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dFMF, University of Ljubljana, Ljubljana; Faculty of Information Studies, Novo mesto; FAMNIT, University of Primorska, Koper, Slovenia

Abstract. The betweenness centrality of a vertex in a graph is the sum of relative numbers of shortest paths
that pass through that vertex. We study extremal values of vertex betweenness within various families of
graphs. We prove that, in the family of 2-connected (resp. 3-connected) graphs on n vertices, the maximum
betweenness value is reached for the maximum degree vertex of the fan graph F1,n−1 (resp. the wheel graph
Wn); the maximum betweenness values, their realizing vertices and extremal graphs are determined also
for wider families of graphs of minimum degree at least 2 or 3, respectively, and, in addition, for graphs
with prescribed maximum degree or prescribed diameter at least 3.

1. Introduction

The identification of vertices having a key role within large-scale graphs meets with an increasing
interest connected with numerous applications in real-world networks. Measures of importance of objects
within complex networks are formally expressed by so called centrality indices. According to the nature of
relations between objects of the network and the criterion of importance, one can consider various centrality
indices: degree, closeness, betweenness or eigenvector centrality.

As a centrality index, betweenness quantifies the appearance of a vertex as an intermediary on the
shortest path between two other vertices. Due to the assumption that a flow (for example, transport
or information flow) between vertices is propagated mainly along shortest paths of the network, the
vertices that lie on many shortest paths can profit from the flow influence more than the vertices which are
avoided by shortest paths. Brandes [5] gives a comprehensive survey and compares most recent variants of
betweenness centrality. Some of them are the proximal target betweenness introduced by Borgatti, the bounded-
distance betweenness defined by Borgatti and Everett [4] and the edge betweenness, as a natural extension of
betweenness to edges, firstly discussed by Anthonisse [1] (see also [11]). Other variants of the general
betweenness centrality are fundamentally different in their calculation and they are mostly based on the

2010 Mathematics Subject Classification. Primary 05C82
Keywords. Betweenness centrality; extremal value; degree; connectivity; diameter.
Received: 01 September 2014; Accepted: 24 March 2015
Communicated by Francesco Belardo
The first and forth author are supported by ARRS research program P1-0383. The second and third author are supported by

Science and Technology Assistance Agency under the contract No. APVV-0023-10 and by Slovak VEGA grant No. 1/0652/12.
Email addresses: jelena.klisara@fri.uni-lj.si (Jelena Klisara), ketrik@centrum.sk (Jana Coroničová Hurajová),

tomas.madaras@upjs.sk (Tomáš Madaras), skrekovski@gmail.com (Riste Škrekovski)
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idea that a realistic betweenness measure should include non-shortest paths in addition to the shortest ones.
The two most known measures of this type are the flow-betweenness centrality [3, 6, 13] and the random walk
betweenness centrality [6, 17].

Besides practical applications, an attention is recently paid also to the graph-theoretical properties of
betweenness centrality [9, 10, 18], as well as to its connection to the mean distance in graphs [7, 14, 15]. On
the other hand, much less is known about values that the betweenness of vertices within a graph can reach,
even in the case when all values are the same rational number (see [16]). In [11], it was shown that the
maximal value of the betweenness centrality measure within a graph is

(n−1
2
)

and it is attained if and only if
the considered graph is isomorphic to the star, i.e. K1,n−1. In this paper, we are interested in determining the
maximum betweenness values within the various families of graphs, such as the families of graphs with
prescribed maximum or minimum degree, 2-connected and 3-connected graphs, as well as graphs with
diameter at least three.

2. Definitions and Notations

Before presenting the main results of our study, we give relevant graph-theoretical definitions and
notations for considered graph families which underlie our work; further information can be found in [2, 8].

Throughout this paper, all graphs are assumed to be undirected, finite and connected, without loops or
multiple edges. Given a graph G, we denote by n := |V(G)| the number of vertices and by m := |E(G)| the
number of edges of G. A path between two vertices u, v ∈ V(G) (called (u, v)-path) is a sequence us1s2 · · · skv
of distinct vertices starting at u and ending at v such that each two consecutive vertices in this sequence
form an edge in G. The distance d(u, v) between two vertices u and v in a graph G is the length of a shortest
(u, v)-path in G. The diameter diam(G) of a graph G is the maximum distance between any pair of vertices
u, v ∈ V(G).

The join G1 + G2 of graphs G1 and G2 with disjoint vertex sets V(G1) and V(G2) and edge sets E(G1) and
E(G2) is the graph formed by graph union G1 ∪G2 together with all the edges joining V(G1) and V(G2). The
disjoint union of k copies of a graph H is denoted by kH. The fan Fr,s is defined as the graph join Kr + Ps,
where Kr is the empty graph on r vertices and Ps is the path on s vertices. The wheel Wn of order n is the
graph join K1 + Cn−1, where K1 is the singleton graph and Cn−1 is the cycle on n − 1 vertices. The windmill
Wd (r, s) is the graph obtained by taking s copies of the complete graph Kr with a vertex in common. Thus,
it has sr − s + 1 vertices.

The betweenness centrality bG(x) of a vertex x ∈ V(G) is the relative number of shortest paths between all
pairs of vertices passing through x:

bG(x) =
∑

u,v∈V(G)
u,v,x

σG
u,v(x)

σG
u,v

, (1)

where σG
u,v denotes the total number of shortest (u, v)-paths in G and σG

u,v(x) represents the number of shortest
(u, v)-paths passing through x. The index G is omitted if G is known from the context. By b̄(G), we denote
the average betweenness of a graph G, and by bmin(G) (resp. bmax(G)) the smallest (resp. the largest) vertex
betweenness within the graph G. If the considered graph G is a cycle on n vertices Cn, then, for every
x ∈ V(Cn), the following result holds:

b(x) =


(n−2)2

−1
8 if n is odd,

(n−2)2

8 if n is even.
(2)

For a graph familyH and an integer n, let

Bmax(H ,n) := max
{
bmax(G) : G ∈ H , |V(G)| = n

}
.
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Then, within the familyG of all graphs, we have Bmax(G,n) =
(n−1

2
)
. In this paper, we consider the previously

mentioned problem of maximization within several proper subfamilies of the family G – the family G∆ of
all graphs with the maximum degree at most ∆, the family Gδ of all graphs of minimum degree at least δ,
the families C2 and C3 of all 2- and 3-connected graphs and the familyDD of graphs with diameter D. We
present exact values and estimates for extremal values of maximum betweenness within graphs from these
families, together with extremal graphs realizing these values.

3. Extremal Values and Extremal Graphs

In the subsequent proofs, we often use the calculation of the betweenness of a vertex x within a graph
G based on the following: letV be the set of all two-element subsets of V(G) \ {x}, P be the set of all pairs
{u, v} from V that form an edge in G, Q be the set of all pairs {u, v} from V \ P such that there is a 2-path
uyv with y , x, and finally, R = V \ (P ∪ Q). Thus, the previously defined subsets P,Q and R are disjoint
and moreoverV = P ∪ Q ∪ R. Then

bG(x) =
∑
{u,v}∈P

σu,v(x)
σu,v

+
∑
{u,v}∈Q

σu,v(x)
σu,v

+
∑
{u,v}∈R

σu,v(x)
σu,v

. (3)

Note that in (3) the first sum always contributes 0 to the betweenness of the vertex x. Each term in the
second sum contributes at most 1/2 and each term of the third sum contributes at most 1.

Now, let G be a graph on n vertices, w be a vertex of G of maximum betweenness and let H = G − w.
Denote by e1(H) the number of adjacent pairs of vertices in H and by e2(H) the number of pairs of vertices
at distance 2 within the graph H. Since the contribution of the adjacent pairs of vertices is 0 and pairs of
vertices at distance 2 can contribute at most 1/2, using (3) we obtain

b(w) ≤ 0 · e1(H) +
1
2
· e2(H) + 1 ·

((
n − 1

2

)
− e1(H) − e2(H)

)
.

The above expression can be simplified to

b(w) ≤
(n − 1)(n − 2)

2
− e1(H) −

1
2
· e2(H). (4)

3.1. The family G∆

For graphs with prescribed maximum degree, we have the following estimate:

Proposition 3.1. If G is a graph of maximum degree ∆, then

bmax(G) ≤
∆ − 1

2∆
(n − 1)2. (5)

Proof. Let G be an n-vertex graph of maximum degree ∆ and x be its vertex of degree d such that bG(x) =
Bmax(G∆,n). Let T be a spanning tree of G obtained by breadth-first search algorithm applied on G with the
initial vertex (root) x. Note that degT(x) = d. For each neighbour xi of x, let Ti be the subtree of T rooted at xi,
and let ti = |V(Ti)|, i = 1, . . . , d. Then,

∑d
i=1 ti = n − 1. It is not hard to see that the following properties hold:

(a) No shortest path between two vertices u, v from the same subtree Ti contains x, i.e. σG
u,v(x) = σT

u,v(x) = 0.

(b) For any two vertices u, v from distinct subtrees Ti,T j, it holds σG
u,v(x)/σG

u,v ≤ 1 = σT
u,v(x)/σT

u,v.

The observations (a) and (b) imply that no two vertices from distinct subtrees are adjacent in G, i.e. all xxi
are bridges. Hence,

bG(x) =

d∑
i, j=1, i< j

tit j ≤

(
∆

2

) (n − 1
∆

)2

,

since the sum attains maximum when d = ∆(G) = ∆ and all ti’s are equal. This gives us the upper bound (5),
which is attained when n − 1 is divisible by ∆ and all subtrees Ti are of equal size.
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3.2. The families C2 and C3

In the following two propositions, we present the best upper bounds for the families of 2- and 3-connected
graphs.

Proposition 3.2. If G is a 2-connected graph on n vertices, then

bmax(G) ≤
(n − 3)2

2
.

Moreover, the bound is obtained only at the central vertex of the graph F1,n−1.

Proof. Let G be a 2-connected graph on n vertices, let w be a vertex of G having the maximum betweenness
centrality and let H = G − w. Since G is 2-connected, H is connected graph on n − 1 vertices. For such a
graph, it hods p(H) = e1(H) + e2(H)/2 ≥ (3n − 7)/2 with equality holding iff H is Pn−1. This is obviously true
if δ(H) ≥ 3, and otherwise we have a vertex x of degree 1 or 2. So remove x and apply induction. Note that
if x is of degree 2, then H − x may be disconnected (we leave the details to the reader as an easy exercise).
Now, using (4) we obtain the following upper bound

b(w) ≤
(n − 1)(n − 2)

2
− p(H) ≤

(n − 1)(n − 2)
2

−
3n − 7

2
=

(n − 3)2

2
.

By a routine check, it is easy to see that this bound is attained only if w is adjacent to every vertex of H and
H is isomorphic to the path Pn−1. Therefore, G is isomorphic to F1,n−1.

Proposition 3.3. If G is a 3-connected graph on n vertices, then

bmax(G) ≤
(n − 1)(n − 5)

2
.

Moreover the bound is obtained only at the central vertex of the wheel graph Wn.

Proof. Let G be a 3-connected graph on n vertices, w be a vertex of G of the maximum betweenness centrality
and let H = G − w. Then, the connectivity of H is at least 2, so δ(H) ≥ 2, and it has at least n − 1 edges.
For such a graph, it hods p(H) = e1(H) + e2(H)/2 ≥ (3n − 3)/2 with equality holding iff H is Cn−1. This is
obviously true if δ(H) ≥ 3, or it is a cycle. Otherwise we have a vertex x of degree 2 with neighbours y and
z, where z is a 3-vertex. If y is of degree ≥ 3, then consider the graph H′1 = G− x and if y is of degree 2, then
consider the graph H′2 = H − x − y. Now, for i ∈ {1, 2} if the graph H′i is 2-connected then apply induction,
and otherwise, use the observation from the proof of the previous proposition that p(Hi) ≥ 3(n − i) − 7. In
both cases, the number of edges and the number of pairs of vertices on distance 2 that are in H and not in
Hi assure to obtain the desired lower bound for p(H) (we leave the counting details to the reader as an easy
exercise). Hence, based on the expression (4), the following holds

b(w) ≤
(n − 1)(n − 2)

2
− p(H) ≤

(n − 1)(n − 2)
2

−
3n − 3

2
=

(n − 1)(n − 5)
2

.

By a routine check, it is easy to see that this bound is attained for the central vertex of an n-vertex wheel.

3.3. The family Gδ
Now, we explore the family of graphs with prescribed minimum degree δ.

Proposition 3.4. If G is a graph on n vertices with minimum degree at least 2, then

bmax(G) ≤
(n − 1)(n − 3) − 1 + (−1)n+1

2
.

The maximum for n odd is attained for the central vertex of the windmill graph on n vertices, Wd (3, (n − 1)/2), and
the maximum for n even is attained for the maximum degree vertex of the graph obtained from the windmill graph
Wd (3, (n − 2)/2) on n − 1 vertices by subdividing an edge joining two vertices of degree 2 by a new vertex of degree
2.
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w

(a)

w

(b)

Figure 1: Extremal graphs within the family G2: (a) for n odd and (b) for n even.

Proof. Let G be a graph on n vertices with minimum degree at least 2, w be a vertex of G of maximum
betweenness and let H = G − w. Then δ(H) ≥ 1. If n is odd, then H has at least (n − 1)/2 edges, and if n is
even, then either H has at least n/2 edges and at least one pair of vertices of H at distance 2 or H has at least
n/2 + 1 edges. Hence, by the expression (4), for n odd we obtain the following upper bound:

b(w) ≤
(n − 1)(n − 2)

2
−

n − 1
2

=
(n − 1)(n − 3)

2
,

and, for n even,

b(w) ≤
(n − 1)(n − 2)

2
−

n
2
−

1
2

=
(n − 1)(n − 3) − 2

2
.

The second part of the Theorem can be easily shown by the straightforward calculation of betweenness of
maximum degree vertices within the previously mentioned windmill graphs. See Figures 1(a) and 1(b) for
illustration.

For the purposes of the following theorem, we define a new function θ such that, for any integer n,

θ(n) =


5/2 if n ≡ 0 (mod 3),

0 if n ≡ 1 (mod 3),

4/3 if n ≡ 2 (mod 3).

(6)

Then the following result holds.

Theorem 3.5. If G is a graph on n vertices with minimum degree at least 3, then

bmax(G) ≤
(n − 1)(n − 4)

2
− θ(n). (7)

The maximum for n ≡ 1 ( mod 3) is attained for the central vertex of the windmill graph Wd (4, (n − 1)/3), the
maximum for n ≡ 2 ( mod 3) and n ≡ 0 ( mod 3) is attained for the maximum degree vertex of a graph which is
obtained from the windmill graph by replacing one copy of the graph K4 by the graph of 4- and 5-sided pyramid,
respectively.

Proof. Let G be a graph on n vertices with minimum degree at least 3, w be a vertex of G of maximum
betweenness and let H = G − w. Moreover, let e2(H) = e1

2(H) + e2
2(H), where e1

2(H) is the number of those
pairs of vertices at distance two for which there exists only one 2-path in H and e2

2(H) the number of pairs
at distance two that are joined with at least two 2-paths in H. Using an expression as (4), we have

b(w) ≤
(n − 1)(n − 2)

2
− (e1(H) +

1
2
· e1

2(H) +
2
3
· e2

2(H)), (8)

since the contribution of pairs at distance two that are joined with at least two 2-paths in H is at most
1/3. The obtained upper bound is maximized, when the expression in the parentheses, denoted by p(H),
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is minimized. Note that each adjacent pair of vertices in H contributes 1 to the value p(H), each pair at
distance two contributes 1/2 or 2/3, depending on the number of 2-paths between them. Moreover, since
δ(H) ≥ 2, it follows that e1(H) ≥ n − 1, and so p(H) ≥ n − 1.

Now, we define a graph H∗ in order to show that p(H∗) is minimal. Consider three different possibilities:

(i). If n = 3k + 1, then let H∗ = k C3 (see Figure 2(a)). Hence, H∗ is a union of k cycles of length 3, in which
case p(H∗) takes the value n − 1.

(ii). If n = 3k + 2, then let H∗ = (k− 1) C3 ∪C4 (see Figure 2(b)). Thus, H∗ contains one cycle of length 4 and
k − 1 cycles of length 3, in which case p(H∗) takes the value n − 1 + 4/3 = n + 1/3.

(iii). If n = 3k, then let H∗ = (k− 2) C3∪C5 (see Figure 2(c)), in which case p(H∗) takes the value n− 1 + 5/2 =
n + 3/2.

Note that p(H∗) ≤ n+3/2. In what follows, we prove that p(H) attains a minimum value if H is isomorphic
to H∗. The main part of this will be to show that, if a graph H contains a vertex of degree greater than 2,
then the value p(H) is greater than p(H∗). First note that if the graph H contains a vertex of degree greater
than 2, then H has at least n edges, each of which contributes 1 to p(H). Therefore, p(H) ≥ n.

w

(a)

w

(b)

w

(c)

Figure 2: Extremal graphs within the family G3: (a) n ≡ 1 ( mod 3), (b) n ≡ 2 ( mod 3) and (c) n ≡ 0 ( mod 3).

Claim 3.6. In H, there are no adjacent vertices both of degree at least 3.

Proof. Suppose in contrary that there exists an edge uv ∈ E(H) such that both end-vertices u and v are
of degree at least 3. Let H′ = H − uv. Note that the pair u, v contributes 1 to the value p(H), while the
contribution of u, v to p(H′) is at most 2/3. Thus, the contribution of u, v to p(H′) is strictly smaller than the
contribution to p(H). For any other pair of vertices x, y contribution remains unchanged or decreases. If
x, y are adjacent in H, then they are adjacent in H′ and the contribution of this pair stay unchanged after
removing the edge uv. Suppose now that x, y are at distance 2 in H. If the distance grows after deleting
uv, then the contribution of this pair drops to zero. If the distance remains unchanged in H′, then the
contribution of x, y does not change or may drop from 2/3 to 1/2. Thus, p(H′) < p(H).

Claim 3.7. In H, there are no vertices of degree at least 4.

Proof. Suppose in contrary that there exists a vertex u ∈ V(H) such that deg(u) ≥ 4. By the previous claim, all
neighbours of the vertex u are of degree 2. Note that each neighbour of u can be adjacent to at most 1 other
neighbour of u. Let a, b, x and y be four neighbours of u. In case some pair of these four vertices is adjacent,
we may assume that it is a pair a, b. Then the Cartesian product of two sets {a, b} and

{
x, y

}
constitutes four

pairs of vertices which contribute at least 1/2 to p(H). Thus, p(H) ≥ 1 ·n+4 ·1/2 = n+2 > n+3/2 ≥ p(H∗).

Claim 3.8. In H, there are no vertices of degree 3.

Proof. Suppose that there exists u ∈ V(H) of degree 3 and let a, b, and c be neighbours of u. Since each graph
has an even number of vertices of odd degree, there exists another vertex v of degree 3 with neighbours, say
x, y and z. By Claim 3.6, u and v are non-adjacent and all neighbours of u and v are of degree 2. Consider
the following four possibilities:
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(a) Vertices u and v have no common neighbour. Since all neighbours of u are of degree 2, there are at least
two pairs of neighbours of u (resp. v) that are at distance 2, say a, c and b, c (resp. x, z and y, z). Note
that a and b (resp. x and y) can be adjacent. Those four pairs contribute at least 1/2 to p(H). Thus,
p(H) ≥ 1 · n + 4 · 1/2 = n + 2 > n + 3/2 ≥ p(H∗).

(b) Vertices u and v have a common neighbour, say c = z. Pairs of vertices contained in the Cartesian
product of two sets

{
a, b, x, y

}
and {c} are at distance 2 and each of them contribute 1/2 to p(H). Hence,

p(H) > n + 3/2 ≥ p(H∗).

(c) Vertices u and v have two common neighbours, say b = y and c = z. Pairs of vertices contained in the
Cartesian product of two sets {a, x} and {b, c} are at distance 2 and each of them contribute 1/2 to p(H).
Hence, p(H) > n + 3/2 ≥ p(H∗).

(d) Vertices u and v have three common neighbours, i.e. a = x, b = y and c = z. Those five vertices
induce K2,3. Therefore, pairs of vertices {a, b}, {a, c} and {b, c} are at distance 2 and moreover, they
are connected to each other by two 2-paths. Each of those pairs contribute 2/3 to the value p(H) and
p(H) ≥ 1 · n + 3 · 2/3 = n + 2 > n + 3/2 ≥ p(H∗).

Regarding the previous claims, the graph H is a 2-regular graph on n − 1 vertices. Hence, it is a union of
cycles. In what follows, we consider the following four possibilities:

(a) H contains a cycle Cs, where s ≥ 6. Then, p(Cs) = s + s/2. Now consider a graph C3 ∪ Cs−3. Since
p(C3 ∪ Cs−3) = s + (s − 3)/2 < p(Cs), it follows that H contains only cycles of length 3, 4 and 5.

(b) H contains two cycles C4. Since p(C5 ∪ C3) = 8 + 5/2 < 8 + 8/3 = p(2 C4), it follows that H contains at
most one cycle of length 4.

(c) H contains two cycles C5. Since p(2 C3 ∪C4) = 10 + 4/3 < 15 = p(2 C5), it follows that H contains at most
one cycle of length 5.

(d) H contains C4 ∪ C5. Since p(3 C3) = 9 < 9 + 4/3 + 5/2 = p(C4 ∪ C5), it follows that H is a union of cycles
of length 3 and at most one cycle of length 4 or 5.

Therefore, p(H) attains minimum value if H is isomorphic to H∗. Using the upper bound defined in (8)
and values p(H∗) calculated in (i), (ii) and (iii), the upper bound (7) is obtained. Moreover, the equality
holds when H is isomorphic to H∗ and w is adjacent to each vertex of H, which gives the graphs from the
theorem.

3.4. The familyDD

Here, we consider the family DD of all graphs with diameter D. Since D1 consists of complete graphs
and D2 contains all stars K1,n−1, we have Bmax(D1,n) = 0 and Bmax(D2,n) =

(n−1
2
)
. We now consider the

general case, i.e. the family DD for D ≥ 3 which is particularly interesting for the real-world networks
that exhibit the small-world phenomenon, that is, the average distance between two object in the network
is small (typically of the magnitude of logarithm of the number of objects) while the local edge density
(quantified by clustering coefficient) is relatively high despite of the overall sparsity of the network.

Let η be a function such that, for any integer k, η(2k) = 0 and η(2k + 1) = −1/4.

Theorem 3.9. Let D be an integer such that D ≥ 3 and G be a graph with diameter D. Then,

bmax(G) ≤
(n − 1)(n − 2)

2
−

D(D − 2)
4

+ η(D).

Moreover, the maximum value is obtained only at the vertex with the largest degree, within the graph obtained by
identifying a central vertex of the path PD+1 with the central vertex of the star graph K1,n−D−1.
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w

Figure 3: Extremal graph within the familyDD, where D ≥ 3.

Proof. Let G be a graph of order n and diameter D and let x be its vertex with the maximum betweenness
value.

Suppose first that x lies on some diametral path P with end-vertices u and v, and let k = d(u, x). Note
that any pair of vertices, which lies on (u, x)-path, does not contribute to the sum in b(x). This applies also
to the (x, v)-path. As the contribution of any other vertex pair is at most 1, we obtain

b(x) ≤ 0 ·
(
k
2

)
+ 0 ·

(
D − k

2

)
+ 1 ·

((
n − 1

2

)
−

(
k
2

)
−

(
D − k

2

))
.

It is easy to see that the expression in the parentheses is maximized for k = bD/2c, giving b(x) ≤ (n − 1)(n −
2)/2−D(D− 2)/4 + η(D), where η(D) is equal to 0 for D even and −1/4 otherwise. This also implies that the
maximum is attained in the situation where x is a central vertex of P and the remaining n − D − 1 vertices
of G are of degree one and all are adjacent to x. Thus, the extremal graph within the familyDD is obtained
by identifying a central vertex of the path PD+1 with the central vertex of the star graph K1,n−D−1.

Suppose now that the vertex x does not lie on any diametral path in G. In that case, for each pair of
vertices which lies on a diametral path, there is no shortest path passing through the vertex x. Otherwise,
if there is a shortest path between two vertices s, t passing through the vertex x and s and t belong to a
diametral path, then obviously there exists a diametral path which contradicts our assumption. Therefore,
there exist

(D
2
)

pairs of vertices with the contribution 0 to the betweenness of the vertex x, i.e.

b(x) ≤ 0 ·
(
D
2

)
+ 1 ·

((
n − 1

2

)
−

(
D
2

))
<

(n − 1)(n − 2)
2

−
D(D − 2)

4
+ η(D),

since D ≥ 3. Hence, the maximal betweenness is attained in the case when x lies on the diametral path.
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[16] S. Gago, J. Hurajová, T. Madaras, On betweenness-uniform graphs, Czech. Math. J. 63 (138) (2013) 629–642.
[17] M. E. J. Newman, A measure of betweenness centrality based on random walks, Social Networks 27 (2005) 39–54.
[18] P. Sinclair, Betweenness centralization for bipartite graphs, J. Math. Sociol. 29 (2005) 25–31.


	Introduction
	Definitions and Notations
	Extremal Values and Extremal Graphs
	The family G 
	The families C2 and C3 
	The family G 
	The family DD 


