − x)|e2πλ|t−x|dtdx

≤ AC̃ j‖ϕ‖1,ω, j max
|β|≤ j

∫
Rn
|γ(β)(x)|e(2πλ+a)|x|dx ≤ C j,λ‖ϕ‖1,ω, j.
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We may assume that s is an even integer. By (4.1) and the previous estimate, we obtain, for everyϕ ∈ K1(Rn),

|〈 f , ϕ〉| ≤
C

(ψ, γ)L2

"
R2n

(1 + |ξ|)sω(x)
∣∣∣Vγϕ(x,−ξ)

∣∣∣ dxdξ ≤ Cs‖ϕ‖1,ω,s+n+1,

which yields f ∈ B′ω(Rn).
Part (ii). Any of the conditions implies that f ∈ B′ω(Rn) . (a)′ ⇒ (b)′. Fix ϕ ∈ K1(Rn). Given fixed ε > 0,

we must show that lim sup
|h|→∞ |〈T−h f , ϕ〉|/ω(h) ≤ ε. Notice that {Thϕ/ω(h) : h ∈ Rn

} is a bounded set in
DL1

ω
(Rn). Since f is in the closure ofD(Rn) in B′ω(Rn), there is φ ∈ D(Rn) such that |〈T−h( f − φ), ϕ| ≤ εω(h)

for every h ∈ Rn. Consequently,

lim sup
|h|→∞

|〈T−h f , ϕ〉|
ω(h)

≤ ε + lim
|h|→∞

1
ω(h)

∣∣∣∣∣∫
Rn
ϕ(t − h)φ(t)dt

∣∣∣∣∣ ≤ ε.
(b)′ ⇒ (c)′. If ξ remains on a compact of K ⊂ Rn, then {Mξψ : ξ ∈ K} is compact in K1(Rn), thus, by the

Banach-Steinhaus theorem,

0 = lim
|x|→∞

|〈T−x f ,Mξψ〉|

ω(x)
= lim
|x|→∞

|Vψ f (x, ξ)|
ω(x)

, uniformly in ξ ∈ K.

There is s such that (4.1) holds. Taking into account that the above limit holds for arbitrary K, we obtain
that (4.2) is satisfied for any s′ > s.

(c)′ ⇒ (a)′. We may assume that s′ is a non-negative even integer. Consider the weightωs′ (x, ξ) = ω(x)(1 + |ξ|)s′ .
The limit relation (4.2) implies that Vψ f is in the closure ofK1(Rn)⊗S(Rn) with respect to the norm ‖ ‖L∞,∞1/ωs′

.

Since we have the dense embedding U(Cn) ↪→ S(Rn), there is a sequence {Φ j}
∞

j=1 ⊂ K1(Rn)⊗̂U(Cn) such
that lim j→∞Φ j = Vψ f in L∞,∞1/ωs′

(R2n). Let γ ∈ K1(Rn) be a synthesis window and set φ j = V∗γΦ j ∈ K1(Rn) (cf.
Proposition 3.1). By the relations (3.7) and (3.5), we have for any ϕ ∈ K1(Rn),

|〈 f − φ j, ϕ〉| ≤
C‖ϕ‖1,ω,s+n+1

(γ, ψ)L2
‖Vψ f −Φ j‖L∞,∞1/ωs′

,

where C does not depend on j. Thus, φ j → f in B′ω(Rn), which in turn implies that f ∈ Ḃ′ω(Rn) because
D(Rn) ↪→ K1(Rn).

We immediately get the ensuing result, a corollary of Theorem 4.1.

Corollary 4.3. K ′1(Rn) =
⋃
ωB

′
ω(Rn) =

⋃
ω Ḃ

′
ω(Rn). In particular, f ∈ D′(Rn) belongs to K ′1(Rn) if and only if

there is s ∈ R such that {e−s|h|T−h f : h ∈ Rn
} is bounded inD′(Rn).

5. Characterizations through Modulation Spaces

We present here the characterization of the spaces K1(Rn), K ′1(Rn), B′ω(Rn), Ḃ′ω(Rn),U(Cn), andU′(Cn)
in terms of modulation spaces.

Let us recall the definition of the modulation spaces. There are several equivalent ways to introduce
them [9]. Here we follow the approach from [4, 5] based on Gelfand-Shilov spaces. We are interested in
modulation spaces with respect to weights that are exponentially moderate. We denote by M the class of
all weight functions m on R2n that satisfy inequalities (for some constants A > 0 and a ≥ 0):

m(x1 + x2, ξ1 + ξ2)
m(x1, ξ1)

≤ Aea(|x2 |+|ξ2 |), (x1, ξ1), (x2, ξ2) ∈ R2n.
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Observe that any so-called v-moderate weight [9] belongs toM. We also consider the Gelfand-Shilov space
Σ1

1(Rn) of Beurling type (sometimes also denoted as S(1)(Rn) or G(Rn)) and its dual (Σ1
1)′(Rn). The space

Σ1
1(Rn) consists [3] of all entire functions ϕ such that

sup
x∈Rn
|ϕ(x)|eλ|x| < ∞ and sup

ξ∈Rn
|ϕ̂(ξ)|eλ|ξ|dξ < ∞, ∀λ > 0.

We refer to [19] for topological properties of Σ1
1(Rn). The dual space (Σ1

1)′(Rn) is also known as the space
of Silva ultradistributions of exponential type [14, 25] or the space of Fourier ultra-hyperfunctions [18]. If
m ∈M, ψ ∈ Σ1

1(Rn) \ {0}, and p, q ∈ [1,∞], the modulation space Mp,q
m (Rn) is defined as the Banach space

Mp,q
m (Rn) = { f ∈ (Σ1

1)′(Rn) : ‖ f ‖Mp,q
m

:= ‖Vψ f ‖Lp,q
m
< ∞}. (5.1)

This definition does not depend on the choice of the window ψ, as different windows lead to equivalent
norms. If p = q, then we write Mp

m(Rn) instead of Mp,q
m (Rn). The space M1

m(Rn) (for m = 1) was original
introduced by Feichtinger in [8]. We shall also define Ṁ∞m (Rn) as the closed subspace of M∞m (Rn) given by
Ṁ∞m (Rn) = { f ∈ (Σ1

1)′(Rn) : lim|(x,ξ)|→∞m(x, ξ)|Vψ f (x, ξ)| = 0}.
We now connect the space of exponential distributions with the modulation spaces. For it, we consider

the weight subclassM1 ⊂M consisting of all weights m such that (for some s, a ≥ 0 and A > 0)

m(x1 + x2, ξ1 + ξ2)
m(x1, ξ1)

≤ Aea|x2 |(1 + |ξ2|)s, (x1, ξ1), (x2, ξ2) ∈ R2n. (5.2)

Let m ∈M1. By Proposition 3.1,K1(Rn) ⊂Mp,q
m (Rn). Since Σ1

1(Rn) ↪→ K1(Rn), we obtain thatK1(Rn) is dense
(weakly∗ dense if p = ∞ or q = ∞) in Mp,q

m (Rn) and therefore Mp,q
m (Rn) ⊂ K ′1(Rn). It follows from the results

of [9] that we may use ψ ∈ K1(Rn) \ {0} in (5.1). Also, if f ∈ Mp,q
m (Rn) and ψ ∈ K1(Rn) then Vψ f is an entire

function in the second variable (cf. Section 3); the next proposition describes the norm behavior of Vψ f (x, z)
in the complex variable z ∈ Cn.

Proposition 5.1. Let m ∈M1, p, q ∈ [1,∞], and ψ ∈ K1(Rn) \ {0}. If f ∈Mp,q
m (Rn), then (∀λ ≥ 0)

sup
|η|≤λ

∫
Rn

(∫
Rn
|e−2πx·ηVψ f (x, ξ + iη)m(x, ξ)|pdx

)q/p

dξ

1/q

< Cλ‖ f ‖Mp,q
m
. (5.3)

(With obvious changes if p = ∞ or q = ∞.)

Proof. Assume that m satisfies (5.2) and set v(x, ξ) = (1+|ξ|)sea|x|. Notice first that e−2πx·ηVψ f (x, ξ + iη) = Vψη f (x, ξ),
where ψη(t) = e2πη·tψ(t). As in the proof of [9, Prop. 11.3.2, p. 234],

||Vψη f ||Lp,q
m

=
1
‖ψ‖2L2

||(VψηV
∗

ψ)Vψ f ||Lp,q
m
≤ C||Vψηψ||L1

v
||Vψ f ||Lp,q

m
.

Since {ψη : |η| ≤ λ} is bounded in K1(Rn), we obtain that {Vψηψ : |η| ≤ λ} is bounded in K1(Rn)⊗̂U(Cn);
hence sup

|η|≤λ ||Vψηψ||L1
v
< ∞.

Using the fundamental identity of time-frequency analysis, i.e. [9, p. 40] Vψ f (x, ξ) = e−2πix·ξVψ̂ f̂ (ξ,−x),
we can transfer results from K ′1(Rn) into U′(Rn) by employing the weight class M2 = {m ∈ M : m̃(x, ξ) =
m(ξ, x) ∈ M1}. For s, a ≥ 0, we employ the following special classes of weights (ω satisfies the conditions
imposed in Subsection 2.3):

vs,a(x, ξ) := ea|x|(1 + |ξ|)s and ωs(x, ξ) := ω(x)(1 + |ξ|)s.

Clearly vs,a, ωs ∈M1. Obviously, for every m ∈M1 there are s, a ≥ 0 such that Mp,q
vs,a

(Rn) ⊆Mp,q
m (Rn) ⊆Mp,q

1/vs,a
(Rn).
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Proposition 5.2. Let p, q ∈ [1,∞]. Then,

K
′

1(Rn) =
⋃

m∈M1

Mp,q
m (Rn), U

′(Cn) =
⋃

m∈M2

Mp,q
m (Rn), (5.4)

K1(Rn) =
⋂

m∈M1

Mp,q
m (Rn), U(Cn) =

⋂
m∈M2

Mp,q
m (Rn), (5.5)

B
′

ω(Rn) =
⋃
s>0

M∞1/ωs
(Rn), and Ḃ′ω(Rn) =

⋃
s>0

Ṁ∞1/ωs
(Rn). (5.6)

Proof. The results forU(Cn) andU′(Cn) follow from those forK1(Rn) andK ′1(Rn). The equalities in (5.6) are
a reformulation of the equivalences (a)⇔ (c) and (a)′ ⇔ (c)′ from Theorem 4.1. By (5.2) and [9, Cor. 12.1.10,
p. 254], given m ∈ M1, there are s, a > 0 such that the embeddings M∞vs+n+1,a+ε

(Rn) ⊆ Mp,q
m (Rn) ⊆ M∞1/vs,a

(Rn)
hold. Thus, part (a) from Lemma 3.2 gives the equality K ′1(Rn) =

⋃
s,a>0 M∞1/vs,a

(Rn) =
⋃

m∈M1
Mp,q

m (Rn). In
view of Proposition 3.1, it only remains to show that⋂

m∈M1

Mp,q
m (Rn) =

⋂
s,a>0

M∞vs,a
(Rn) ⊆ K1(Rn).

We show the latter inclusion by proving that if f ∈ M∞vs,a
(Rn) (with s, a > 0), then f̂ is holomorphic in the

tube Rn + i{η ∈ Rn : |η| < a/(2π)} and satisfies

sup
|=m z|≤λ

(1 + |z|2)s/2
| f̂ (z)| < ∞, ∀λ <

a
2π
. (5.7)

In fact, choose a positive window ψ ∈ D(Rn) such that
∑

j∈Zn ψ(t− j) = 1 for all t ∈ Rn. Since f =
∑

j∈Zn f T jψ,

we obtain f̂ =
∑

j∈Zn Vψ f ( j, · ), with convergence in U′(Cn). In view of Proposition 5.1, each Vψ f ( j, z) is
entire in z and satisfies the bounds

sup
|=m z|≤λ

|(1 + |z|2)s/2
|Vψ( j, z)| < Cλe−(a−2πλ)| j|.

The Weierstrass theorem implies that f̂ (z) =
∑

j∈Zn Vψ f ( j, z) is holomorphic in the stated tube domain and

we also obtain (5.7). Summing up, if f ∈
⋂

s,a>0 M∞vs,a
(Rn), then f̂ ∈ U(Cn), i.e., f ∈ K1(Rn).

The following corollary collects what was shown in the proof of Proposition 5.2.

Corollary 5.3. Let s, a > 0. If f ∈ M∞vs,a
(Rn), then f̂ is holomorphic in the tube Rn + i{η ∈ Rn : |η| < a/(2π)} and

satisfies the bounds (5.7).

We make a remark concerning Proposition 5.2.

Remark 5.4. Employing [26, Thrms. 3.2 and 3.4], Proposition 5.2 can be extended for p, q ∈ (0,∞].

6. Tauberian Theorems for S-Asymptotics of Distributions

In this section we characterize the so-called S-asymptotic behavior of distributions in terms of the STFT.
We briefly explain this notion; we refer to [21] for a complete treatment of the subject.
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Let f ∈ K ′1(Rn). The idea of the S-asymptotics is to study the asymptotic properties of the translates
T−h f with respect to a locally bounded and measurable comparison function c : Rn

→ (0,∞). It is said that
f has S-asymptotic behavior with respect to c if there is 1 ∈ D′(Rn) such that

lim
|h|→∞

1
c(h)

T−h f = 1 inD′(Rn). (6.1)

The distribution 1 is not arbitrary; in fact, one can show [21] that the relation (6.1) forces it to have the form
1(t) = Ceβ·t, for some C ∈ R and β ∈ Rn. If C , 0, one can also prove [21] that c must satisfy the asymptotic
relation

lim
|h|→∞

c(t + h)
c(h)

= eβ·t, uniformly for t in compact subsets of Rn. (6.2)

From now on, we shall always assume that c satisfies (6.2). A typical example of such a c is any function of
the form c(t) = eβ·tL(e|t|), where L is a Karamata slowly varying function [2]. The assumption (6.2) implies
[21] that (6.1) actually holds in the spaceK ′1(Rn). We will use the more suggestive notation

f (t + h) ∼ c(h)1(t) inK ′1(Rn) as |h| → ∞ (6.3)

for denoting (6.1), which of course means that ( f ∗ ϕ̌)(h) ∼ c(h)
∫
Rn ϕ(t)1(t)dt as |h| → ∞, for each ϕ ∈ D(Rn)

(or, equivalently, ϕ ∈ K1(Rn)). In order to move further, we give an asymptotic representation formula and
Potter type estimates [2] for c:

Lemma 6.1. The locally bounded measurable function c satisfies (6.2) if and only if there is b ∈ C∞(Rn) such that
lim|x|→∞ b(α)(x) = 0 for every multi-index |α| > 0 and

c(x) ∼ exp
(
β · x + b(x)

)
as |x| → ∞. (6.4)

In particular, for each ε > 0 there are constants aε,Aε > 0 such that

aε exp(β · t − ε|t|) ≤
c(t + h)

c(h)
≤ Aε exp(β · t + ε|t|), t, h ∈ Rn. (6.5)

Proof. By considering e−β·tc(t), one may assume that β = 0. Let ϕ ∈ D(Rn) be such that
∫
Rn ϕ(t)dt = 1. Set

b(x) =
∫
Rn log c(t + x)ϕ(t)dt. Clearly, b ∈ C∞(Rn) and the relation (6.2) implies that b(x) = log c(x) + o(1) and

b(α)(x) = o(1) as |x| → ∞, for each multi-index |α| > 0. This gives (6.4). Conversely, since c is locally bounded,
we may assume that actually c(x) = eβ·x+b(x), but |b(t + h) − b(h)| ≤ |t|maxξ∈[h,t+h] |∇b(ξ)|, which gives (6.2).
Using the fact that |∇b| is bounded, the same argument yields (6.5).

Observe that Lemma 6.1 also tells us that the spaceB′c(Rn) is well-defined for c. We can now characterize
(6.3) in terms of the STFT. The direct part of the following theorem is an Abelian result, while the converse
may be regarded as a Tauberian theorem.

Theorem 6.2. Let f ∈ K ′1(Rn) and ψ ∈ K1(Rn)\{0}. If f ∈ K ′1(Rn) has the S-asymptotic behavior (6.3) then, for
every λ ≥ 0,

lim
|h|→∞

e2πiz·h Vψ f (x + h, z)
c(h)

= Vψ1(x, z), (6.6)

uniformly for z ∈ Πλ and x in compact subsets of Rn.
Conversely, suppose that the limits

lim
|x|→∞

e2πiξ·x Vψ f (x, ξ)
c(x)

= J(ξ) ∈ C (6.7)
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exist for almost every ξ ∈ Rn. If there is s ∈ R such that

sup
(x,ξ)∈R2n

(1 + |ξ|)−s |Vψ f (x, ξ)|
c(x)

< ∞, (6.8)

then f has the S-asymptotic behavior (6.3) with 1(t) = Ceβ·t, where the constant is completely determined by the

equation J(ξ) = Cψ̂(−ξ + iβ/(2π)).

Remark 6.3. Assume (6.8). Consider a weight of the form mε(x, ξ) = eβ·x+ε|x|(1 + |ξ|)s with ε > 0. It will be shown
below that the asymptotics (6.3) holds in the weak∗ topology of M∞1/mε

(Rn), i.e., ( f ∗ ϕ̌)(h) ∼ c(h)〈1, ϕ〉 as |h| → ∞ for
every ϕ in the modulation space M1

mε
(Rn). Furthermore, one may use in (6.7) and (6.8) a window ψ ∈M1

mε
(Rn)\{0}.

Proof. Fix λ ≥ 0 and a compact K ⊂ Rn. Note that the set

{MzTxψ : (x, z) ∈ K ×Πλ}

is compact inK1(Rn). By the Banach-Steinhaus theorem,

lim
|h|→∞

e2πizh Vψ f (x + h, z)
c(h)

= lim
|h|→∞

〈 T−h f
c(h)

,MzTxψ
〉

=
〈
1,MzTxψ

〉
,

uniformly with respect to (x, z) ∈ K ×Πλ, as asserted in (6.6).
Conversely, assume (6.7) and (6.8). Let H = {ξ ∈ Rn : (6.7) holds}. In view of Theorem 4.1, we have

that f ∈ B′c(Rn) or, equivalently, {T−h f/c(h) : h ∈ Rn
} is bounded in K ′1(Rn). By the Banach-Steinhaus

theorem and the Montel property of K ′1(Rn), T−h f/c(h) converges strongly to a distribution 1 in K ′1(Rn)
if and only if lim|h|→∞〈T−h f , ϕ〉/c(h) exists for ϕ in a dense subspace of K1(Rn). Let D be the linear span
of {MξTxψ : (x, ξ) ∈ Rn

× H}. By the desingularization formula (3.7) and the Hahn-Banach theorem, we
have that D is dense in K1(Rn). Thus, it suffices to verify that lim|h|→∞〈T−h f ,MξTxψ〉/c(h) exists for each
(x, ξ) ∈ Rn

×H. But in this case (6.2) and (6.7) yield

lim
|h|→∞

〈T−h f ,MξTxψ〉

c(h)
= lim
|h|→∞

e2πiξ·h Vψ f (x + h, ξ)
c(h)

= e(β−2πiξ)·x lim
|h|→∞

e2πiξ·(x+h) Vψ f (x + h, ξ)
c(h + x)

= e(β−2πiξ)·x J(ξ),

as required. We already know that 1(t) = Ceβ·t. Comparison between (6.6) and (6.7) leads to J(ξ) =

Vψ1(0, ξ) = C
∫
Rn ψ(t)eβ·t−2πiξ·tdt. To show the assertion from Remark 6.3, note first that, by using (6.5), one

readily verifies that

sup
h∈Rn

||T−h f ||M∞1/mε
c(h)

< ∞.

Since we have the dense embedding K1(Rn) ↪→ M1
mε

(Rn), we also have that D is dense in M1
mε

(Rn) and the
assertion follows at once. The fact that one may use a window ψ ∈M1

mε
(Rn)\{0} in (6.7) and (6.8) follows in

a similar fashion because in this case the desingularization formula (3.7) still holds.

Let us make two addenda to Theorem 6.2. The ensuing corollary improves Remark 6.3, provided that c
satisfies the extended submultiplicative condition (for some A > 0):

c(t + h) ≤ Ac(t)c(h). (6.9)
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Corollary 6.4. Assume that c satisfies (6.9) and set cs(x, ξ) = c(x)(1 + |ξ|)s, s ∈ R. If f ∈ M∞1/cs
(Rn) and there is

ψ ∈M1
cs

(Rn) \ {0} such that the limits (6.7) exist for almost every ξ ∈ Rn, then, for some 1, the S-asymptotic behavior
(6.3) holds weakly∗ in M∞1/cs

(Rn), that is, ( f ∗ ϕ̌)(h) ∼ c(h)〈1, ϕ〉 as |h| → ∞ for every ϕ ∈M1
cs

(Rn).

Proof. We retain the notation from the proof of Theorem 6.2. The assumption f ∈ M∞1/cs
(Rn) of course tells

us that (6.8) holds. Employing the hypothesis (6.9), one readily sees that suph∈Rn ‖T−h f ‖M∞1/cs
/c(h) < ∞. A

similar argument to the one used in the proof of Theorem 6.2 yields that the set D associated to ψ is dense
in M1

cs
(Rn), which as above yields the result.

In dimension n = 1, the next theorem actually obtains the ordinary asymptotic behavior of f in case it is a
regular distribution on (0,∞) satisfying an additional Tauberian condition. We fix mε as in Remark 6.3 and
cs as in Corollary 6.4.

Theorem 6.5. Let f ∈M∞1/cs
(R). Suppose that

lim
x→∞

e2πiξ·x Vψ f (x, ξ)
c(x)

= J(ξ) ∈ C, (6.10)

for almost every ξ ∈ R, where ψ ∈M1
mε

(R) \ {0} (resp. ψ ∈M1
cs

(R) \ {0} if c satisfies (6.9)). If there is α ≥ 0 such that
eαt f (t) is a positive non-decreasing function on the interval (0,∞), then

lim
t→∞

f (t)
c(t)

= C, (6.11)

where C is the constant from Theorem 6.2.

Proof. Using (6.10), the same method from Theorem 6.2 applies to show that f (t + h) ∼ C1(t) in K ′1(R) as
h→ ∞, where 1(t) = Ceβt. We may assume that α ≥ −β. Set f̃ (t) = eαt f (t), b(t) = eαtc(t), and r = α + β ≥ 0. It
is enough to show that f̃ (t) ∼ Cb(t) as t→∞, whence (6.11) would follow. By (6.3), we have that

f̃ (t + h) ∼ b(h)Cert as h→∞ inK ′1(R),

i.e.,

〈 f̃ (t + h), ϕ(t)〉 ∼ Cb(h)
∫
∞

−∞

ertϕ(t)dt, ∀ϕ ∈ K1(Rn). (6.12)

Let ε > 0 be arbitrary. Choose a non-negative test function ϕ ∈ D(R) such that suppϕ ⊆ (0, ε) and∫ ε
0 ϕ(t)dt = 1. Using the fact that f̃ is non-decreasing on (0,∞) and (6.12), we obtain

lim sup
h→∞

f̃ (h)
b(h)

= lim sup
h→∞

f̃ (h)
b(h)

∫ ε

0
ϕ(t)dt ≤ lim

h→∞

1
b(h)

∫ ε

0
f̃ (t + h)ϕ(t)dt

= lim
h→∞

〈 f̃ (t + h), ϕ(t)〉
b(h)

= C
∫ ε

0
ertϕ(t)dt ≤ Cerε,

taking ε → 0+, we have shown that lim suph→∞ f̃ (h)/b(h) ≤ C. Similarly, choosing in (6.12) a non-negative

ϕ such that suppϕ ⊆ (−ε, 0) and
∫ 0

−ε
ϕ(t)dt = 1, one obtains lim infh→∞ f̃ (h)/b(h) ≥ C. This shows that

f̃ (t) ∼ Cb(t) as t→∞, as claimed.

We conclude this article with a proof of Theorem 1.1.
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Proof. [Proof of Theorem 1.1] Set c(t) = eβtL(e|t|) and, as before (with s = 0), c0(x, ξ) = c(x) and mε(x, ξ) = eβx+ε|x|.
Note that (1.2) is the same as (6.11). Let us first verify that ψ ∈ M1

mε
(R). In fact, if we take another window

γ ∈ K1(R), we have"
R2
|Vγψ(x, ξ)|eβx+ε|x|dxdξ =

"
R2

(1 + |ξ|3)|Vγψ(x, ξ)|eβx+ε|x|dx
dξ

1 + |ξ|3

≤ C̃


"
R2
ψ(t − x)|γ(t)|eβx+ε|x|dtdx +

3∑
j=0

"
R2
|ψ( j)(t − x)γ(3− j)(t)|eβx+ε|x|dtdx

 ,
which is finite (a similar argument shows that ψ ∈ M1

c0
(R) if

∫
∞

−∞
(ψ(t) + |ψ′(t)| + |ψ′′(t)|)L(e|t|)eβtdt < ∞). In

view of Theorem 6.5, it is enough to establish f ∈M∞1/c0
(R). Let us first show the crude bound f (t) = O(c(t)).

Set A1 =
∫
∞

0 ψ(t)dt < ∞. Since f is non-decreasing, we have

f (x) ≤
1

A1

∫
∞

0
f (t + x)ψ(t)dt ≤

1
A1

∫
∞

0
f (t)ψ(t − x)dt ≤ A2c(x),

because of (1.1) with ξ = 0. Thus

|Vψ f (x, ξ)| ≤ A2

∫
∞

0
c(t)ψ(t − x)dt ≤ c(x)Ãε

∫
∞

−∞

eβt+ε|t|ψ(t)dt < A3c(x), ∀(x, ξ) ∈ R2

(likewise in the other case using L(xy) ≤ AL(x)L(y)), which completes the proof.
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[11] K. Gröchenig, G. Zimmermann, Spaces of test functions via the STFT, J. Funct. Spaces Appl. 2 (2004) 25–53.
[12] M. Hasumi, Note on the n-dimensional tempered ultra-distributions, Tôhoku Math. J. 13 (1961) 94–104.
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[21] S. Pilipović, B. Stanković, J. Vindas, Asymptotic behavior of generalized functions, Series on Analysis, Applications and Com-

putation, 5, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2012.
[22] K. Saneva, R. Aceska, S. Kostadinova, Some Abelian and Tauberian results for the short-time Fourier transform, Novi Sad J.

Math. 43 (2013) 81–89.
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