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Holomorphically Projective Mappings of (Pseudo-) Kähler Manifolds
Preserve the Class of Differentiability

Irena Hinterleitnera

aInstitute of Mathematics and Descriptive Geometry, Faculty of Civil Engineering, Brno University of Technology, Czech Republic

Abstract. In this paper we study fundamental equations of holomorphically projective mappings of
(pseudo-) Kähler manifolds with respect to the smoothness class of metrics Cr, r ≥ 1. We show that
holomorphically projective mappings preserve the smoothness class of metrics.

1. Introduction

First we study the general dependence of holomorphically projective mappings of classical and pseudo-
Kähler manifolds (shortly Kähler) on the smoothness class of the metric. We present well known facts,
which were proved by Otsuki, Tashiro [31], Tashiro, Ishihara [44], Domashev, Mikeš [8], Mikeš [19, 20],
A.V. Aminova, D. Kalinin [2–5], etc., see [6, 9, 25, 27, 28, 35, 36, 45]. To the theory of holomorphically
projective mappings and their generalization are devoted many publications, eg. [1, 7, 10, 14–18, 21–
23, 26, 29, 30, 32, 33, 38–41]. In these results no details about the smoothness class of the metric were
stressed. They were formulated “for sufficiently smooth” geometric objects.

The following results are connected to the paper [11] where it was proved that holomorphically projective
mappings preserve the smoothness class Cr of the metrics in the case r ≥ 2. In the following paper we
generalize this result to the case r ≥ 1.

2. Main Results

Let Kn = (M, 1,F) and K̄n = (M̄, 1̄, F̄) be (pseudo-) Kähler manifolds, where M and M̄ are n-dimensional
manifolds with dimension n ≥ 4, 1 and 1̄ are metrics, F and F̄ are structures. All the manifolds are assumed
to be connected.

Definition 2.1. A diffeomorphism f : Kn → K̄n is called a holomorphically projective mapping of Kn onto K̄n
if f maps any holomorphically planar curve in Kn onto a holomorphically planar curve in K̄n.

We obtain the following theorem.
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Theorem 2.2. If the (pseudo-) Kähler manifold Kn (Kn ∈ Cr, r ≥ 1) admits a holomorphically projective mapping
onto K̄n ∈ C1, then K̄n belongs to Cr.

Briefly, this means that:
holomorphically projective mappings preserve the class of smoothness of the metric.

The analogous property for geodesic mappings of (pseudo-) Riemannian manifolds is proved in [12].
Here and later Kn = (M, 1,F) ∈ Cr denotes that 1 ∈ Cr, i.e. in a coordinate neighborhood (U, x) for the

components of the metric 1 holds 1i j(x) ∈ Cr. If Kn ∈ Cr, then M ∈ Cr+1. This means that the atlas on the
manifold M has the differentiability class Cr+1, i.e. for non disjoint charts (U, x) and (U′, x′) on U ∩ U′ it is
true that the transformation x′ = x′(x) ∈ Cr+1.

The differentiability class r is equal to 0, 1, 2, . . . ,∞, ω, where 0,∞ and ω denotes continuous, infinitely
differentiable, and real analytic functions respectively.

Remark 2.3. It’s easy to prove that the Theorem 2.2 is valid also for r = ∞ and for r = ω. This follows from
the theory of solvability of differential equations. Of course we can apply this theorem only locally, because
differentiability is a local property.

Remark 2.4. A minimal requirement for holomorphically projective mappings is Kn, K̄n ∈ C1.

Mikeš, see [19, 21, 22, 24, 25], [28, p. 82] found equidistant Kähler metrics 1 in canonical coordinates x:

1ab = 1a+m b+m = ∂ab f + ∂a+m b+m f and 1a b+m = ∂a b+m f − ∂a+m b f ,

where a = 1, 2, . . . ,m, m = n/2, f = exp(2x1) · G(x2, x3, . . . , xm, x2+m, x3+m, . . . , x2m), G ∈ C3,
which admit holomorphically projective mappings. Evidently, if G ∈ Cr+2 (r ∈ N), G ∈ C∞ and Cω,
then Kn ∈ Cr, Kn ∈ C∞ and Kn ∈ Cω, respectively. From these metrics we can easily see examples of non
trivial holomorphically projective mappings Kn → K̄n, where

Kn, K̄n ∈ Cr and < Cr+1 for r ∈N; Kn, K̄n ∈ C∞ and < Cω; Kn, K̄n ∈ Cω.

3. (Pseudo-) Kähler Manifolds

In the following definition we introduce generalizations of Kähler manifolds.

Definition 3.1. An n-dimensional (pseudo-) Riemannian manifold (n ≥ 4) is called a (pseudo-) Kähler manifold
Kn=(M, 1,F), if beside the metric tensor 1, a tensor field F of type (1, 1) is given on the manifold M, called a
structure F, such that the following conditions hold:

F2 = − Id; 1(X,FX) = 0; ∇F = 0, (1)

where X is an arbitrary vector of TM, and ∇ denotes the covariant derivative in Kn.

These spaces were first considered as A-spaces by P.A. Shirokov, see [34]. Independently such spaces
with positive definite metric were studied by E. Kähler [13]. The tensor field F is called a complex structure
[45].

The following lemma specifies the properties of the differentiability of geometrical objects on (pseudo-)
Kähler manifolds.

Lemma 3.2. If Kn = (M, 1,F) ∈ Cr, i.e. 1 ∈ Cr, then F ∈ Cr, for r ∈N and r = ∞, ω.

Proof. Let Kn ∈ Cr, i.e. the components of the metric 1i j(x) ∈ Cr in a coordinate chart x. It is a priori valid
that Fh

i ∈ C1. The formula ∇F = 0 can be written ∂kFh
i = Fh

aΓ
a
ik − Fa

i Γ
h
ak, where Γi jk = 1/2 (∂i1 jk + ∂ j1ik − ∂k1i j),

∂k = ∂/∂xk, and Γh
ij = 1hkΓi jk are Christoffel symbols of the first and second kind, respectively. It holds that

Γi jk and Γh
ij ∈ Cr−1. From this equation follows immediately Fh

i (x) ∈ Cr, i.e. F ∈ Cr.
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Moreover, due to the differentiability of 1 ∈ Cr according to (1), each point has a coordinate neighborhood
(U, x) ∈ Cr+1 in which the structure F has the following canonical form:

Fa+m
b = −Fa

b+m = δa
b, Fa

b = Fa+m
b+m = 0, a, b = 1, · · · ,m; m =

n
2
. (2)

We get, as an immediate consequence, that the dimension is even, n = 2m. Such a coordinate system will
be called canonical.

Due to the conditions (1) and (2), the components of the metric tensor and Christoffel symbols of the
second kind in a canonical coordinate system satisfy

1a+m,b+m = 1ab, 1ab+m = −1a+mb, and Γa
bc = Γa+m

b+mc+m = −Γa
b+mc+m, Γa+m

b+mc+m = Γa
b+mc = −Γa+m

bc . (3)

Obviously, the coordinate transformation x′h = x′h(x) preserves a canonical coordinate system if and
only if the Jacobi matrix J = (∂x′h/∂xi) satisfies

∂x′a+m

∂xb+m
=
∂x′a

∂xb
and

∂x′a+m

∂xb
= −

∂x′a

∂xb+m
. (4)

Let us set za = xa + ixa+m, z′a = x′a + ix′a+m (where i is the imaginary unit). Then (4) can be inter-
preted as Cauchy-Riemann conditions for the complex functions z′a = z′a(z1, · · · , zm), and we will call this
transformation analytic.

4. Holomorphically Projective Mappings Kn → K̄n of Class C1

Assume the (pseudo-) Kähler manifolds Kn = (M, 1,F) and K̄n = (M̄, 1̄, F̄) with metrics 1 and 1̄, structures
F and F̄, Levi-Civita connections ∇ and ∇̄, respectively. Here Kn, K̄n ∈ C1, i.e. 1, 1̄ ∈ C1 which means that
their components 1i j, 1̄i j ∈ C1.

Likewise, as in [31], see [6], [35, p. 205], [36], [25], [28, p. 240], we introduce the following notations.

Definition 4.1. A curve ` in Kn which is given by the equation ` = `(t), λ = d`/dt (, 0), t ∈ I, where t is
a parameter is called holomorphically planar, if under the parallel translation along the curve, the tangent
vector λ belongs to the two-dimensional distribution D = Span {λ, Fλ} generated by λ and its conjugate Fλ,
that is, it satisfies

∇tλ = a(t)λ + b(t)Fλ,

where a(t) and b(t) are some functions of the parameter t.
Particularly, in the case b(t) = 0, a holomorphically planar curve is a geodesic.

We recall the Definition 2.1: A diffeomorphism f : Kn → K̄n is called a holomorphically projective mapping of
Kn onto K̄n if f maps any holomorphically planar curve in Kn onto a holomorphically planar curve in K̄n.

Assume a holomorphically projective mapping f : Kn → K̄n. Since f is a diffeomorphism, we can
suppose local coordinate charts on M or M̄, respectively, such that locally f : Kn → K̄n maps points onto
points with the same coordinates, and M̄ = M.

A manifold Kn admits a holomorphically projective mapping onto K̄n if and only if the following
equations [28, 36]:

∇̄XY = ∇XY + ψ(X)Y + ψ(Y)X − ψ(FX)FY − ψ(FY)FX (5)

hold for any tangent fields X,Y and where ψ is a differential form. In local form:

Γ̄h
ij = Γh

ij + ψiδ
h
j + ψ jδ

h
i − ψīδ

h
j̄ − ψ j̄δ

h
ī ,

where Γh
ij and Γ̄h

ij are the Christoffel symbols of Kn and K̄n, ψi, Fh
i are components of ψ, F and δh

i is the

Kronecker delta, ψī = ψaFa
i , δ

h
ī

= Fh
i . Here and in the following we will use the conjugation operation of

indices in the way
A ···

··· ī ··· = A ···

··· k ···F
k
i ., A··· ī ······ = A··· k ······ Fi

k.
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If ψ ≡ 0, then f is affine or trivially holomorphically projective. Beside these facts it was proved [28, 36] that
F̄ = ±F; for this reason we can suppose that F̄ = F.

It is known that

ψi = ∇iΨ, Ψ =
1

2(n + 2)
ln
∣∣∣∣∣det 1̄
det 1

∣∣∣∣∣ .
Equations (5) are equivalent to the following equations

∇Z1̄(X,Y) = 2ψ(Z)1̄(X,Y) + ψ(X)1̄(Y,Z) + ψ(Y)1̄(X,Z) + ψ(FX)1̄(FY,Z) + ψ(FY)1̄(FX,Z). (6)

In local form:
∇k1̄i j = 2ψk1̄i j + ψi1̄ jk + ψ1̄ik + ψī1̄ j̄k + ψ j̄1̄īk,

where 1̄i j are components of the metric 1̄ on K̄n.
The above formulas are well known for F̄ = F, see [31], [6], [35, p. 206], [36], [25], [28, p. 240-242].
Domashev and Mikeš ([8], see [35, p. 212], [36], [25], [28, p. 246]) proved that equations (5) and (6) are

equivalent to

∇Za(X,Y) = λ(X)1(Y,Z) + λ(Y)1(X,Z) + λ(FX)1(FY,Z) + λ(FY)1(FX,Z); (7)

in local form:
∇kai j = λi1 jk + λ j1ik + λī1 j̄k + λ j̄1īk,

where

(a) ai j = e 2Ψ1̄ab1ai1bj; (b) λi = − e 2Ψ1̄ab1biψa. (8)

From (7) follows λi = ∇iΛ and Λ = 1
4 abc1

bc. On the other hand [28]:

1̄i j = e 2Ψ1̃i j, Ψ =
1
2

ln
∣∣∣∣∣det 1̃
det 1

∣∣∣∣∣ , ‖1̃i j‖ = ‖1ib1 jcabc‖
−1. (9)

The above formulas are the criterion for holomorphically projective mappings Kn → K̄n, globally as well as
locally.

5. Holomorphically Projective Mapping for Kn ∈ C2 → K̄n ∈ C1

I. Hinterleitner [11] proved the theorem:

Theorem 5.1. If a (pseudo-) Kähler manifold Kn ∈ Cr, r ≥ 2, admits a holomorphically projective mapping onto
K̄n ∈ C2, then K̄n ∈ Cr.

It is easy to see that Theorem 2.2 follows from Theorem 5.1 and the following theorem.

Theorem 5.2. If Kn ∈ C2 admits a holomorphically projective mapping onto K̄n ∈ C1, then K̄n ∈ C2.

Proof. We will suppose that the (pseudo-) Kähler manifold Kn = (M, 1,F) ∈ C2 admits a holomorphically
projective mapping f onto the (pseudo-) Kähler manifold K̄n = (M̄, 1̄, F̄) ∈ C1. Furthermore, we can assume
that M̄ = M and F̄ = F. The corresponding points x ∈ M and x̄ = f (x) ∈ M̄ have common coordinates
(x1, x2, . . . , xn), shortly x, in the coordinate chart (U, x), U ⊂M, .

We study the coordinate neighborhood (U, x) of any point p at M. Moreover, we suppose that the
coordinate system x is canonical (2). On (U, x) formulae (5)–(9) hold, and formula (7) may be written in the
following form

∂kai j = λiδ j
k + λ jδi

k + λ̄iF j
k + λ̄ jFi

k − f i j
k , (10)
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where ai j = abc1
bi1cj, λi = λa1

ia, λ̄i = λaFi
a, and f i j

k = aibΓ
j
bk + a jbΓi

bk.
The components 1i j(x) ∈ C2 and 1̄i j(x) ∈ C1 on U ⊂ M and from that facts follows that the functions

1i j(x) ∈ C2, 1̄i j(x) ∈ C1, Ψ(x) ∈ C1, ψi(x) ∈ C0, ai j(x) ∈ C1, λi(x) ∈ C0, and Γh
ij(x) ∈ C1. It is easy to see, that

f i j
k ∈ C1.

In the canonical coordinate system x we can calculate the following derivatives for fixed different indices
a, b = 1, . . . ,m, m = n/2:

∂baab = λa
− f ab

b , ∂b+maab = −λa+m
− f ab

b+m,

∂baab+m = λa+m
− f ab+m

b , ∂b+maab+m = −λa
− f ab+m

b+m .
(11)

Eliminating λa and λa+m we obtain the equations

∂baab
− ∂b+maab+m = − f ab

b + f ab+m
b

∂b+maab + ∂baab+m = − f ab
b+m − f ab+m

b .
(12)

We denote w = aab + i · aab+m, z = xb + i · xb+m, where i is the imaginary unit. Then (12) can be rewritten

∂zw = F ≡ (− f ab
b + f ab+m

b ) + i · (− f ab
b+m − f ab+m

b ),

and because F ∈ C1, then exists ∂2
z z̄w.

So there are the second partial derivatives of the functions aab and aab+m of the variables xb and xb+m; and,
clearly, also of xa and xa+m. After this from formula (11) follows that λh

∈ C1; and equations (10) imply that
ai j, ai j ∈ C2. Finally, formula (9) shows that 1̄i j ∈ C2.

6. Holomorphically Projective Mapping Kn → K̄n of Class C2

Let Kn and K̄n ∈ C2 be (pseudo-) Kähler manifolds, then for holomorphically projective mappings
Kn → K̄n the Riemann and the Ricci tensors transform in the following way

(a) R̄h
ijk = Rh

ijk + δh
kψi j − δh

jψik + δh
k̄
ψi j̄ − δ

h
j̄
ψik̄ − 2δh

ī
ψ jk̄;

(b) R̄i j = Ri j − (n + 2)ψi j,
(13)

where ψi j = ψi, j −ψiψ j +ψīψ j̄ (ψi j = ψ ji = ψī j̄). Here the Ricci tensor is defined by Rik = Ra
iak. In many papers

it is defined with the opposite sign [19, 25, 35, 46], etc.
The tensor of the holomorphically projective curvature, which is defined in the following form

Ph
ijk = Rh

ijk +
1

n + 2

(
δh

kRi j − δ
h
j Rik + δh

k̄Ri j̄ − δ
h
j̄ Rik̄ − 2δh

ī R jk̄

)
, (14)

is invariant with respect to holomorphically projective mappings, i.e. P̄h
ijk = Ph

ijk.
The above mentioned formulae can be found in the papers [6, 28, 35].
The integrability conditions of equations (7) have the following form

aiaRa
jkl + a jaRa

ikl = 1ik∇lλ j + 1 jk∇lλi − 1il∇kλ j − 1 jl∇kλi + 1īk∇lλ j̄ + 1 j̄k∇lλī − 1īl∇kλ j̄ − 1 j̄l∇kλī. (15)

After contraction with 1 jl we get:

aibRb
k + abcRb

ik
c = −∇k̄λī − (n − 1)∇kλi,

where Rb
il

c
= 1ckRb

ilk; Rb
l = 1bjR jl and µ = ∇cλb1

bc.
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We contract this formula with Fi
i′F

k
k′ and from the properties of the Riemann and the Ricci tensors of Kn

we obtain

∇k̄λī = ∇kλi, (16)

and ([8, 25, 28, 35])

n∇kλi = µ1ik − aibRb
k − abcRb

ik
c
. (17)

Because λi is a gradient-like covector, from equation (17) follows aibRb
j = a jbRb

i .
From (16) follows that the vector field λī (≡ λaFa

i ) is a Killing vector field, i.e. ∇ jλī + ∇iλ j̄ = 0. But the
other side of the equations (16) can be written in the form ∇aλhFa

i = ∇iλaFh
a . In the canonical coordinate

system x they are given by

∂bλ
a
− ∂b+mλ

a+m = 0 and ∂b+mλ
a + ∂bλ

a+m = 0, a, b = 1, . . . ,m, m = n/2.

These are Cauchy-Riemann equations, which implies that the functions λh(x) are real analytic. After this
differentiation of the Killing equations we obtain ∇ j(∇iλ̄h) = λ̄aRh

ija, and by contraction with Fi
h, we finally

obtain
∇ jµ = −2λaRai.

These equations were found earlier under the assumption Kn ∈ C3 and K̄n ∈ C3, [20], see [35, p. 212], [28,
pp. 247–248].

From that we proof the following theorem

Theorem 6.1. A Kähler manifold Kn ∈ C2 admits holomorphically projective mappings onto K̄n ∈ C1 if and only if
the system of differential equations

∇kai j = λi1 jk + λ j1ik + λī1 j̄k + λ j̄1īk,

n∇kλi = µ1ik − aibRb
k − abcRb

ik
c
,

∇ jµ = −2λbRbj,

(18)

has a solution ai j, λi and µ satisfying the following conditions

ai j = ai j = aī j̄, det(ai j) , 0. (19)

Remark 6.2. Moreover if Kn ∈ Cr, it follows that K̄n ∈ Cr, the function λi ∈ Cr and µ ∈ Cr−1.

Remark 6.3. If Kn ∈ C∞, then K̄n ∈ C∞, and if Kn ∈ Cω, then K̄n ∈ Cω.

Theorem 6.1 was proved in the case Kn, K̄n ∈ C3, see [20].
The family of differential equations (18) is linear with coefficients of intrinsic character in Kn and

independent of the choice of coordinates. If the metric tensor 1 and the structure tensor F of the Kähler
manifold Kn are real then for the initial data

ai j(x0) =
o
ai j, λi(x0) =

o
λi, µ(x0) =

o
µ,

the system (18) has at most one solution. Accounting that the initial data must satisfy (19), it follows that
the general solution of (18) depends on rhpm significant parameters, where rhpm ≤ (n/2 + 1)2.



I. Hinterleitner / Filomat 30:11 (2016), 3115–3122 3121

References

[1] D.V. Alekseevsky, Pseudo-Kähler and para-Kähler symmetric spaces. Handbook of pseudo-Riemannian geometry and supersymmetry,
IRMA Lect. Math. Theor. Phys. 16 (2010) 703–729.

[2] A.V. Aminova, D.A. Kalinin, H-projectively equivalent four-dimensional Riemannian connections, Russ. Math. 38 (8) (1994) 10–19;
transl. from Izv. Vyssh. Uchebn. Zaved. Mat. 387 (1994) 11–20.

[3] A.V. Aminova, D.A. Kalinin, Quantization of Kählerian manifolds admitting H-projective mappings, Tensor, New Ser. 56 (1) (1995)
1–11.

[4] A.V. Aminova, D.A. Kalinin, H-projective mappings of four-dimensional Kählerian manifolds, Russ. Math. 42:4 (1998) 1–11; transl.
from Izv. Vyssh. Uchebn. Zaved. Mat. 4 (1998) 3–14.

[5] A.V. Aminova, D.A. Kalinin, Lie algebras of H-projective motions of Kählerian manifolds of constant holomorphic sectional curvature,
Math. Notes 65 (6) (1999) 679–683; transl. from Mat. Zametki 65 (6) (1999) 803–809.

[6] D.V. Beklemishev, Differential geometry of spaces with almost complex structure, Akad. Nauk SSSR Inst. Nauchn. Informacii, Moscow,
1965, Geometry (1963) 165–212.
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[42] M.S. Stanković, S.M. Minčić, Lj.S. Velimirović, On Holomorphically Projective Mappings of Generalized Kählerian Spaces, Matematički
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