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Abstract. In this article, we formulate a best proximity pair theorem for noncyclic relatively nonexpansive
mappings in convex metrc spaces by using a geometric notion of semi-normal structure. In this way,
we generalize a corresponding result in [W. Takahashi, A convexity in metric space and nonexpansive
mappings, Kodai Math. Sem. Rep. 22 (1970) 142-149]. We also establish a best proximity pair theorem for
pointwise noncyclic contractions in the setting of convex metric spaces. Our result generalizes a result due
to Sankara Raju Kosuru and Veeramani [G. Sankara Raju Kosuru and P. Veeramani, A note on existence
and convergence of best proximity points for pointwise cyclic contractions, Numer. Funct. Anal. Optim.,
82 (2011) 821-830].

1. Introduction

Let X be a Banach space and C ⊆ X. Recall that a mapping T : C → C is nonexpansive provided that
‖Tx−Ty‖ ≤ ‖x− y‖ for all x, y ∈ C. A closed convex subset C of a Banach space X has normal structure in the
sense of Milman and Brodskii ([5]) if for each bounded, closed and convex subset D of C which contains
more than one point, there exists a point x ∈ D which is not a diametral point, that is,

sup{‖x − y‖ : y ∈ D} < diam(D),

where diam(D) is the diameter of D. We mention that every compact and convex subset of a Banach space X
has normal structure (see [12]). Moreover, every bounded, closed and convex subset of a uniformly convex
Banach space X has also normal structure (see [13]).

In 1965, Kirk proved the following famous fixed theorem.

Theorem 1.1. (Kirk’s fixed point theorem [14]) Let C be a nonempty, weakly compact and convex subset of a Banach
space X. If C has normal structure, then every nonexpansive self-map defined on C has a fixed point.
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Let (X, d) be a metric space and let A and B be two nonempty subsets of X. A mapping T : A∪B→ A∪B
is said to be a noncyclic mapping provided that T(A) ⊆ A and T(B) ⊆ B. A point (p, q) ∈ A × B is said to be a
best proximity pair for noncyclic mapping T, provided that

Tp = p, Tq = q and d(p, q) = dist(A,B) := inf{‖x − y‖ : x ∈ A, y ∈ B}.

Let (A,B) be a nonempty pair of subsets of a metric space (X, d). A mapping T : A∪ B→ A∪ B is said to
be a noncyclic relatively nonexpansive if T is noncyclic and d(Tx,Ty) ≤ d(x, y) for all (x, y) ∈ A × B.

A mapping T : A ∪ B→ A ∪ B is said to be a cyclic relatively nonexpansive if T is cyclic (that is, T(A) ⊆ B
and T(B) ⊆ A) and d(Tx,Ty) ≤ d(x, y) for all (x, y) ∈ A × B. It is clear that every nonexpansive mapping is
relatively nonexpansive.

In [8], Eldred et al. studied the existence of best proximity pairs for noncyclic relatively nonexpansive
mappings as well as cyclic relatively nonexpansive mappings in Banach spaces with a geometric property,
called proximal normal structure. We also mention that in [4] the authors studied sufficient conditions for the
existence of best proximity pairs in metric spaces.

For other related results, we refer the reader to [1–3, 6, 11, 15–19].

In this article, we attempt to investigate sufficient conditions for the existence and uniqueness of a best
proximity pair for noncyclic contractive type mappings in the setting of convex metric spaces. We also, obtain
a fixed point theorem for noncyclic relatively nonexpansive mappings in uniformly convex metric spaces.

2. Preliminaries

The notion of convexity in metric spaces was introduced by Takahashi as follows.

Definition 2.1. ([22]) Let (X, d) be a metric space and I := [0, 1]. A mappingW : X × X × I → X is said
to be a convex structure on X provided that for each (x, y;λ) ∈ X × X × I and u ∈ X,

d(u,W(x, y;λ)) ≤ λd(u, x) + (1 − λ)d(u, y).

A metric space (X, d) together with a convex structure W is called a convex metric space, which is
denoted by (X, d,W). A Banach space and each of its convex subsets are convex metric spaces. But a
Frechet space is not necessary a convex metric space. The other examples of convex metric spaces which
are not imbedded in any Banach space can be founded in [22].

Here, we recall some notions of [22].

Definition 2.2. ([22]) A subset K of a convex metric space (X, d,W) is said to be a convex set provided
thatW(x, y;λ) ∈ K for all x, y ∈ K and λ ∈ I.

Proposition 2.3. ([22]) Let (X, d,W) be a convex metric space and let B(x; r) denote the closed ball centered at
x ∈ X with radius r ≥ 0. Then B(x; r) is a convex subset of X.

Proposition 2.4. ([22]) Let {Kα}α∈A be a family of convex subsets of X, then
⋂
α∈A Kα is also a convex subset of X.

Definition 2.5. ([22]) A convex metric space (X, d,W) is said to have property (C) if every bounded
decreasing net of nonempty closed convex subsets of X has a nonempty intersection.

It is known that every bounded, closed and convex subset of a reflexive Banach space X has property
(C). Also, complete and uniformly convex metric space has the property (C) (see [21] for more information).

Let A and B be two nonempty subsets of a convex metric space (X, d,W). We shall say that a pair (A,B)
in a convex metric space (X, d,W) satisfies a property if both A and B satisfy that property. For instance,
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(A,B) is convex if and only if both A and B are convex; (A,B) ⊆ (C,D) ⇔ A ⊆ C, and B ⊆ D. We shall also
adopt the following notations.

δx(A) := sup{d(x, y) : y ∈ A} for all x ∈ X,
δ(A,B) := sup{d(x, y) : x ∈ A, y ∈ B},

diam(A) := δ(A,A).

The closed and convex hull of a set A will be denoted by con(A) and defined as below.

con(A) :=
⋂
{C : C is a closed and convex subset of X such that C ⊇ A}.

The pair (x, y) ∈ A × B is said to be proximal in (A,B) if d(x, y) = dist(A,B). Moreover, we set

A0 := {x ∈ A : d(x, y′) = dist(A,B), for some y′ ∈ B},

B0 := {y ∈ B : d(x′, y) = dist(A,B), for some x′ ∈ A}.

Note that if (A,B) is a nonempty weakly compact and convex pair of subsets of a Banach space X, then also
is the pair (A0,B0) and it is easy to see that dist(A,B) = dist(A0,B0).

A nonempty pair (A,B) of subsets if a convex metric space (X, d,W) is said to be a semi-sharp proximinal
pair if for each x in A (respectively in B) there exists at most one x′ in B (respectively in A) such that
d(x, x′) = d(A,B). It is clear that every closed and convex pair in a strictly convex Banach space X is a
semi-sharp proximinal pair.

Definition 2.6. A pair of sets (A,B) is said to be proximal if A = A0 and B = B0.

Definition 2.7. ([10]) Let (A,B) be a nonempty pair of subsets of a metric space (X, d). We say that the pair
(A,B) is a proximal compactness pair provided that every net ({xα}, {yα}) of A × B satisfying the condition
that d(xα, yα) → dist(A,B), has a convergent subnet in A × B. Also, we say that A is semi-compactness if
(A,A) is proximal compactness.

In [8], Eldred et.al introduced a geometric concept called proximal normal structure which generalizes
the notion of normal structure introduced by Milman and Brodskii [5].

Definition 2.8. A convex pair (K1,K2) in a Banach space X is said to have proximal normal structure if
for any bounded, closed and convex proximal pair (H1,H2) ⊆ (K1,K2) for which dist(H1,H2) = dist(K1,K2)
and δ(H1,H2) > dist(H1,H2), there exits (x1, x2) ∈ H1 ×H2 such that

δx1 (H2) < δ(H1,H2), δx2 (H1) < δ(H1,H2).

It was announced in [8] that every nonempty, bounded, closed and convex pair of subsets of a uniformly
convex Banach space X has proximal normal structure (see Proposition 2.1 of [8]).

The following best proximity pair theorem was established in [8].

Theorem 2.9. (Theorem 2.2 of [8]) Let (A,B) be a nonempty, weakly compact and convex pair in a strictly
convex Banach space X. Let T : A ∪ B → A ∪ B be a noncyclic relatively nonexpansive mapping. If the pair (A,B)
has proximal normal structure. The T has a best proximity pair.

Also, we have the next best proximity pair result in the setting of uniformly convex Banach spaces.

Theorem 2.10. ([8]) Suppose that (A,B) is a nonempty, bounded, closed and convex pair in a uniformly convex
Banach space X. Let T : A∪B→ A∪B be a noncyclic relatively nonexpansive mapping. Then T has a best proximity
pair in A ∪ B.



M. Gabeleh, N. Shahzad / Filomat 30:12 (2016), 3149–3158 3152

Recently, Sankara Raju Kosuru and Veeramani introduced a concept of pointwise noncyclic contractions
as follows.

Definition 2.11. ([20]) Let (A,B) be a pair of subsets of a metric space (X, d). A mapping T : A∪B→ A∪B
said to be a pointwise noncyclic contraction if T is noncyclic and for each (x, y) ∈ A × B there exist
0 ≤ α(x) < 1, 0 ≤ α(y) < 1 such that

d(Tx,Ty) ≤ α(x)d(x, y) + (1 − α(x))dist(A,B) for all y ∈ B,
d(Tx,Ty) ≤ α(y)d(x, y) + (1 − α(y))dist(A,B) for all x ∈ A.

We note that every pointwise noncyclic contraction is noncyclic relatively nonexpansive.
The following existence and uniqueness of a best proximity pair for pointwise noncyclic contractions

was stated in [20].

Theorem 2.12. (Theorem 4.6 of [20]) Let (A,B) be a nonempty, weakly compact and convex pair of a Banach
space X. If T : A∪B→ A∪B is a pointwise noncyclic contraction mapping, then T has a unique best proximity pair.

3. Noncyclic Relatively Nonexpansive Mappings

In [22], Takahashi generalized Kirk’s fixed point theorem to convex metric spaces as follows.

Theorem 3.1. Suppose that (X, d,W) is a convex metric space such that X has the property (C). Let K be a
nonempty, bounded, closed and convex subset of X with normal structure. If T : K→ K is a nonexpansive mapping,
then T has a fixed point.

In this section, we establish a new fixed point theorem for noncyclic relatively nonexpansive mappings
in the setting of convex metric spaces. In this way, we obtain an extension of Theorem 3.1 due to Takahashi.
In this order, we recall and modify the notion of semi-normal structure which was introduced in [11] by the
current authors.

Definition 3.2. ([11]) A convex pair (A,B) in a convex metric space (X, d,W) is said to have semi-
normal structure if for any bounded, closed and convex pair (K1,K2) ⊆ (A,B) with δ(K1,K2) > 0, there exits
(p, q) ∈ K1 × K2 such that

max{δp(K2), δq(K1)} < δ(K1,K2).

Note that if the pair (A,A) has semi-normal structure, then A has normal structure in the sense of
Brodskil and Milman ([5]). This can be seen by taking A = B and K1 = K2 in Definition 3.2, and observing
that δ(K1,K2) = diam(K1). If δp(K1) = δ(K1,K1) for some p ∈ K1, then p is called a nondiametral point of K1.

Here, we state the main result of this section.

Theorem 3.3. Let (A,B) be a nonempty, bounded, closed and convex pair in a convex metric space (X, d,W).
Suppose that T : A∪B→ A∪B is a noncyclic relatively nonexpansive mapping. If (A,B) has semi-normal structure
and X has the property (C), then A ∩ B is nonempty and T has a fixed point pair in A ∩ B.

Proof. Let F denote the set of all nonempty, bounded, closed and convex pairs (E,F) which are subsets of
(A,B) and T is noncyclic on E ∪ F. Notice that (A,B) ∈ F , that is, F is nonempty. Also, F is partially
ordered by revers inclusion, i.e., (E1,E2) ≤ (F1,F2)⇔ (F1,F2) ⊆ (E1,E2)). Let {(Eα,Fα)} be a descending chain
in F and set E :=

⋂
α Eα and F :=

⋂
α Fα. Since X has the property (C), (E,F) is nonempty and also closed.

Moreover, by Proposition 2.4, (E,F) is convex. It can be easily proved that T is noncyclic on E ∪ F. Hence,
every increasing chain in F is bounded above. By using Zorn’s lemma, we obtain a minimal element say
(K1,K2) ∈ F . We mention that if δ(K1,K2) = 0, then K1 = K2 = {x?} for some x? ∈ X and so, x? ∈ A ∩ B is a
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fixed point of T and we are finished. Now, suppose that δ(K1,K2) > 0. Note that (con(T(K1)), con(T(K2))) is a
nonempty, bounded, closed and convex subset of (A,B). Since T is noncyclic,

T(con(T(K1))) ⊆ T(K1) ⊆ con(T(K1)).

Similarly, T(con(T(K2))) ⊆ con(T(K2)). Hence, T is noncyclic on con(T(K1)) ∪ con(T(K2)). By the fact that
(K1,K2) is the minimal element of F ,

con(T(K1)) = K1 , con(T(K2)) = K2.

By semi-normal structure there exist (p, q) ∈ K1 × K2 and r ∈ (0, 1) such that

max{δp(K2), δq(K1)} ≤ rδ(K1,K2).

Set,
L1 := {x ∈ K1 : δx(K2) ≤ rδ(K1,K2)} & L2 := {y ∈ K2 : δy(K1) ≤ rδ(K1,K2)}.

Note that (p, q) ∈ L1 × L2. We show that (L1,L2) is a closed and convex pair in X. Let {xn} be a sequence in
L1 such that xn → x. Then for each ε > 0 there exists N ∈ N such that d(xn, x) < ε for all n ≥ N. Since K1 is
closed, x ∈ K1. Let y ∈ K2 be arbitrary. For all n ≥ N we have

d(x, y) ≤ d(x, xn) + d(xn, y)

≤ d(x, xn) + δxn (K2) ≤ d(x, xn) + rδ(K1,K2)

< ε + rδ(K1,K2),

which implies that δx(K2) ≤ rδ(K1,K2). Hence, x ∈ L1. Thus, L1 is closed. Similarly, we can see that L2 is
closed. Now, assume that x1, x2 ∈ L1 and λ ∈ [0, 1]. For all y ∈ K2 we have

d(y,W(x1, x2, λ)) ≤ λd(y, x1) + (1 − λ)d(y, x2)

≤ λδx1 (K2) + (1 − λ)δx2 (K2) ≤ λrδ(K1,K2) + (1 − λ)rδ(K1,K2)

= rδ(K1,K2),

which deduces that δW(x1,x2,λ)(K2) ≤ rδ(K1,K2). Thus,W(x1, x2, λ) ∈ L1, that is, L1 is convex. Similarly, we
can see that L2 is also convex. Here, we verify that T is noncyclic on L1 ∪ L2. Let x ∈ L1 be fixed. Then for
each y ∈ K2, by the fact that T is noncyclic relatively nonexpansive,

d(Tx,Ty) ≤ d(x, y) ≤ δx(K2) ≤ rδ(K1,K2),

which implies that Ty ∈ B(Tx, rδ(K1,K2)) for each y ∈ K2. So, T(K2) ⊆ B(Tx; rδ(K1,K2)) ∩ K2 and hence,

K2 = con(T(K2)) ⊆ B(Tx; rδ(K1,K2)) ∩ K2.

Thereby, K2 ⊆ B(Tx; rδ(K1,K2)) which concludes that δTx(K2) ≤ rδ(K1,K2). Then Tx ∈ L1, that is, T(L1) ⊆ L1.
By a similar manner, we have T(L2) ⊆ L2. Therefore, T is noncyclic on L1 ∪ L2. Again, by the minimality
of (K1,K2) we must have L1 = K1 and L2 = K2. Hence, for each x ∈ K1 we have δx(K2) ≤ rδ(K1,K2) which
implies that

δ(K1,K2) = sup
x∈K1

δx(K2) ≤ rδ(K1,K2),

which is a contradiction. This completes the proof of theorem.
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The next theorem is obtained from a similar argument of Theorem 3.3.

Theorem 3.4. (Compare to Theorem 2.9.) Let (A,B) be a nonempty, weakly compact and convex pair in a
Banach space X such that (A,B) has semi-normal structure. Suppose that T : A∪B→ A∪B is a noncyclic relatively
nonexpansive mapping. Then A ∩ B is nonempty and T has a fixed point in A ∩ B.

Remark 3.5. Note that unlike Theorem 2.9 due to Eldred, Kirk and Veeramani, we do not need the con-
dition of strictly convexity of the Banach space X, when we use the geometric notion of semi-normal structure.

An interesting feature about this argument is that continuity of the noncyclic relatively nonexpansive
mapping T is no longer needed. Indeed, simple examples can be constructed showing that discontinuous
mappings can satisfy all the assumptions. Also, it is possible to reformulate this result as a common fixed
point theorem for two self mappings as below.

Corollary 3.6. Let (A,B) be a nonempty, bounded, closed and convex pair in a convex metric space (X, d,W).
Suppose that f : A→ A and 1 : B→ B are two self-mappings such that

d( f (x), 1(y)) ≤ d(x, y), ∀(x, y) ∈ A × B.

If (A,B) has semi-normal structure and X has the property (C), then there exists an element x? ∈ A ∩ B such that

f (x?) = 1(x?) = x?.

Let X be a uniformly convex Banach space with modulus of convexity δ. Then δ(ε) > 0 for ε > 0.
Moreover, if x, y, z ∈ X,R > 0 and r ∈ [0, 2R] we have

‖x − z‖ ≤ R
‖y − z‖ ≤ R
‖x − y‖ ≥ r

⇒ ‖
x + y

2
− z‖ ≤ (1 − δ(

r
R

))R.

Motivated by Theorem 2.10, we establish the following result by using the notion of semi-normal struc-
ture in uniformly convex Banach spaces.

Theorem 3.7. Let (A,B) be a nonempty, bounded, closed and convex pair in a uniformly convex Banach space
X. Suppose that T : A∪ B→ A∪ B is a noncyclic relatively nonexpansive mapping. Then either A∩ B is nonempty
and T has a fixed point in A ∩ B, or T has a best proximity pair in A ∪ B.

Proof. Suppose
∑

denotes the the collection of all nonempty, closed, and convex pairs (E,F) ⊆ (A,B) such
that T is noncyclic on E ∪ F and there exists a pair (p, q) ∈ E × F for which ‖p − q‖ = dist(A,B). Notice that
(A0,B0) ∈

∑
and so,

∑
is nonempty. By using Zorn’s Lemma we can see that

∑
has a minimal element say

(K1,K2). We mention that the pair (K1,K2) is also proximal by the minimality of (K1,K2). If δ(K1,K2) = 0,
then A ∩ B is a nonempty, bounded closed and convex subset of a uniformly convex Banach space X and
T : A∩ B→ A∩ B is nonexpansive mapping. Thus, T has a fixed point and we are finished. So, we assume
that δ(K1,K2) > 0. We now consider the following cases:

Case 1. min{diam(K1), diam(K2)} = 0.
We may assume that K1 = {x∗}. Then there exists y∗ ∈ K2 such that ‖x∗ − y∗‖ = dist(A,B). Since T is noncyclic
relatively nonexpansive mapping, we have

dist(A,B) ≤ ‖x∗ − Ty∗‖ = ‖Tx∗ − Ty∗‖ ≤ ‖x∗ − y∗‖ = dist(A,B).

Now, if y∗ , Ty∗, then by the strictly convexity of X we obtain

dist(A,B) ≤ ‖x∗ −
y∗ + Ty∗

2
‖ <

1
2

(‖x∗ − y∗‖ + ‖x∗ − Ty∗‖) = dist(A,B),
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which is a contradiction. Hence, T has a best proximity pair in this case.

Case 2. If min{diam(K1), diam(K2)} > 0.
Suppose that T has not best proximity pair. we get a contradiction by showing that δ(K1,K2) = 0. Let
(p, q) ∈ K1 × K2 be such that ‖p − q‖ = dist(A,B). Since T is noncyclic relatively nonexpansive, we have

‖Tp − Tq‖ ≤ ‖p − q‖ = dist(A,B).

Thus, we must have p , Tp and q , Tq. It now follows from the strictly convexity of X that

‖
p + Tp

2
−

q + Tq
2
‖ = dist(A,B).

Set R := δ(K1,K2) and r := min{‖p − Tp‖, ‖q − Tq‖}. It is easy to see that r ∈ [0, 2R]. Now, for all y ∈ K2 we
have 

‖p − y‖ ≤ R,
‖Tp − y‖ ≤ R,
‖p − Tp‖ ≥ r.

Since X is a uniformly convex Banach space we conclude that

‖
p + Tp

2
− y‖ ≤ (1 − δ(

r
R

))R, ∀y ∈ K2,

Hence, δ p+Tp
2

(K2) < R. Similarly, we can see that δ q+Tq
2

(K1) < R. Set, x∗ := p+Tp
2 and y∗ := q+Tq

2 . Then
(x∗, y∗) ∈ K1 × K2 and ‖x∗ − y∗‖ = dist(A,B) and also,

max{δx∗ (K2), δy∗ (K1)} < δ(K1,K2).

It now follows from the similar argument of Theorem 3.3 that δ(K1,K2) = 0. This completes the proof of
theorem.

Example 3.8. ([9]) Let X := [−1, 1] and define a metric d on X by

d(x, y) =

0, if x = y,
max{|x|, |y|}, if x , y.

DefineW : X × X × I→ X with

W(x, y, λ) = λmin{|x|, |y|},

for each x, y ∈ X andλ ∈ I. Then (X, d,W) is a convex metric space and has the property (C) (see Example 3.9
of [9] for more details). Moreover, every convergent sequence in this metric space converges to 0. Suppose
that A := [−1, 0] and B := [0, 1]. Thus (A,B) is a bounded closed and convex pair in X and it is easy to see
that (A,B) has the semi-normal structure. Let T : A ∪ B→ A ∪ B be a mapping defined with

T(x) =

0 if x , 1,
1 if x = 1.

Then T is noncyclic relatively nonexpansive. Hence, T has a best proximity pair which is x? = 0.
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4. Pointwise Noncyclic Contractions

Here, we verify the following best proximity pair result for pointwise noncyclic contractions in the
setting of convex metric spaces. Note that the proof is done directly and without the notion of proximal
normal structure.

Theorem 4.1. Let (A,B) be a nonempty, bounded, closed, convex and semi-sharp proximinal pair in a convex
metric space (X, d,W). Suppose that T : A∪B→ A∪B is a pointwise noncyclic contraction mapping. If X satisfies
the property (C) , then T has a unique best proximity pair.

Proof. Proceeding in a similar way as in Theorem 3.3, we obtain, by minimality, that con(T(K1)) = K1 and
con(T(K2)) = K2. Let x ∈ K1, then K2 ⊆ B(x; δx(K2)). Now, if y ∈ K2, there exists 0 ≤ α(x) < 1 such that

d(Tx,Ty) ≤ α(x)d(x, y) + (1 − α(x))dist(A,B)

≤ α(x)δx(K2) + (1 − α(x))dist(A,B).

Thus, for all y ∈ K2 we have

Ty ∈ B(Tx;α(x)δx(K2) + (1 − α(x))dist(A,B)),

and so,
T(K2) ⊆ B(Tx;α(x)δx(K2) + (1 − α(x))dist(A,B)).

Therefore,
K2 = con(T(K2)) ⊆ B(Tx;α(x)δx(K2) + (1 − α(x))dist(A,B)),

Hence,

δTx(K2) ≤ α(x)δx(K2) + (1 − α(x))dist(A,B). (1)

By the similar argument if y ∈ K2, there exists 0 ≤ α(y) < 1 such that

δTy(K1) ≤ α(y)δy(K1) + (1 − α(y))dist(A,B). (2)

Now, let (x∗, y∗) ∈ K1 × K2 be a fixed element. Put,

r1 := α(x∗)δx∗ (K2) + (1 − α(x∗))dist(A,B),

r2 := α(y∗)δy∗ (K1) + (1 − α(y∗))dist(A,B),

and let r1 ≤ r2. Set,

L1 := {x ∈ K1 : δx(K2) ≤ r2} and L2 := {y ∈ K2 : δy(K1) ≤ r2}.

It follows from (4.1) that δTx∗ (K2) ≤ r1 ≤ r2 and by using (4.2) we have δTy∗ (K1) ≤ r2, that is, (Tx∗,Ty∗) ∈ L1×L2.
Also, if x ∈ L1, then δx(K2) ≤ r2. Now, by (1)

δTx(K2) ≤ α(x)δx(K2) + (1 − α(x))dist(A,B) ≤ δx(K2) ≤ r2,

which implies that Tx ∈ L1 and so, T(L1) ⊆ L1. Similarly, we can see that T(L2) ⊆ L2. Thus, T is noncyclic on
L1 ∪ L2. On the other hand, it is easy to see that

L1 = [
⋂
y∈K2

B(y, r2)] ∩ K1 & L2 = [
⋂
x∈K1

B(x, r2)] ∩ K2.

Hence, by Propositions 2.3 and 2.4 we conclude that (L1,L2) is a closed and convex pair in X. It now follows
from the minimality of (K1,K2) that K1 = L1 and K2 = L2. Thereby,

δy(K1) ≤ α(y∗)δy∗ (K1) + (1 − α(y∗))dist(A,B)
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≤ α(y∗)δ(K1,K2) + (1 − α(y∗))dist(A,B),

for all y ∈ K2 which concludes that

δ(K1,K2) = sup
y∈K2

δy(K1) ≤ α(y∗)δ(K1,K2) + (1 − α(y∗))dist(A,B).

So, we obtain
δ(K1,K2) = dist(A,B).

Since (A,B) is a semi-sharp proximinal pair, we conclude that K1 and K2 are singleton and so, T has a best
proximity pair, say (p, q) ∈ K1 × K2. If (p′, q′) ∈ K1 × K2 is another best proximity pair, then

d(p, q′) = d(Tp,Tq′) ≤ α(p)d(p, q′) + (1 − α(p))dist(A,B),

which implies that d(p, q′) = dist(A,B). Again, by the fact that (A,B) is a semi-sharp proximinal pair we
must have q = q′. In a similar fashion, we have p = p′ and this completes the proof of theorem.

The following corollary is the corrected version of Theorem 2.14 due to Sankara Raju Kosuru and Veeramani
in Banach spaces.

Corollary 4.2. Let (A,B) be a nonempty, weakly compact, convex and semi-sharp proximinal pair of subsets of
a Banach space X. Suppose that T : A ∪ B → A ∪ B is pointwise noncyclic contraction. Then T has a unique best
proximity pair.

The following example ensures that under conditions of theorem 2.14 we cannot conclude the existence
of a best proximity pair for pointwise noncyclic contractions, necessarily.

Example 4.3. Let X be the real space l2 renoremed according to

‖x‖ = max{‖x‖2,
√

2‖x‖∞},

where, ‖x‖∞ denotes the l∞-norm and ‖x‖2 the l2 norm. Suppose that {en} be the canonical basis of l2. Note
that this norm is equivalent to ‖.‖2 and so, (X, ‖.‖) is a reflexive Banach space. We also mention that X is not
strictly convex Banach space. Set,

A := {x = (xn) : x3 = 1, ‖x‖ ≤
√

2} & B := {y := e1 + e2}.

Then (A,B) is a bounded, closed and convex pair in a reflexive Banach space X and hence (A,B) is a weakly
compact pair. We note that A is not compact because the sequence {e3 + en}n,3 does not have any convergent
subsequence. Notice that u := e1 + e3 and v := e2 + e3 are two points of A and we have ‖u−v‖ = ‖v− y‖ =

√
2.

Moreover, for each x = (x1, x2, 1, x4, ...) ∈ A we have ‖x‖2 ≤
√

2 which implies that
∑

i,3 |xi|
2
≤ 1 and since

‖x‖∞ ≤ 1 we conclude that |xi| ≤ 1 for each i ∈ N. Thus, for all x ∈ A we have ‖x − y‖ ≥
√

2 which deduces
that d(A,B) =

√
2. Let T : A ∪ B→ A ∪ B be a mapping defined as

Ty = y, and for each x ∈ A, Tx =

v if x = u,
u if x , u.

Then T is noncyclic and for each α ∈ [0, 1) and x ∈ A we have

‖Tx − Ty‖ = α
√

2 + (1 − α)
√

2 ≤ α‖x − y‖ + (1 − α)d(A,B),

that is, T is a pointwise noncyclic contraction. But, T|A has no fixed point and hence, T has no best proximity
pair. We note that the pair (A,B) is not semi-sharp proximinal pair.
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