
Filomat 30:12 (2016), 3243–3252
DOI 10.2298/FIL1612243D

Published by Faculty of Sciences and Mathematics,
University of Niš, Serbia
Available at: http://www.pmf.ni.ac.rs/filomat

On Global Convergence Rate of Two Acceleration Projection
Algorithms for Solving the Multiple-Sets Split Feasibility Problem

Qiao-Li Donga,b, Songnian Hea,b, Yanmin Zhaoc

aCollege of Science, Civil Aviation University of China, Tianjin 300300, China.
b Tianjin Key Lab for Advanced Signal Processing, Civil Aviation University of China, Tianjin 300300, China.

cSchool of Mathematical Sciences and Institute of Applied Mathematics, Xuchang University, Xuchang, Henan 461000, China

Abstract. In this paper, we introduce two fast projection algorithms for solving the multiple-sets split
feasibility problem (MSFP). Our algorithms accelerate algorithms proposed in [8] and are proved to have
a global convergence rate O(1/n2). Preliminary numerical experiments show that these algorithms are
practical and promising.

1. Introduction

The multiple-sets split feasibility problem (MSFP) was firstly proposed by Censor et al in [6] and arises
in many practical fields, such as image reconstruction, signal processing, intensity-modulated radiation
therapy (IMRT) and so on [6, 12]. The MSFP received much attention and many researchers proposed
algorithms for solving it (see [8, 9, 14, 15, 17, 18, 20] and references therein). The MSFP is to find a point x∗

satisfying

x∗ ∈ C :=
t⋂

i=1

Ci such that Ax∗ ∈ Q :=
r⋂

j=1

Q j, (1)

where A is an M × N real matrix, Ci ⊆ RN, i = 1, . . . , t and Q j ⊆ RM, j = 1, . . . , r are the nonempty closed
convex sets. Specially, when t = r = 1, the problem reduces to the split feasibility problem (SFP), which is
to find x∗ ∈ C with Ax∗ ∈ Q (see, e.g. [4, 5]).

Assume that the MSFP (1) is consistent, i.e. its solution set, denoted by Γ, is nonempty. It is easy to see
that the MSFP (1) is equivalent to the minimization problem

min
1
2
‖x − PC(x)‖2 +

1
2
‖Ax − PQ(Ax)‖2

2010 Mathematics Subject Classification. 47H05, 47H07,47H10
Keywords. Multiple-sets split feasibility problem, Self-adaptive algorithm, Global rate of convergence, Projection algorithm.
Received: 11 September 2014; Accepted: 20 March 2015
Communicated by Ljubomir Ćirić
Research supported by National Natural Science Foundation of China (No. 61379102) and Fundamental Research Funds for the

Central Universities (No. 3122016L006).
Email addresses: dongql@lsec.cc.ac.cn (Qiao-Li Dong), songnianhe@163.com (Songnian He), zhaoym@lsec.cc.ac.cn (Yanmin

Zhao)

Q. L. Dong, S. He, Y. Zhao / Filomat 30:12 (2016), 3243–3252 3244

where PC and PQ denote the orthogonal projections onto C and Q, respectively. Generally, the projections
of a point onto the sets C and Q are difficult to implement, while sometimes in practice, projections onto
individual sets Ci and Q j are easily calculated. For this purpose, Censor et al [6] defined a proximity
function p(x) to measure the distance of a point to all sets

p(x) =
1
2

t∑
i=1

αi‖x − PCi (x)‖2 +
1
2

r∑
j=1

β j‖Ax − PQ j A(x)‖2, (2)

where αi > 0 and β j > 0 for all i and j, respectively, and
∑t

i=1 αi +
∑r

j=1 β j = 1. We see that

∇p(x) =

t∑
i=1

αi(x − PCi (x)) +

r∑
j=1

β jAT(I − PQ j)Ax.

Then, Censor et al [6] considered the following constrained MSFP:

find x∗ ∈ Ω such that x∗ solves the MSFP, (3)

where Ω ⊆ RN is an auxiliary simple nonempty closed convex set containing at least one solution of the
MSFP. For solving the constrained MSFP (3), Censor et al [6] proposed a projection algorithm as follows

xn+1 = PΩ(xn − s∇p(xn)), (4)

where s is a positive number such that 0 < sL ≤ s ≤ sU < 2/L(p), sL and sU are two fixed constants, and L(p)
is the Lipschitz constant of ∇p.

Observe that in the algorithm (4), the determination of the stepsize s depends on the operator (matrix)
norm ‖A‖ (or the largest eigenvalue of ATA). This means that in order to implement the algorithm (4), one
has first to compute (or, at least, estimate) operator norm of A, which is in general not an easy work in
practice.

To overcome this difficulty, Zhang et al [16], Zhao and Yang [18, 19] proposed self-adaptive methods
where the stepsize has no connection with matrix norms. Their methods actually compute the stepsize by
adopting self-adaptive strategies. Recently, Dong and He [8] presented another self-adaptive method by
using the backtracking rule.

Note that the algorithms proposed by Censor et al [6], Zhang et al [16] and Zhao and Yang [18, 19]
involve the projection to an auxiliary set Ω. In fact, the set Ω is introduced just for the convenience of the
proof of the convergence and it may be difficult to determine Ω in some cases. Considering this, Zhao and
Yang [20], and Dong and He [8] presented projection algorithms which don’t need projection to an auxiliary
set Ω.

Algorithms in proposed [8] are proved to have sublinear global rate of convergence O(1/n) and converge
quite slowly, especially for large-scale problems (see [2] for details), although they have advantages stated
above. Recently, Nesterov [10], Beck and Teboulle [2], and Tseng [13] studied the fast algorithms with global
convergence rate O(1/n2), based on the proximal gradient algorithms for convex optimization. Inspired by
them, in this paper, we introduce two algorithms which accelerate the two projection algorithms proposed
by Dong and He [8] respectively and share global rate of convergence O(1/n2). Two algorithms don’t
need an auxiliary set Ω and the second algorithm is self-adaptive, which uses backtracking rule to get the
stepsize. The efficiency of two algorithms is illustrated by some numerical experiments.

2. Preliminaries

In this section, we review some definitions and lemmas which will be used in the main results.
The following lemma is not hard to prove (see [1, 6]).

Lemma 2.1. Let p be given as in (2). Then

Q. L. Dong, S. He, Y. Zhao / Filomat 30:12 (2016), 3243–3252 3245

(i) p is convex and continuously differential;

(ii) ∇p(x) is Lipschitz continuous with L(p) =
∑t

i=1 αi + ρ(ATA)
∑r

j=1 β j as the Lipschitz constant, where ρ(ATA)
is the spectral radius of the matrix ATA.

For any τ > 0, consider the following quadratic approximation of p(x) at a given point y:

Rτ(x, y) := p(y) + 〈x − y,∇p(y)〉 +
τ
2
‖x − y‖2,

which admits a unique minimizer

Fτ(y) := arg min{Rτ(x, y) : x ∈ Rn
}. (5)

Simple algebra shows that (ignoring constant terms in y)

Fτ(y) = arg min
x

{
τ
2

∥∥∥∥∥x −
(
y −

1
τ
∇p(y)

)∥∥∥∥∥2}
= y −

1
τ
∇p(y).

(6)

The following lemma is well-known and fundamental property for a smooth function in the class C1,1;
e.g., [3, 11].

Lemma 2.2. Let f : Rn
→ R be a continuously differentiable function with Lipschitz continuous gradient and

Lipschitz constant L(f). Then, for any L > L(f),

f (x) ≤ f (y) + 〈x − y,∇ f (y)〉 +
L
2
‖x − y‖2, for every x, y ∈ Rn.

We are now ready to state and prove the promised key result.

Lemma 2.3. (see [2]) Let y ∈ Rn and τ > 0 be such that

p(Fτ(y)) ≤ Rτ(Fτ(y), y). (7)

Then for any x ∈ Rn,

p(x) − p(Fτ(y)) ≥
τ
2
‖Fτ(y) − y‖2 + τ〈y − x,Fτ(y) − y〉.

Proof. See the appendix.

Remark 2.4. Note that from lemmas 2.1 and 2.2, it follows that if τ ≥ L(p), then the condition (7) is always satisfied
for Fτ(y).

3. Two Fast Projection Algorithms

In [8], Dong and He proposed two projection algorithms as follows:

Algorithm 3.1. Let L1 ≥ L(p) be a fixed constant and given τn ∈ (L(p),L1). Let x0 be arbitrary. For n = 1, 2, . . . ,
compute

xn+1 = xn −
1
τn
∇p(xn). (8)

Q. L. Dong, S. He, Y. Zhao / Filomat 30:12 (2016), 3243–3252 3246

Algorithm 3.2. Given γ > 0 and η > 1. Let x0 be arbitrary. For n = 1, 2, . . . , find the smallest nonnegative integer
mn such that τn = γηmn and

xn+1 = xn −
1
τn
∇p(xn), (9)

which satisfies

p(xn+1) − p(xn) + 〈∇p(xn), xn − xn+1〉 ≤
τn

2
‖xn − xn+1‖

2. (10)

Dong and He [8] presented the following theorem which shows the convergence of the sequences {xn} and
illustrates that two algorithms share a sublinear global rate of convergence O(1/n).

Theorem 3.1. Let {xn} be a sequence generated by Algorithm 3.1 or Algorithm 3.2. Then {xn} converges to a solution
of the MSFP (1), and furthermore for any n ≥ 1 it holds,

p(xn) ≤
αL(p)‖x0 − x∗‖2

2n
, ∀x∗ ∈ Γ.

In this section, we introduce two algorithms which accelerate the algorithms 3.1 and 3.2, respectively.
The global rate of convergence of the two algorithms are investigated and the sequence {p(xn)} has the better
complexity rate O(1/n2).

Algorithm 3.3. Let L1 ≥ L(p) be a fixed constant and given τn ∈ (L(p),L1). Let x0 be arbitrary and set y1 = x0, t1 = 1.
For n = 1, 2, . . . , compute

xn = yn −
1
τn
∇p(yn), (11)

tn+1 =
1 +

√
1 + 4t2

n

2
, (12)

and

yn+1 = xn +
(tn − 1

tn+1

)
(xn − xn−1). (13)

Algorithm 3.4. Given γ > 0 and η > 1. Let x0 be arbitrary and set y1 = x0, t1 = 1. For n = 1, 2, . . . , find the
smallest nonnegative integer mn such that τn = γηmn and

xn = yn −
1
τn
∇p(yn), (14)

which satisfies

p(xn) − p(yn) + 〈∇p(yn), yn − xn〉 ≤
τn

2
‖yn − xn‖

2. (15)

Compute

tn+1 =
1 +

√
1 + 4t2

n

2
, (16)

and

yn+1 = xn +
(tn − 1

tn+1

)
(xn − xn−1).

Q. L. Dong, S. He, Y. Zhao / Filomat 30:12 (2016), 3243–3252 3247

Lemma 3.2.

βL(p) ≤ τn ≤ αL(p). (17)

where α = L1
L(p) , β = 1 in Algorithm 3.3 and α = η, β =

γ
L(p) in Algorithm 3.4.

Proof. It is easy to verify (17) for Algorithm 3.3. By η > 1 and the choice of τn, we get τn ≥ γ. From lemma
2.2, it follows that inequality (15) is satisfied for τn ≥ L(p), where L(p) is the Lipschitz constant of ∇p. So, for
Algorithm 3.4 one has τn ≤ ηL(p) for every n ≥ 1.

Remark 3.3. In the algorithm ’FISTA with backtracking’, Beck and Teboulle [2] took τn = τn−1ηmn , with τ0 > 0, η >
1. It is obvious that τn increases with n and consequently doesn’t satisfy the right inequality of (17), which is essential
in the proof of the convergence theorem. In Algorithm 3.4, we take τn = γηmn which satisfies the right inequality of
(17) (see the proof of Lemma 3.2).

The next result provides the key recursive relation for the sequence {p(xn)}.

Lemma 3.4. (see [2]) The sequences {xn, yn} generated via Algorithm 3.3 or Algorithm 3.4 satisfy for every n ≥ 1

2
τn

t2
nvn −

2
τn+1

t2
n+1vn+1 ≥ ‖un+1‖

2
− ‖un‖

2,

where vn := p(xn), un := tnxn − (tn − 1)xn−1 − x∗ with x∗ ∈ Γ.

Proof. See Appendix.
We also need the following trivial facts.

Lemma 3.5. Let {an, bn} be positive sequences of reals satisfying

an − an+1 ≥ bn+1 − bn, ∀n ≥ 1, with a1 + b1 ≤ c, c > 0.

Then an ≤ c for every n ≥ 1.

Lemma 3.6. The positive sequence {tn} generated in (12) with t1 = 1 satisfies tn ≥ (n + 1)/2 for all n ≥ 1.

Theorem 3.7. Let {xn} be generated by Algorithm 3.3 or Algorithm 3.4. Then for any n ≥ 1

p(xn) ≤
2αL(p)‖x0 − x∗‖2

(n + 1)2 , ∀x∗ ∈ Γ. (18)

Proof. Let us define the quantities

an :=
2
τn

t2
nvn, bn := ‖un‖

2, c := ‖y1 − x∗‖2 = ‖x0 − x∗‖2,

and recall (cf. Lemma 3.4) that vn := p(xn). Then, by Lemma 3.4 we have for every n ≥ 1

an − an+1 ≥ bn+1 − bn,

and hence assuming that a1 + b1 ≤ c holds true, invoking Lemma 3.5, we obtain that

2
τn

t2
nvn ≤ ‖x0 − x∗‖2,

which combined with tn ≥ (n + 1)/2 (by Lemma 3.6) yields

vn ≤
2τn‖x0 − x∗‖2

(n + 1)2 .

Q. L. Dong, S. He, Y. Zhao / Filomat 30:12 (2016), 3243–3252 3248

Utilizing the upper bound on τn given in (17), the desired result (18) follows. Thus, all that remains is to
prove the validity of the relation a1 + b1 ≤ c. Since t1 = 1, and using the definition of un given in Lemma 3.4,
we have here

a1 =
2
τ1

t2
1v1 =

2
τ1

v1, b1 = ‖u1‖
2 = ‖x1 − x∗‖2.

Applying Lemma 2.3 to the points x := x∗, y := y1 with τ = τ1, we get

p(x∗) − p(x1) ≥
τ1

2
‖x1 − y1‖

2 + τ1〈y1 − x∗, x1 − y1〉. (19)

Thus, using p(x∗) = 0, we obtain

−p(x1) ≥
τ1

2
‖x1 − y1‖

2 + τ1〈y1 − x∗, x1 − y1〉

=
τ1

2
{‖x1 − x∗‖2 − ‖y1 − x∗‖2}.

Consequently,

2
τ1

v1 ≤ ‖y1 − x∗‖2 − ‖x1 − x∗‖2,

that is, a1 + b1 ≤ c holds true.

Remark 3.8. In Note 2 of the article [13], Tseng discussed the choice of tn in fast algorithms and concluded that tn
needs to satisfy the inequality

t2
n+1 − tn+1 ≤ t2

n. (20)

The condition (20) allows {tn} to increase, but not too fast. For fastest convergence, {tn} should increase as fast as
possible, as the proof of Theorem 3.7 suggests. It is easy to verify that the choice

tn =
n + 1

2

also satisfies (20). Solving (20) with ” ≤ ” replaced by ”=” yields (12) which tends to infinity somewhat faster.

Remark 3.9. Different from Theorem 3.1, there isn’t convergence of the sequence {xn} in Theorem 3.7 for algorithms
3.3 and 3.4. Combettes and Pesquet [7] concluded that the convergence of the sequence {xn} generated by Algorithm
3.3 or Algorithm 3.4 is no longer guaranteed in general.

Table 1: Computational results for example 1 with different algorithms

Algorithm 3.1 Algorithm 3.3 Algorithm 3.4
1.01L(p) 1.1L(p) 1.2L(p) 1.01L(p) 1.1L(p) 1.2L(p)

Initial point Iter. Iter. Iter. Iter. Iter. Iter. Iter. InIt.
(0,0,0,0,0) 96 104 114 52 57 62 2 10

(20,10,20,10,20) 1246 1358 1482 629 685 747 8 24
(100,0,0,0,0) 1256 1368 1493 634 690 753 10 31

(1,1,1,1,1) 1228 1338 1460 621 676 737 3 16

Q. L. Dong, S. He, Y. Zhao / Filomat 30:12 (2016), 3243–3252 3249

Table 2: Computational results for example 2 with different dimensions and different numbers of Ci and Q j.

N 20 30 40 50 60
t = 5, Algorithm 3.1 Iter. 482 551 747 889 1085

Sec. 0.032 0.047 0.078 0.188 0.265
Algorithm 3.3 Iter. 88 95 112 123 137

Sec. 0.015 0.016 0.016 0.016 0.016
r = 5 Algorithm 3.2 Iter. 9 7 6 7 6

InIt. 105 145 177 209 210
Sec. 0.016 0.016 0.032 0.047 0.047

Algorithm 3.4 Iter. 6 5 5 5 5
InIt. 89 122 147 167 171
Sec. 0.015 0.016 0.016 0.031 0.047

t = 10, Algorithm 3.1 Iter. 599 794 872 1327 1713
Sec. 0.109 0.188 0.329 0.609 1.187

Algorithm 3.3 Iter. 135 158 166 210 241
Sec. 0.031 0.031 0.046 0.094 0.172

r = 15 Algorithm 3.2 Iter. 11 8 6 7 7
InIt. 126 158 177 213 244
Sec. 0.032 0.047 0.062 0.110 0.172

Algorithm 3.4 Iter. 5 5 6 5 5
InIt. 105 139 147 179 202
Sec. 0.031 0.031 0.047 0.125 0.125

t = 30, Algorithm 3.1 Iter. 953 1250 2100 2246 2448
Sec. 0.453 0.703 1.500 1.875 4.125

Algorithm 3.3 Iter. 282 331 445 461 484
Sec. 0.125 0.188 0.313 0.407 0.843

r = 40 Algorithm 3.2 Iter. 15 11 12 13 9
InIt. 126 145 182 224 232
Sec. 0.062 0.094 0.125 0.203 0.391

Algorithm 3.4 Iter. 9 5 7 10 9
InIt. 105 123 147 181 188
Sec. 0.047 0.079 0.109 0.172 0.344

4. Numerical experiments

In order to verify the theoretical assertions, we present some numerical experiments in this section.
We apply algorithms 3.3 and 3.4 to solve two test problems of [16] (examples 1 and 2), and compare the
numerical results with those of the algorithms 3.1 and 3.2 proposed by Dong and He [8].

For convenience, we denote the vector with all elements 0 by e0, and the vector with all elements 1
by e1 in what follows. In the numerical results listed in the following tables, ’Iter.’ and ’Sec.’ denote the
number of iterations and the cpu time in seconds, respectively. For algorithms 3.2 and 3.4, ’InIt.’ denotes
the number of total iterations of finding suitable τn in (10) and (15).

Example 1 ([16]). Consider the SFP as finding x ∈ C = {x ∈ R5
| ‖x‖ ≤ 0.25} such that Ax ∈ Q = {y =

(y1, y2, y3, y4)T
∈ R4

| 0.6 ≤ y j ≤ 1, j = 1, 2, 3, 4}, where

A =

2 −1 3 2 3
1 2 5 2 1
2 0 2 1 −2
2 −1 0 −3 5

 .

Q. L. Dong, S. He, Y. Zhao / Filomat 30:12 (2016), 3243–3252 3250

The weights of p(x) were set to α = 0.9, β = 0.1. In the implementation, we took p(x) < ε = 10−9 as the
stopping criterion as in [16].

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
−70

−60

−50

−40

−30

−20

−10

0

10
Al 3.1
Al 3.2
Al 3.3
Al 3.4

Figure 1: Comparison of the value errors lo1(p(xn)) of algorithms 3.1, 3.2, 3.3 and 3.4.

For algorithms 3.1 and 3.3, we tested τn = 1.01L(p), 1.1L(p), . . . , 1.9L(p) and the numerical results were re-
ported in table 1 with different initial point x0. (Since the number of iterations forτn = 1.3L(p), 1.4L(p), . . . , 1.9L(p)
was larger than those for τn ≤ 1.2L(p), we only reported the results for τn ≤ 1.2L(p).) We took γ = 2 and
η = 1.2 for algorithms 3.2 and 3.4. We can see from table 1 that algorithms 3.1 and 3.3 were efficient when
choosing a suitable τn (τn ∈ (L(p), 1.1L(p)) was the best choice for the current example), while the number of
iterations of Algorithm 3.3 was smaller than those of Algorithm 3.1 which is consistent with our theoreti-
cal analysis, and the number of iterations of Algorithm 3.4 was smaller than those for algorithms 3.1 and 3.3.

Example 2 ([16]). Consider the MSFP where A = (ai j)N×N ∈ RN×N and ai j ∈ (0, 1) generated randomly:

Ci = {x ∈ RN
| ‖x − di‖ ≤ ri}, i = 1, 2, . . . , t,

Q j = {y ∈ RN
|L j ≤ y ≤ U j}, j = 1, 2, . . . , r,

where di is the center of the ball Ci, e0 ≤ di ≤ 10e1, and ri ∈ (40, 50) is the radius, di and ri are both
generated randomly. L j and U j are the boundary of the box Q j, and are also generated randomly, satisfying
20e1 ≤ L j ≤ 30e1, 40e1 ≤ U j ≤ 80e1, respectively. The weights of p(x) were 1/(t + r). The stopping criterion
was p(x) < ε = 10−4 with the initial point x0 = e0 ∈ RN.

We tested the algorithms 3.1, 3.2, 3.3 and 3.4 with different t and r in different dimensional Euclidean
space. In algorithms 3.1 and 3.3, since a smaller τn was more efficient than a larger one, we chose
τn = 1.01L(p) in the experiment. We took γ = 1, η = 1.1 for algorithms 3.2 and 3.4. For comparison,
the same random values were taken in each test for four algorithms. The numerical results were listed in
table 2, from which we could observe the efficiency of the algorithms 3.3 and 3.4, both from the points of
view of number of iterations and cpu time. We found that the algorithms 3.3 and 3.4, in fact, accelerated the
algorithms 3.1 and 3.2, respectively. It should be noted that the self-adaptive algorithm 3.2 behaved better
that the fast algorithm 3.3 and the reason is worth further research.

The logarithm of p(xn) of the four algorithms for 10000 iterations was described in Figure 1. One could
see that after 10000 iterations algorithms 3.1, 3.2, 3.3 and 3.4 reached an accuracy of approximately 10−7,
10−29, 10−26 and 10−30, respectively. The results produced by algorithms 3.3 (resp. 3.4) were better than
those produced by algorithms 3.1 (resp. 3.2) by several (resp. one) orders of magnitude, and it clearly
demonstrated the effective performance of two fast algorithms. As the above analysis, the efficiency of

Q. L. Dong, S. He, Y. Zhao / Filomat 30:12 (2016), 3243–3252 3251

Algorithm 3.2 was better than that of Algorithm 3.3.

Acknowledgements The authors would like to thank Dr. Wenxing Zhang for his help in numerical
experiments and the reviewers for their pertinent comments and suggestions.

Appendix

Proof of Lemma 2.3. From (7), we have

p(x) − p(Fτ(y)) ≥ p(x) − Rτ(Fτ(y), y). (21)

Now, from the fact that p is convex, it follows

p(x) ≥ p(y) + 〈x − y,∇p(y)〉. (22)

On the other hand, by the definition of Rτ(x, y), one has

Rτ(Fτ(y), y) = p(y) + 〈Fτ(y) − y,∇p(y)〉 +
τ
2
‖Fτ(y) − y‖2. (23)

Therefore, using (21)-(23), it follows that

p(x) − p(Fτ(y)) ≥ −
τ
2
‖Fτ(y) − y‖2 + 〈x − Fτ(y),∇p(y)〉

= −
τ
2
‖Fτ(y) − y‖2 + τ〈x − Fτ(y), y − Fτ(y)〉

=
τ
2
‖Fτ(y) − y‖2 + τ〈y − x,Fτ(y) − y〉,

where in the first equality above we used (6).

Proof of Lemma 3.4. First we apply Lemma 2.3 at the points (x := xn, y := yn+1) with τ = τn+1, and likewise
at the points (x := x∗, y := yn+1), to get

2τ−1
n+1(vn − vn+1) ≥ ‖xn+1 − yn+1‖

2 + 2〈xn+1 − yn+1, yn+1 − xn〉,

−2τ−1
n+1vn+1 ≥ ‖xn+1 − yn+1‖

2 + 2〈xn+1 − yn+1, yn+1 − x∗〉,

where we used the fact that p(x∗) = 0 and xn+1 = Fτn+1 (yn+1). To get a relation between vn and vn+1, we
multiply the first inequality above by (tn+1 − 1) and add it to the second inequality:

2
τn+1

((tn+1 − 1)vn − tn+1vn+1) ≥ tn+1‖xn+1 − yn+1‖
2 + 2〈xn+1 − yn+1, tn+1yn+1 − (tn+1 − 1)xn − x∗〉.

Multiplying the last inequality by tn+1 and using the relation t2
n = t2

n+1 − tn+1 which holds thanks to (12), we
obtain

2
τn+1

(t2
nvn − t2

n+1vn+1) ≥ ‖tn+1(xn+1 − yn+1)‖2 + 2tn+1〈xn+1 − yn+1, tn+1yn+1 − (tn+1 − 1)xn − x∗〉.

Applying the usual Pythagoras relation

‖b − a‖2 + 2〈b − a, a − c〉 = ‖b − c‖2 − ‖a − c‖2,

to the right-hand side of the last inequality with

a := tn+1yn+1, b := tn+1xn+1, c := (tn+1 − 1)xn + x∗,

Q. L. Dong, S. He, Y. Zhao / Filomat 30:12 (2016), 3243–3252 3252

we thus get

2
τn+1

(t2
nvn − t2

n+1vn+1) ≥ ‖tn+1xn+1 − (tn+1 − 1)xn − x∗‖2 − ‖tn+1yn+1 − (tn+1 − 1)xn − x∗‖2.

Therefore, with yn+1 (cf. (13)) and un defined by

tn+1yn+1 = tn+1xn + (tn − 1)(xn − xn−1), and un = tnxn − (tn − 1)xn−1 − x∗,

it follows that

2
τn+1

(t2
nvn − t2

n+1vn+1) ≥ ‖un+1‖
2
− ‖un‖

2,

which combined with the inequality τn+1 ≥ τn yields

2
τn

t2
nvn −

2
τn+1

t2
n+1vn+1 ≥ ‖un+1‖

2
− ‖un‖

2.

The proof is completed.

Acknowledgements The authors would like to express their thanks the referees for their helpful sug-
gestions.

References

[1] J. P. Aubin, Optima and Equilibria: An Introduction to Nonlinear Analysis (Berlin: Springer), 1993.
[2] A. Beck, M. Teboulle, A fast iterative shrinkage-thresholding algorithm for linear inverse problems, SIAM J. Imaging Sciences 2

(2000) 183–202.
[3] D. P. Bertsekas, Nonlinear Programming, 2nd ed., Athena Scientific, Belmont, MA, 1999.
[4] C. L. Byrne, A unified treatment of some iterative algorithms in signal processing and image reconstruction, Inverse Probl. 20

(2004) 103-120.
[5] Y. Censor, T. Elfving, A multiprojection algorithm using Bregman projections in a product space, Numer. Algorithms 8 (1994)

221–239.
[6] Y. Censor, T. Elfving, N. Kopf, T. Bortfeld, The multiple-sets split feasibility problem and its applications for inverse problems,

Inverse Probl. 21 (2005) 2071–2084.
[7] P. L. Combettes, J. C. Pesquet, Proximal splitting methods in signal processing, in: Fixed-Point Algorithms for Inverse Problems

in Science and Engineering, (H. H. Bauschke, R. S. Burachik, P. L. Combettes, V. Elser, D. R. Luke, and H. Wolkowicz, Editors),
pp. 185–212. Springer, New York, 2011.

[8] Q. L. Dong, S. He, Two projection algorithms for the multiple-sets split feasibility problem, J. Appl. Math. Volume 2013, Article
ID 347401, 5 pages.

[9] Z. Li, D. Han, W. Zhang, A self-adaptive projection-type method for nonlinear multiple-sets split feasibility problem, Inverse
Probl. Sci. Eng. 21 (2013) 155–170.

[10] Y. Nesterov, Introductory Lectures on Convex Optimization: A Basic Course, Kluwer, 2003.
[11] J. M. Ortega, W. C. Rheinboldt, Iterative Solution of Nonlinear Equations in Several Variables, Classics Appl. Math. 30, SIAM,

Philadelphia, 2000.
[12] R. J. Palta, T. R. Mackie, Intensity-modulated radiation therapy: the state of art (medical physics monograph 29) (madison, WI:

medical physics publishing), 2003.
[13] P. Tseng, On accelerated proximal gradient methods for convex-concave optimization, (2008).
[14] H. K. Xu, A variable Krasnosel’skiĭ-Mann algorithm and the multiple-set split feasibility problem, Inverse Probl. 22 (2006)

2021–2034.
[15] Y. Yao, R. Chen, G. Marino, Y. C. Liou, Applications of fixed-point and optimization methods to the multiple-set split feasibility

problem, J. Appl. Math. Vol. 2012 Article ID 927530, 21 pages.
[16] W. Zhang, D. Han, Z. Li, A self-adaptive projection method for solving the multiple-sets split feasibility problem, Inverse Probl.

25 (2009) 115001., 16pp.
[17] W. Zhang, D. Han, X. Yuan, An efficient simultaneous method for the constrained multiple-sets split feasibility problem, Comput.

Optim. Appl. 52 (2012) 825–843.
[18] J. Zhao, Q. Yang, Self-adaptive projection methods for the multiple-sets split feasibility problem, Inverse Probl. 27 (2011) 035009.
[19] J. Zhao, Q. Yang, Several acceleration schemes for solving the multiple-sets split feasibility problem, Linear Algebra Appl. 437

(2012) 1648–1657.
[20] J. Zhao, J. Zhang, Q. Yang, A simple projection method for solving the multiple-sets split feasibility problem, Inverse Probl. Sci.

Eng. 21 (2013) 537–546.

