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Abstract. In this paper, it is proved that on a generalized (k, µ)′-almost Kenmotsu manifold M2n+1 of
dimension 2n + 1, n > 1, the conditions of local symmetry, semi-symmetry, pseudo-symmetry and quasi
weak-symmetry are equivalent and this is also equivalent to that M2n+1 is locally isometric to either the
hyperbolic space H2n+1(−1) or the Riemannian product Hn+1(−4) × Rn. Moreover, we also prove that a
generalized (k, µ)-almost Kenmotsu manifold of dimension 2n + 1, n > 1, is pseudo-symmetric if and only
if it is locally isometric to the hyperbolic spaceH2n+1(−1).

1. Introduction

It is well-known that a Riemannian manifold M is said to be locally symmetric in the sense of Cartan if
its curvature tensor R is parallel with respect to its Levi-Civita connection∇, i.e., ∇R = 0. Locally symmetric
spaces have been a fundamental research field in differential geometry.

The notion of local symmetry was later generalized by Cartan [4] and Sinjukov [16] to the notion of
semi-symmetry, i.e.,

R(X,Y) · R = 0 (1)

for any vector fields X,Y on M, where the curvature operator R acts on the curvature tensor field R as a
derivative. Some structure theorems on Riemannian manifolds satisfying semi-symmetry condition were
obtained by Szabó [17, 18]. Obviously, a locally symmetric space is always semi-symmetric, however, in
general, the converse is not necessarily true. An example of semi-symmetric but not locally symmetric
Riemannian manifold was shown by Takagi [19].

In 1987, Deszcz and Grycak [6] introduced a generalization of semi-symmetry which is named pseudo-
symmetry, i.e.,

R(X,Y) · R = lR{(X ∧1 Y) · R} (2)
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for any vector fields X,Y on M, where lR is a smooth function on M, X ∧1 Y is an endomorphism field
defined by

(X ∧1 Y)(Z) = 1(Y,Z)X − 1(X,Z)Y

for any vector field Z on M and X ∧1 Y acts on the curvature tensor field R as a derivative (see also Deszcz
[7]). In particular, a pseudo-symmetric manifold with lR = 0 reduces to a semi-symmetric manifold. If lR
is a constant on a pseudo-symmetric manifold M, then M is said to be a pseudo-symmetric manifold of
constant type. In addition, a pseudo-symmetric manifold is said to be proper if it is a non-semi-symmetric
manifold.

We also observe that another generalization of local symmetry was introduced by Chaki [5] which is
defined by

(∇XR)(Y,Z,U) = 2α(X)R(Y,Z)U + α(Y)R(X,Z)U + α(Z)R(Y,X)U + α(U)R(Y,Z)X + 1(X,R(Y,Z)U)P (3)

for any vector fields X,Y,Z,U, where α is a 1-form and P is a vector field related to α by α(X) = 1(X,P). It is
easy to see that a Riemannian manifold satisfying equation (3) is locally symmetric if α vanishes.

If a Riemannian manifold M satisfies equation (3), then it is also said to be pseudo-symmetric (see
Tarafdar and De [23]). In order to distinguish between the above two kinds of pseudo-symmetry, in this
paper, we say that a Riemannian manifold M satisfying equation (3) is a quasi weakly-symmetric manifold.
The meaning of this notion comes from the fact that a quasi weakly-symmetric manifold is a special case of
weakly-symmetric space in the sense of Tamássy and Binh [20, 21], which is defined by

(∇XR)(Y,Z,U) = α(X)R(Y,Z)U + β(Y)R(X,Z)U + γ(Z)R(Y,X)U + σ(U)R(Y,Z)X + 1(X,R(Y,Z)U)P (4)

for any vector fields X,Y,Z,U, where α, β, γ and σ are 1-forms on M and P a vector field on M.
Many authors have studied almost contact metric manifolds for which curvature tensors satisfy some

symmetry conditions. See, for example, Tarafdar and De [23] obtained a non-existence theorem regarding
quasi weakly-symmetric K-contact metric manifold; Kenmotsu [11] proved that a locally symmetric Ken-
motsu manifold is locally a hyperbolic spaceH2n+1(−1). Moreover, Binh et al. [2] and Özgür [13] studied
semi-symmetric and weakly-symmetric Kenmotsu manifolds, respectively. After the notion of almost Ken-
motsu manifolds was introduced by Janssens and Vanhecke [10], Kim and Pak [12] and Dileo and Pastore
[8, 9] recently obtained some fundamental formulas and properties of such manifolds. Following their
results, Aktan et al. [1] and Wang and Liu [24–26] obtained some classification theorems of some types of
almost Kenmotsu manifolds with certain symmetry conditions.

In this paper, we aim to investigate generalized (k, µ)′ and (k, µ)-almost Kenmotsu manifold M2n+1

with certain symmetry conditions. We first prove that a generalized (k, µ)′-almost Kenmotsu manifold of
dimension 2n+1, n > 1, is pseudo-symmetric if and only if it is locally isometric to either the hyperbolic space
H2n+1(−1) or the Riemannian productHn+1(−4)×Rn. However, we also show that without the restriction on
dimension of M2n+1, the above conclusion keeps correct on a (k, µ)′-almost Kenmotsu manifold. Similarly,
we also prove that on a generalized (k, µ)-almost Kenmotsu manifold, the conditions of local symmetry,
semi-symmetry and pseudo-symmetry are equivalent, and this is also equivalent to that M2n+1 is locally
isometric to the hyperbolic space H2n+1(−1). Main results in this paper generalize some corresponding
theorems proved in Kenmotsu [11], Binh et al. [2], Dileo and Pastore [9] and Wang and Liu [25].

2. Almost Kenmotsu Manifolds

According to Blair [3], an almost contact structure on a (2n + 1)-dimensional smooth manifold M2n+1 is a
triplet (φ, ξ, η), where φ is a (1, 1)-type tensor field, ξ a global vector field (which is called the characteristic
or the Reeb vector field) and η a 1-form, such that

φ2 = −id + η ⊗ ξ, η(ξ) = 1, (5)
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where id denotes the identity endomorphism. From relation (5) we obtain that φ(ξ) = 0, η ◦ φ = 0 and
rank(φ) = 2n. A Riemannian metric 1 on M2n+1 satisfying

1(φX, φY) = 1(X,Y) − η(X)η(Y), (6)

for any vector fields X,Y, is said to be compatible with the almost contact structure (φ, ξ, η). An almost
contact structure endowed with a compatible Riemannian metric is said to be an almost contact metric
structure. A smooth manifold furnished with an almost contact metric structure is called an almost contact
metric manifold, which is denoted by (M2n+1, φ, ξ, η, 1). The fundamental 2-form Φ of an almost contact
metric manifold M2n+1 is defined by Φ(X,Y) = 1(X, φY) for any vector fields X and Y on M2n+1. We may
define an almost complex structure J on the product manifold M2n+1

×R by

J
(
X, f

d
dt

)
=

(
φX − fξ, η(X)

d
dt

)
,

where X denotes the vector field tangent to M2n+1, t is the coordinate of R and f is a smooth function
on M2n+1

× R. An almost contact structure is said to be normal if the above almost complex structure is
integrable. According to Blair [3], the normality of an almost contact structure is expressed by [φ,φ] =
−2dη ⊗ ξ, where [φ,φ] denotes the Nijenhuis tensor of φ which is defined by [φ,φ](X,Y) = φ2[X,Y] +
[φX, φY] − φ[φX,Y] − φ[X, φY] for any vector fields X,Y on M2n+1.

According to Janssens and Vanhecke [10], an almost contact metric manifold such that dη = 0 and
dΦ = 2η ∧ Φ is called an almost Kenmotsu manifold. A normal almost Kenmotsu manifold is said to be a
Kenmotsu manifold.

The following three tensor fields l = R(·, ξ)ξ, h = 1
2Lξφ and h′ = h ◦ φ, defined on an almost Kenmotsu

manifold M2n+1, play key roles in the studies of geometry of almost Kenmotsu manifolds, where R denotes
the curvature tensor of M2n+1 and L is the Lie differentiation. According to [8, 9, 12], we see that the three
(1, 1)-type tensor fields l, h and h′ are all symmetric and satisfy the following equations:

φlφ − l = 2(h2
− φ2), (7)

∇Xξ = X − η(X)ξ + h′X (8)

hξ = lξ = 0, trh = trh′ = 0, hφ + φh = 0. (9)

for any vector fields X,Y on M2n+1, where S, Q, ∇ and tr denote the Ricci curvature tensor, the Ricci operator
with respect to 1, the Levi-Civita connection of 1 and the trace operator, respectively.

3. Curvature Properties of Generalized (k, µ)′-Almost Kenmotsu Manifolds

Considering an almost Kenmotsu manifold (M2n+1, φ, ξ, η, 1), we denote by D the distribution defined
byD = ker(η). According to Dileo and Pastore [9], if the characteristic vector field ξ on M2n+1 satisfies the
(k, µ)′-nullity condition, i.e.,

R(X,Y)ξ = k(η(Y)X − η(X)Y) + µ(η(Y)h′X − η(X)h′Y) (10)

for any vector fields X,Y on M2n+1, where both k and µ are constants, then M2n+1 is called a (k, µ)′-almost
Kenmotsu manifold.

Moreover, according to Pastore and Saltarelli [14], if on an almost Kenmotsu manifold the Reeb vector
field ξ satisfies equation (10) for two smooth functions k and µ, then M2n+1 is called a generalized (k, µ)′-
almost Kenmotsu manifold. In both cases, it follows directly from equation (10) that

R(ξ,X)Y = k(1(X,Y)ξ − η(Y)X) + µ(1(h′X,Y)ξ − η(Y)h′X) (11)

for any vector fields X,Y. A generalized (k, µ)′-almost Kenmotsu manifold is said to be proper if k and µ
are not constants.
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Noticing that the class of generalized (k, µ)′-almost Kenmotsu manifolds includes the set of (k, µ)′-
almost Kenmotsu manifolds and the set of k-almost Kenmotsu manifolds (see Pastore and Saltarelli [15]) as
its proper subsets.

In this section, we shall consider (M2n+1, φ, ξ, η, 1) being a generalized (k, µ)′-almost Kenmotsu manifold,
substituting Y with ξ in equation (10) gives l = −kφ2 + µh′. Putting this relation into (7) yields that

h′2 = (k + 1)φ2. (12)

It follows from equation (12) that λ2 = −(k + 1), hence we have k ≤ −1 and λ = ±
√
−k − 1.

Lemma 3.1 ([9, Proposition 4.1]). Let (M2n+1, φ, ξ, η, 1) be a (k, µ)′-almost Kenmotsu manifold such that h′ , 0.
If M2n+1 is locally symmetric, then it is locally isometric to the Riemannian productHn+1(−4) ×Rn.

Corollary 3.2. Let (M2n+1, φ, ξ, η, 1) be a generalized (k, µ)′-almost Kenmotsu manifold of dimension ≥ 5, then
M2n+1 is locally symmetric if and only if it is locally isometric to either the hyperbolic space H2n+1(−1) or the
Riemannian productHn+1(−4) ×Rn.

Proof. In fact, if M2n+1 is locally symmetric, applying [8, Proposition 6] we have that ∇ξh = 0. Then, making
use of it in [14, Proposition 3.1] we have µ = −2 and using this in [14, Proposition 3.2] we obtain that
ξ(k) = X(k) = 0 for any X ∈ D, which implies that k is also a constant. Hence, from Lemma 3.1 we see that
M2n+1 is locally isometric to eitherH2n+1(−1) orHn+1(−4) ×Rn. Conversely, according to Dileo and Pastore
[9, Remark 4.1], we know that the productHn+1(−4)×Rn is locally symmetric. This completes the proof.

Making use of the Dileo and Pastore [9, Proposition 4.2], Wang and Liu [25] obtained the following
result.

Lemma 3.3 ([25, Theorems 1.1, 1.2]). Let (M2n+1, φ, ξ, η, 1) be a (k, µ)′-almost Kenmotsu manifold. If M2n+1 is
semi-symmetric, then it is locally isometric to either the hyperbolic space H2n+1(−1) or the Riemannian product
Hn+1(−4) ×Rn.

Corollary 3.4. Let (M2n+1, φ, ξ, η, 1) be a (k, µ)′-almost Kenmotsu manifold. Then M2n+1 is locally symmetric if and
only if it is semi-symmetric.

Proof. The proof follows from Lemma 3.3 and Dileo and Pastore [9, Remark 4.1], i.e., the product manifold
Hn+1(−4) ×Rn is locally symmetric and hence semi-symmetric. This completes the proof.

Next, we present the following result by showing the equivalence between pseudo-symmetry and
semi-symmetry on a generalized (k, µ)′-almost Kenmotsu manifold.

Lemma 3.5. Let (M2n+1, φ, ξ, η, 1) be a generalized (k, µ)′-almost Kenmotsu manifold, then M2n+1 is pseudo-
symmetric if and only if it is semi-symmetric.

Proof. The semi-symmetry implies pseudo-symmetry is trivial. In what follows, we assume that M2n+1 is
pseudo-symmetric, i.e., equation (2) holds. Then we have (R(X,Y) · R)(U,V,W) = lR{(X ∧1 Y) · R}(U,V,W)
for any vector fields X,Y,U,V,W. Substituting Y = U with ξ, the pseudo-symmetry condition becomes

(R(X, ξ) · R)(ξ,V,W) = lR{(X ∧1 ξ) · R}(ξ,V,W) (13)

for any vector fields X,V,W. Since the curvature operator R(X, ξ) acts on the curvature tensor field R as a
derivative, then we have

(R(X, ξ) · R)(ξ,V,W) = R(X, ξ)R(ξ,V)W − R(R(X, ξ)ξ,V)W − R(ξ,R(X, ξ)V)W − R(ξ,V)R(X, ξ)W (14)

We shall compute the left hand side of equation (13) by using equation (14) and some relations which were
already shown in Wang and Liu [25, Proof of Theorem 1.1] (noticing that these relations keep correct in a
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generalized (k, µ)′-almost Kenmotsu manifolds). For the sake of completeness, we present these relations
as follows:

R(X, ξ)R(ξ,V)W =[−k21(V,W)η(X) + k2η(W)1(X,V) + 2kµη(W)1(h′V,X)

− kµη(X)1(h′V,W) + µ2η(W)1(h′2X,V)]ξ

+ k21(V,W)X + kµ1(V,W)h′X − k2η(V)η(W)X

− kµη(V)η(W)h′X + kµ1(h′V,W)X + µ21(h′V,W)h′X,

(15)

R(R(X, ξ)ξ,V)W = − [k2η(X)1(V,W) + kµη(X)1(h′V,W)]ξ + kR(X,V)W

+ µR(h′X,V)W + k2η(X)η(W)V + kµη(X)η(W)h′V,
(16)

R(ξ,R(X, ξ)V)W =[k2η(V)1(X,W) + kµη(V)1(h′X,W) + kµη(V)1(h′X,W) + µ2η(V)1(h′2X,W)]ξ

− k2η(V)η(W)X − 2kµη(V)η(W)h′X − µ2η(V)η(W)h′2X
(17)

and

R(ξ,V)R(X, ξ)W =[−k2η(V)1(X,W) + k2η(W)1(X,V) + 2kµη(W)1(h′X,V)

− kµη(V)1(h′X,W) + µ2η(W)1(h′2X,V)]ξ + k21(X,W)V

+ kµ1(X,W)h′V − k2η(X)η(W)V − kµη(X)η(W)h′V

+ kµ1(h′X,W)V + µ21(h′X,W)h′V,

(18)

for any vector fields X,V,W, where equations (10) and (11) have been used. Making use of equations
(15)-(18) in (14) we obtain

(R(X, ξ) · R)(ξ,V,W) = − kR(X,V)W − µR(h′X,V)W + k21(V,W)X + kµ1(h′V,W)X

+ kµ1(V,W)h′X + kµη(V)η(W)h′X + µ2η(V)η(W)h′2X

+ µ21(h′V,W)h′X − k21(X,W)V − kµ1(h′X,W)V

− µ21(h′X,W)h′V − kµ1(X,W)h′V

− [kµη(V)1(h′X,W) + µ2η(V)1(h′2X,W)]ξ

(19)

for any vector fields X,V,W. On the other hand, since the operator X ∧1 ξ acts on curvature tensor field R
as also a derivative, then we have

((X ∧1 ξ) · R)(ξ,V,W) =(X ∧1 ξ)(R(ξ,V)W) − R((X ∧1 ξ)(ξ),V)W
− R(ξ, (X ∧1 ξ)(V))W − R(ξ,V)(X ∧1 ξ)(W)

(20)

for any vector fields X,V,W. Next, we compute the right hand side of equation (13) by using (20) and the
following relations

(X ∧1 ξ)(R(ξ,V)W) =k1(V,W)X − kη(V)η(W)X + µ1(h′V,W)X − kη(X)1(V,W)ξ
+ kη(W)1(X,V)ξ − µη(X)1(h′V,W)ξ + µη(W)1(h′X,V)ξ,

(21)

R((X ∧1 ξ)(ξ),V)W =R(X,V)W − kη(X)1(V,W)ξ − µη(X)1(h′V,W)ξ + kη(X)η(W)V
+ µη(X)η(W)h′V,

(22)

R(ξ, (X ∧1 ξ)(V))W =η(V)(k1(X,W) + µ1(h′X,W))ξ − kη(V)η(W)X − µη(V)η(W)h′X, (23)

and

R(ξ,V)(X ∧1 ξ)(W) =kη(W)1(X,V)ξ + µη(W)1(h′X,V)ξ − kη(V)1(X,W)ξ
− kη(X)η(W)V + k1(X,W)V − µη(X)η(W)h′V + µ1(X,W)h′V,

(24)
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for any vector fields X,V,W, where equations (10) and (11) have been used. Putting equations (21)-(24) into
(20) yields that

(X ∧1 ξ) · R}(ξ,V,W) = − R(X,V)W − k1(X,W)V − µ1(X,W)h′V
+ µ1(h′V,W)X + k1(V,W)X + µη(V)η(W)h′X
− η(V)(2k1(X,W) + µ1(h′X,W))ξ

(25)

for any vector fields X,V,W. In view of equation (12), next we shall separate our discussions into two cases
as follows:

Case I: k = −1. In this case we have h = 0 and using it in (19) and (25) gives two equations, putting the
two equations in (13) yields that

R(X,V)W + 1(V,W)X − 1(X,W)V =lR{−R(X,V)W + 1(X,W)V − 1(V,W)X + 2η(V)1(X,W)ξ} (26)

for any vector fields X,V,W. Using h = 0 and k = −1 in (10) gives

R(X,V)ξ = −η(V)X + η(X)V (27)

for any vector fields X,V. Thus, substituting W with ξ in equation (26) and taking into account equation
(27) yields that 2lRη(X)η(V)ξ = 0 holds for any vector fields X,V, and hence we have lR = 0, which means
that M2n+1 is semi-symmetric.

Case II: k < −1. In this case we have h , 0, substituting W with ξ in equation (19) gives

(R(X, ξ) · R)(ξ,V,W) =k2η(V)X + 2kµη(V)h′X + µ2η(V)h′2X − k2η(X)V − kµη(X)h′V
− kR(X,V)ξ − µR(h′X,V)ξ

for any vector fields X,V,W. By using equation (10) in the above equation we have that (R(X, ξ) ·
R)(ξ,V,W) = 0. On the other hand, substituting W with ξ in equation (25) and making use of (10) we
have (X ∧1 ξ) · R}(ξ,V,W) = −2kη(X)η(V)ξ for any vector fields X,V, then it follows from equation (13) that
−2klRη(X)η(V)ξ = 0 and hence we have lR = 0. Therefore, we conclude that M2n+1 is semi-symmetric. This
completes the proof.

From equation (12), in case of h , 0, we denote by [λ]′ and [−λ]′ the eigenspaces associated with h′

corresponding eigenvalues λ and −λ, respectively, where we assume that λ =
√
−k − 1 > 0. Thus, we have

Lemma 3.6 ([14, Theorem 5.1]). Let (M2n+1, φ, ξ, η, 1) be a generalized (k, µ)′-almost Kenmotsu manifold of di-
mension ≥ 5 such that h , 0. Then, for any Xλ,Yλ,Zλ ∈ [λ]′ and X−λ,Y−λ,Z−λ ∈ [−λ]′, the Riemannian curvature
tensor R satisfies :

R(Xλ,Yλ)Z−λ = 0,
R(X−λ,Y−λ)Zλ = 0,
R(Xλ,Y−λ)Zλ = (k + 2)1(Xλ,Zλ)Y−λ,

R(Xλ,Y−λ)Z−λ = −(k + 2)1(Y−λ,Z−λ)Xλ,

R(Xλ,Yλ)Zλ = (k − 2λ)[1(Yλ,Zλ)Xλ − 1(Xλ,Zλ)Yλ],
R(X−λ,Y−λ)Z−λ = (k + 2λ)[1(Y−λ,Z−λ)X−λ − 1(X−λ,Z−λ)Y−λ].

Our main result in this paper can be stated as follows:

Theorem 3.7. Let (M2n+1, φ, ξ, η, 1) be a generalized (k, µ)′-almost Kenmotsu manifold of dimension ≥ 5, then the
following statements are equivalent:

(1) M2n+1 is locally symmetric, i.e., ∇R = 0.
(2) M2n+1 is semi-symmetric, i.e., R · R = 0.
(3) M2n+1 is pseudo-symmetric, i.e., R(X,Y) · R = lR{(X ∧1 Y) · R}.
(4) M2n+1 is locally isometric to either the hyperbolic spaceH2n+1(−1) or the Riemannian productHn+1(−4)×Rn.
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Proof. According to Corollary 3.2 and Lemma 3.5 we have (1)⇔ (4) and (2)⇔ (3). Since (1)⇒ (2) is trivial,
to complete the proof it is necessary to prove that a semi-symmetric generalized (k, µ)′-almost Kenmotsu
manifold of dimension ≥ 5 is locally isometric to either H2n+1(−1) or Hn+1(−4) × Rn. We still separate the
discussions into two cases as follows:

Case 1: h , 0. In this case, by (12) we have k < −1 and λ , 0. Letting X,V,W ∈ [λ]′ in equation (19),
applying Lemma 3.6 and noticing that M2n+1 is semi-symmetric, then we have

kµ + 2k + µ2λ + 2µλ = 0. (28)

Similarly, letting X,V,W ∈ [−λ]′ in equation (19) and applying Lemma 3.6 we obtain

−kµ − 2k + µ2λ + 2µλ = 0. (29)

Adding (28) to (29) and using h , 0 gives that either µ = 0 or µ = −2. Making use of µ = 0 in (28) we get
k = 0, a contradiction. Applying µ = −2 in [14, Proposition 3.2] we see that k is also a constant. This means
that M2n+1 is a (k, µ)′-almost Kenmotsu manifold, the remaining proof follows from [25, Theorem 1.1].

Case 2: h = 0. By equation (12) we have k = −1, using it in equation (19) we have R(X,V)W =
−1(V,W)X + 1(X,W)V for any vector fields X,V,W. This completes the proof.

Lemma 3.8. Let (M2n+1, φ, ξ, η, 1) be a (k, µ)′-almost Kenmotsu manifold, then M2n+1 is locally symmetric if and
only if it is quasi weakly-symmetric.

Proof. The local symmetry implies quasi weak-symmetry is trivial. Next, suppose that M2n+1 is quasi
weakly-symmetric, i.e., equation (3) holds. Noticing that a (k, µ)′-nullity distribution is a special case of
a (k, µ, ν)-nullity distribution, then, in this context, in view of k ≤ −1 being a constant we may apply [1,
Theorem 3.1] and obtain that 4α =

X(k)
k = 0 and hence P = 0. Using this in equation (3) we obtain ∇R = 0.

This completes the proof.

Theorem 3.9. Let (M2n+1, φ, ξ, η, 1) be a (k, µ)′-almost Kenmotsu manifold, then the following statements are equiv-
alent:

(1) M2n+1 is locally symmetric.
(2) M2n+1 is semi-symmetric.
(3) M2n+1 is pseudo-symmetric.
(4) M2n+1 is quasi weakly-symmetric, i.e., (3) holds.
(5) M2n+1 is locally isometric to either the hyperbolic spaceH2n+1(−1) or the Riemannian productHn+1(−4)×Rn.

Proof. From Corollary 3.2 we know that (1) ⇔ (5). Moreover, (1) ⇔ (4) and (2) ⇔ (3) were already shown
in Lemma 3.8 and Lemma 3.5, respectively. From Corollary 3.3 we have (2) ⇔ (5). This completes the
proof.

Corollary 3.10. A Kenmotsu manifold is pseudo-symmetric if and only if it is locally isometric to the hyperbolic
spaceH2n+1(−1).

From Dileo and Pastore [8, Proposition 2], we see that an almost Kenmotsu manifold is Kenmotsu if and
only if h = 0 and the integral manifolds of D are Kählerian. Then the above result follows directly from
Theorem 3.9.

4. Curvature properties of generalized (k, µ)-almost Kenmotsu manifolds

Let (M2n+1, φ, ξ, η, 1) be an almost Kenmotsu manifold, if the Reeb vector field ξ satisfies the generalized
(k, µ)-nullity condition, i.e.,

R(X,Y)ξ = k(η(Y)X − η(X)Y) + µ(η(Y)hX − η(X)hY) (30)
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for any vector fields X,Y and certain smooth functions k and µ on M2n+1, then we say that M2n+1 is a
generalized (k, µ)-almost Kenmotsu manifold (see Pastore and Saltarelli [14]). In particular, if both k and µ
in equation (30) are constants, then M2n+1 is to be a (k, µ)-almost Kenmotsu manifold (see Dileo and Pastore
[9]). As shown in Section 3, on a generalized (k, µ)-almost Kenmotsu manifold we see that equation (12)
keeps correct and by (30) we have

R(ξ,X)Y = k(1(X,Y)ξ − η(Y)X) + µ(1(hX,Y)ξ − η(Y)hX) (31)

for any vector fields X,Y. Noticing that a (k, µ)-almost Kenmotsu manifold satisfies h = 0 and k = −1.

Lemma 4.1 ([9, Theorem 4.1]). Let (M2n+1, φ, ξ, η, 1) be a (k, µ)-almost Kenmotsu manifold. If M2n+1 is locally
symmetric, then it is locally isometric to the hyperbolic spaceH2n+1(−1).

The above result was generalized to the following

Lemma 4.2 ([15, 25]). Let (M2n+1, φ, ξ, η, 1) be a (k, µ)-almost Kenmotsu manifold. If M2n+1 is semi-symmetric,
then it is locally isometric to the hyperbolic spaceH2n+1(−1).

In this section, we shall give another result extending Lemma 4.1 and Lemma 4.2.

Lemma 4.3. Let (M2n+1, φ, ξ, η, 1) be a generalized (k, µ)-almost Kenmotsu manifold of dimension ≥ 5. Then M2n+1

is semi-symmetric if and only if it is locally isometric to the hyperbolic spaceH2n+1(−1).

Proof. The hyperbolic spaceH2n+1(−1) is locally symmetric. Proceeding similarly to that of Lemma 3.5 and
using R · R = 0 we

kR(X,V)W + µR(hX,V)W − k21(V,W)X − kµ1(hV,W)X

− kµ1(V,W)hX − kµη(V)η(W)hX − µ2η(V)η(W)h2X

− µ21(hV,W)hX + k21(X,W)V + kµ1(hX,W)V + µ21(hX,W)hV

+ kµ1(X,W)hV + [kµη(V)1(hX,W) + µ2η(V)1(h2X,W)]ξ = 0

(32)

for any vector fields X,V,W.
In case of k < −1, i.e., h , 0, by (12) we denote by [λ] and [−λ] the eigenspaces associated with h

corresponding eigenvalues λ and −λ, respectively, where λ =
√
−k − 1 > 0. According to Pastore and

Saltarelli [14, Theorem 4.1] we have

R(Xλ,Y−λ)Zλ =1(Xλ,Zλ)Y−λ + λ21(φY−λ,Zλ)φXλ

+ λ(1(Xλ,Zλ)φY−λ − 1(φY−λ,Zλ)Xλ)
(33)

and

R(X−λ,Y−λ)Z−λ = − 1(Y−λ,Z−λ)X−λ + 1(X−λ,Z−λ)Y−λ
− λ(1(Y−λ,Z−λ)φX−λ − 1(X−λ,Z−λ)φY−λ)

(34)

for any Xλ,Yλ,Zλ ∈ [λ] and X−λ,Y−λ,Z−λ ∈ [−λ].
Now, letting X,W ∈ [λ] and V ∈ [−λ] in equation (32) we have

(k + λµ + k2
− λ2µ2)1(X,W)V + λ2(k + λµ)1(φV,W)φX − λ(k + λµ)1(φV,W)X + λ(k + λµ)1(X,W)φV = 0.

Choosing X = φV ∈ [λ] in the above relation and taking into account λ2 = −k − 1 and h , 0 we obtain

(k + λµ)(2λ + µ) = 0. (35)
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Next, letting X,V,W ∈ [−λ] in equation (32) we have

(−k + λµ − k2 + 2λkµ − λ2µ2)1(V,W)X − λ(k − λµ)1(V,W)φX

+(k − λµ + k2
− 2λkµ + λ2µ2)1(X,W)V + λ(k − λµ)1(X,W)φV = 0.

Assuming that V ∈ [−λ] and W ∈ [−λ] in the above relation are orthogonal, in view of h , 0, then we have

k − λµ = 0. (36)

Making use of (36) in (35) gives that either k = 0 and µ = 0, or, k = −2 and µ = −2. However, if k is a
constant, applying Pastore and Saltarelli [14, Proposition 3.2] we obtain k = −1 and hence by (12) we have
h = 0, a contradiction. Moreover, k = 0 contradicts to h , 0 (⇔ k < −1).

From the above analyses we get h = 0, then M2n+1 turns out to be a generalized (k, 0)-almost Kenmotsu
manifold, the remaining proof follows from Theorem 3.7. This completes the proof.

Lemma 4.4. Let (M2n+1, φ, ξ, η, 1) be a generalized (k, µ)-almost Kenmotsu manifold, then M2n+1 is pseudo-symmetric
if and only if it is semi-symmetric.

Proof. We omit the proof since it is very similarly to that of Lemma 3.5.

Theorem 4.5. Let (M2n+1, φ, ξ, η, 1) be a generalized (k, µ)-almost Kenmotsu manifold of dimension ≥ 5, then the
following statements are equivalent:

(1) M2n+1 is locally symmetric.
(2) M2n+1 is semi-symmetric.
(3) M2n+1 is pseudo-symmetric.
(4) M2n+1 is locally isometric to the hyperbolic spaceH2n+1(−1).

Proof. The proof follows directly from Lemma 4.3 and Lemma 4.4.

Finally, we remark that conclusions of Theorem 4.5 still hold on a (k, µ)-almost Kenmotsu manifold of
dimension ≥ 3.
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