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Properties of Concircular Curvature Tensors on Riemann Spaces
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Abstract. This paper studies conditions of pseudo-symmetric and semi-symmetric type on geodesic and
subgeodesic related Riemann spaces.

Properties of concircular transformations of metrics are characterized, using certain concircular-Riemann
type flows. Also concircular-Riemann solitons are introduced, as natural extensions of Ricci solitons. Some
special gradient concircular-Riemann solitons on Riemannian spaces are considered.

Introduction

Pseudo-symmetric manifolds [11], [13] constitute a generalization of spaces of constant sectional
curvature, along the line of locally symmetric and semi-symmetric spaces, [16], [18], consecutively. Both the
study of an intrinsic and the study of an extrinsic aspect let to the concept of pseudo-symmetry. For example,
every manifold M which can be mapped geodesically onto a semi-symmetric manifold is pseudo-symmetric
[7].

Also, every totally umbilical submanifold, with parallel mean curvature vector field, of a semi-symmetric
manifold is pseudo-symmetric.

In the present paper we extend the approach, considering pseudo-symmetric spaces subgeodesically
related, using certain concircular transformations. Concircular semi-symmetric spaces geodesically related
are studied. The last section is devoted to a special class of concircular related metrics produced by
concircular-Riemann flows. Also concircular-Riemann solitons are considered.

1. Concircular Transformations on Pseudo-Symmetric Spaces

Let (M, 1) be a Riemannian space and T ∈ T 0,kM.
We define R · T,Q(1,T) ∈ T 0,k+2M, by

(R · T)(X1, . . . ,Xk; X,Y) = (R(X,Y) · T)(X1, . . . ,Xk) =
= −T(R(X,Y)X1, . . . ,Xk) − · · · − T(X1, . . . ,R(X,Y)Xk).

Q(1,T)(X1, . . . ,Xk; X,Y) = −((X ∧ Y) · T)(X1, . . . ,Xk) =
= T((X ∧ Y)X1, . . . ,Xk) + · · · + T(X1, . . . , (X ∧ Y)Xk),
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where (X ∧1 Y)U = 1(U,Y)X − 1(U,X)Y.
A Riemannian manifold is called pseudo-symmetric if at every point of M the following condition is

satisfied:
the tensors R · R and Q(1,R) are linearly dependent.
The notion arose during the consideration of geodesic mappings.
Let ξ ∈ X(M). A diffeomorphism f : Vn = (M, 1) 7→ Vn = (M, 1̄) is called ξ− subgeodesic mapping

if maps ξ− subgeodesics into ξ− subgeodesics, where ξ− subgeodesics on M are given by the following
equations:

d2xi

dt2 + Γi
jk

dxk

dt
dx j

dt
= a

dxi

dt
+ bξi,

where a(t), b(t) are differentiable function on M.
There exists a ξ− subgeodesic mapping f if and only if the Yano formulae are satisfied

∇XY = ∇XY + ψ(X)Y + ψ(Y)X − ϕ(X,Y)ξ,

where ψ ∈ ∧1(M) and ϕ ∈ T 0,2(M). In the sequel ϕ coincides with the Riemannian metric 1.
f is called nontrivial if ψi − ξi , 0,∀i ∈ {1, . . .n}.
There exists f geodesic mapping (i.e. ξ = 0 ) [15] if and only if the Weyl formulae are satisfied

∇XY = ∇XY + ψ(X)Y + ψ(Y)X.

The projective curvature tensor [12], P, defined by

P(X,Y)Z = R(X,Y)Z −
1

n − 1
[S(Y,Z)X,−S(X,Z)Y],

where S is the Ricci tensor, is invariant under the geodesic mappings, i.e. P = P.
The geodesic correspondence is special if ψi j = f1i j, where f is a differentiable function and

ψi j = ψi, j − ψiψ j.

One has

(n + 1)ψk − ξk =
∂

∂xk
ln

√∣∣∣∣∣∣det(1i j)

det(1i j)

∣∣∣∣∣∣,
where ξk = 1ksξr.

There exists the functions v(x1, . . . , xn),u(x1, . . . , xn) such that ψk = ∂v
∂xk and ξk = ∂u

∂xk .

Let (M, 1) be a Riemann space and B ∈ T 0,2(M), where Brs = ξr,s − ξsξr.
If B = 1

n Tr(B)1, then the conformal transformation

1 7→ 1̃ = e2ξ1,

is called concircular transformation.
A concircular transformation carries all the circles of the manifold into circles (a curve in a Riemannian

manifold is called circle when the first curvature is constant and all the other curvatures are identically
zero).

A space of constant sectional curvature remains a space of constant sectional curvature by a concircular
transformation.

The concircular curvature tensor [3], [14]

Z(X1,X2)X3 = R(X1,X2)X3 −
ρ

n(n − 1)
(X1 ∧ 1X2)X3,

is invariant under concircular transformations, where ρ is the scalar curvature.
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Proposition 1.1. Let Vn = (M, 1) be a pseudo-symmetric Riemann space and 1 7→ 1̃ be a concircular transformation.
Then Ṽn = (M, 1̃) is a pseudo-symmetric Riemann space.

Theorem 1.1. Let Vn = (M, 1) and Vn = (M, 1̄),n ≥ 3, be ξ-subgeodesically related Riemann spaces. If Vn is
pseudo-symmetric and 1 7→ 1̃ = e2ξ1 is a concircular transformation, then Vn is also pseudo-symmetric.

Proof. Vn and Vn being subgeodesically related, we have∣∣∣∣∣ i
j k

∣∣∣∣∣ =

∣∣∣∣∣ i
j k

∣∣∣∣∣ + δi
jψk + δi

kψ j − 1 jkξi.

Because Vn and Ṽn = (M, 1̃) are conformally related, the Christoffel symbols are transformed by
˜∣∣∣∣∣ i

j k

∣∣∣∣∣ =

∣∣∣∣∣ i
j k

∣∣∣∣∣ + δi
jξk + δi

kξ j − 1 jkξi.

Then we have
∣∣∣∣∣ i

j k

∣∣∣∣∣ =
˜∣∣∣∣∣ i

j k

∣∣∣∣∣ + δi
jωk + δi

kω j, where ωk = ψk − ξk.

So, Vn and Ṽn are geodesically related.
If Vn is pseudo-symmetric then Ṽn is pseudo-symmetric. The last two properties imply that Vn is

pseudo-symmetric.

This theorem generalizes the following result [7]:
Let (M, 1) be a pseudo-symmetric manifold admitting a nontrivial geodesic mapping f on (M, 1̄). Then (M, 1̄) is

also a pseudo-symmetric space.

2. On Concircular Semi-Symmetric Spaces

Our aim is to characterize concircular semi-symmetric (R · Z = 0) spaces geodesically related.

Theorem 2.1. Let Vn = (M, 1) and Vn = (M, 1),n ≥ 3, be two nontrivial geodesically related Riemann spaces.
If Vn is concircular semi-symmetric, then Vn and Vn are spaces with constant sectional curvature or are special

geodesically related.

Proof. Vn is Z-semi-symmetric.

Then (R · Z)h
ijkrm = Z

i
jkh;sm − Z

i
jkh;ms = 0.

Contracting this relation with 1kr, one gets

1kr(Rs
ik jRhsmr + Rs

imrRhsjk + Rs
jmrRhisk+

+Rs
kmrRhijs) + Rs

ihjψsm − 1hm1
krRs

ik jψsr+

+ψimS jh − ψisRs
jmh + ψ jsRs

imh − 1 jh1
krψskRs

imr−

−ψ jsRs
mih + ψisRs

jmh + ψmsRs
jih − f Rhijm − 1 jhψis1

srSrm = 0,

(1)

where f = 1i jψi j.
Summing the above equation with the same obtained interchanging the indices h and i, we obtain

ψsmRs
ihj + ψsmRs

hi j − 1hm1
krψsrRs

ik j − ψsr1im1
krRs

hkj+

+S jhψim + Si jψmh + ψ jsRs
imh + ψ jsRs

hmi−

−1 jh1
krψksRs

imr − 1i j1
krψksRs

hmr − 1 jhψis1
srSrm−

−1i jψhsSrm = 0.

(2)
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Summing the relation (2) with the same equation obtained permuting the indices j with m, we have

S jhψim + Si jψhm − 1 jhψisSs
m + Shmψi j − 1i jψshSs

m+
+Simψhj − 1mhψisSs

j − 1imψshSs
j = 0, (3)

where Si j = Sr
i1rj. After a contraction of (3) with 1i j, we get the equation

(n + 1)ψhsSs
m − ρψhm − f Shm + 1hmψsrSsr

− ψsmSs
h = 0, (4)

where Si j = 1irS j
r, ρ = 1i jSi j. From (4) we obtain

ρ f = nSi jψi j. (5)

The relations (5) and (3) lead to

ψshSs
m =

f
n

Smh −
fρ
n2 1mh +

ρ

n
ψmh = ψsmSs

h. (6)

Using (6), the relation (3) becomes

( f1hm − nψhm)(nSi j − ρ1i j) + ( f1i j − nψi j)(nShm − ρ1hm)+

+( f1 jm − nψ jm)(nSih − ρ1ih) + ( f1ih − nψih)(nS jm − ρ1 jm) = 0.

We obtain (ψi j −
f
n1i j)(Shm −

ρ
n1hm) = 0. Hence the correspondence is special or the space Vn is Einstein.

In the second case one has

ψir −
f
n
1ir = 0 or Pi jkh = 0,

where P is the projective Weyl curvature tensor. Vn being an Einstein space, if P = 0, then Vn becomes a
space with constant curvature. Hence, Vn and Vn are spaces with constant curvature, using the Beltrami
theorem.

Theorem 2.2. Let Vn = (M, 1) and Vn = (M, 1),n ≥ 3, be two nontrivial geodesically related Riemann spaces. If Vn

is Z-semi-symmetric, with irreducible curvature tensor, then Vn and Vn are spaces with constant sectional curvature.

Proof. If Vn and Vn are two special geodesically related Riemannian spaces then

R
i
jkh = Ri

jkh + f (δi
h1 jk − δ

i
k1 jh), where ψi j = f1i j.

The above relation leads to
1isR

s
jkh + 1 jsR

s
ikh = 0.

The space Vn being with irreducible curvature tensor, then the system

xisR
s
jkh + x jsR

s
ikh = 0 (7)

has an unique solution, abstraction a factor. Because 1i j and 1i j are solutions of the system (7), we obtain

1i j = e2u1i j, where u is a function with variables x1, ..., xn. Vn and Vn being geodesically related, we have u =

ct. and we obtain
∣∣∣∣∣ i

j k

∣∣∣∣∣ =

∣∣∣∣∣ i
j k

∣∣∣∣∣. Then δi
jψk + δi

kψ j = 0 and ψk = 0. Using the previous result, the theorem

is proved.

The relation between the subgeodesic correspondence and the conformal related spaces leads to:

Theorem 2.3. Let Vn = (M, 1) and Vn = (M, 1),n ≥ 3, be two nontrivial ξ- subgeodesically related Riemann spaces.
If Vn is Z-semi-symmetric, with irreducible curvature tensor, then Vn and Ṽn = (M, 1̃ = e2u1) are spaces with
constant sectional curvature.
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3. On Concircular-Riemann Flows

Hamilton [8] introduced the concept of the Ricci flow. This means to control geometric quantities
associated to the metric as it evolves. For a Riemannian manifold (M, 10) the Ricci flow is the PDE:

∂
∂t
1(t) = −2S(1(t)), 1(0) = 10,

where S(1(t)) denotes the Ricci curvature tensor associated to the metric 1(t). The idea is to evolve the metric
in some way that will make the manifold ”rounder and rounder”. The hope is one may draw topological
properties from the existence of such round metrics.

Along this line, the notion of Riemann flow [10] generalizes the Ricci flow. Let (Λ2(M),G(t)) = 1(t)�1(t))
be the Riemann manifold of skew symmetric 2-forms,where

Gi jkl = 1ik1 jl − 1il1 jk.

The Riemann flow is a PDE that evolves the metric tensor G:

∂
∂t

G(t) = −2R(1(t)),

where R(1(t)) is the Riemann curvature tensor associated to the metric 1(t).
These extensions are natural, since some results in the Riemann flow resemble the case of Ricci flow.

For instance, the Riemann flow satisfies the short time existence and the uniqueness [10]. Also [10]:

Theorem A. If (M, 10) is a Riemann manifold (n ≥ 2) of constant sectional curvature -1, then the evolution
metric of the Riemann flow is 1(t) =

√
1 + 2(n − 1)t10. The manifold expands homothetically for all time.

Theorem B. For the round unit sphere (Sn, 10), n ≥ 2, the evolution metric of the Riemann flow is 1(t) =√
1 − 2(n − 1)t10 and the sphere collapses to a point in finite time.

In order to generalize these notions, we introduce a special Riemann type flow. Let M be a smooth
manifold endowed with a Riemann metric 1(t). For (0, 2)-tensors A and B, their Kulkarni-Nomizu product
A ∧ B is given by

(A ∧ B)(X1,X2; X,Y) = A(X1,Y)B(X2,X) + A(X2,X)B(X1,Y)−

−A(X1,X)B(X2,Y) − A(X2,Y)B(X1,X).

Let G = 1
21 ∧ 1 be the Riemann metric induced on 2-forms.

A concircular-Riemann flow or a Z-Riemann type flow is a means of processing the Riemann metric 1(t)
by allowing it to evolve under the PDE’s system

∂G
∂t

(t) = −2Z(1(t)),G(0) = G0.

Theorem 3.1. On a Riemannian manifold (M, 1(t)) (n ≥ 3) the concircular-Ricci type flow

∂1i j(t)
∂t

= α1i j(t) + βZi j(1(t))

determines the following concircular-Riemann type flow:

∂Gi jkl(t)
∂t

= 2αGi jkl(t) + βEi jkl(1(t)),

where α and β are functions on M, Zi j(1(t)) = Zk
ik j(1(t)) and Ei jkl(1(t)) is the semi-traceless part of the concircular

curvature tensor.
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Proof. Since
∂Gi jkl

∂t
= −

∂1il

∂t
1kj −

∂1kj

∂t
1il

one gets
∂Gi jkl(t)
∂t

= 2αGi jkl(t) + βEi jkl(1(t)).

The following result gives a new family of concircular related metrics:

Theorem 3.2. Let (M, 10) be a Riemann manifold. The class 1t of concircular related metrics with 10, given by the
Z-Riemann type flow satisfies

G(t) = −2Z(10)t + G0.

Proof. Implicit solution of a Cauchy problem associated to the concircular-Riemann flow.

As a consequence of the previous theorem, one has

Proposition 3.1. Let t ∈ (0, ε), ε > 0, ft : (M, 10) 7→ (M, 1t) be a concircular mapping.
If (M, 10) is an Einstein manifold, then (M, 1t) is an Einstein manifold.

Ricci solitons are natural extensions of Einstein metrics and also correspond to self-similar solutions of
Hamilton’s Ricci flow and often arise as limits of dilations of singularities in the Ricci flow. Ricci solitons
are called quasi-Einstein metrics in physics literature.

We generalize this notion to the concept of concircular-Riemann soliton, which exibits rich geometric
properties and are of interests to physicists as well, since the concircular curvature represents the deviation
of the space time manifold from the space of constant curvature.

Suppose the family of diffeomorphisms ϕt(x) is generated by the vector field X(x). The evolutive metric
1(x, t) = σ(t)ϕ∗t(x)1(x, 0) is a concircular-Riemann soliton iff the profile metric 1(x, 0) = 1(x) is a solution of
the nonlinear stationary PDE

Z(1) + λG +
1
2
1 ∧ LX1 = 0,

whereLX is the Lie-derivative of the metric 1with respect to X, λ is a constant and∧ is the Kulkarni-Nomizu
product.

If X is a gradient, i.e., X = ∇ f , then we get the notion of gradient concircular-Riemann solitons, whose
profile 1(x) satisfies the PDE

Z(1) + λG + 1 ∧ h f = 0,

for some smooth potential function f on M, where h f is the Hessian.

Theorem 3.3. A concircular-Riemann soliton on a compact Riemannian manifold is a gradient concircular-Riemann
soliton.

Theorem 3.4. Let (M, 1, λ, f ) be an n-dimensional (n > 2) gradient concircular-Riemann soliton.
If the potential function f is harmonic, then the manifold has constant sectional curvature.
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Proof. The gradient concircular-Riemann soliton verifies

Zi jkl + λGi jkl + 1ilh f jk + 1 jkh f il − 1ikh f jl − 1 jlh f ik = 0

and
Zil + 1il[λ(n − 1) + ∆ f ] + (n − 2)h f il = 0,

where ∆ is the Laplace operator. Therefore ∆ f = −λn
2 .

If f is harmonic, then the manifold is concircular flat and hence a space of constant sectional curva-
ture.

Open problem. Classification of gradient concircular-Riemann soliton for arbitrary potential function.
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