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Generalized Weighted Composition Operators
from H∞ to the Logarithmic Bloch Space
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Abstract. In this paper, we give three different characterizations for the boundedness and compactness of
generalized weighted composition operators from the space of bounded analytic function to the logarithmic
Bloch space.

1. Introduction

LetD be the open unit disk in the complex planeC. Denote by H(D) the class of all functions analytic on
D, and by H∞ = H∞(D) the space of bounded analytic functions onD, with the norm ‖ f ‖∞ = supz∈D | f (z)|.
An f ∈ H(D) is said to belong to the Bloch space B if

‖ f ‖B = | f (0)| + sup
z∈D
| f ′(z)|(1 − |z|2) < ∞.

The logarithmic Bloch space, denoted by LB, consists of all f ∈ H(D) satisfying

‖ f ‖log = sup
z∈D

(1 − |z|2) log
e

1 − |z|2
| f ′(z)| < ∞.

Ir is easy to check that LB is a Banach space with the norm ‖ f ‖LB = | f (0)| + ‖ f ‖log. It is well known that
LB

⋂
H∞ is the space of multipliers of the Bloch spaceB (see [2, 31]). The spaceLB also arises in the study

of Hankel operators on the Bergman space. In [1], Attele showed that the Hankel operator H f is bounded
on the Bergman space A1 if and only if f ∈ LB, where H f1 = (I − P)( f1), I is the identity operator and P
is the Bergman projection from L1 into A1. See, for example, [3, 6, 11, 17, 26, 27, 29] for some results on
logarithmic spaces and operators on them.

The differentiation operator D is defined by D f = f ′, f ∈ H(D). For a nonnegative integer n, we define

(D0 f )(z) = f (z), (Dn f )(z) = f (n)(z), n ≥ 1, f ∈ H(D).

Let ϕ be an analytic self-map of D, u ∈ H(D) and let n be a nonnegative integer. The linear operator Dn
ϕ,u,

called the generalized weighted composition operator, is defined by (see [32–34])

(Dn
ϕ,u f )(z) = u(z) · (Dn f )(ϕ(z)), f ∈ H(D), z ∈ D.
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When n = 0 and u(z) = 1, Dn
ϕ,u is the composition operator Cϕ, which is defined by Cϕ f = f ◦ ϕ for

f ∈ H(D). A basic problem concerning composition operators on various Banach function spaces is to
relate the operator theoretic properties of Cϕ to the function theoretic properties of the symbol ϕ, which
attracted a lot of attention recently, the reader can refer to [4]. If n = 0, then Dn

ϕ,u is the weighted composition
operator uCϕ, which is defined as follows

uCϕ f = u( f ◦ ϕ), f ∈ H(D).

If n = 1, u(z) = ϕ′(z), then Dn
ϕ,u = DCϕ. When u(z) = 1, Dn

ϕ,u = CϕDn. DCϕ and CϕDn were studied in
[5, 8–10, 18, 23, 25] and the referees therein. See, for example, [7, 11, 19–21, 28, 32–34] for the study of the
generalized weighted composition operator on various function spaces.

It is well known that the composition operator is bounded on the Bloch space by Schwarz-Pick Lemma.
Composition operators and weighted composition operators on Bloch-type spaces were studied, for exam-
ple, in [12–16, 22, 24, 30]. In [24], Wulan, Zheng and Zhu obtained a characterization for the compactness
of the composition operators acting on the Bloch space as follows:

Theorem A. Let ϕ be an analytic self-map ofD. Then Cϕ : B → B is compact if and only if

lim
j→∞
‖ϕ j
‖B = 0.

Motivated by [24], Colonna and Li characterized the boundedness and compactness of the operator
uCϕ : H∞ → LB in [3]. The result about the boundedness is stated as follows.

Theorem B. Let u ∈ H(D) and ϕ be an analytic self-map ofD. Then the following statements are equivalent.
(a) The operator uCϕ : H∞ → LB is bounded.

(b) sup
j∈N∪0

‖uCϕI j
‖LB < ∞, where I j(z) = z j.

(c) u ∈ LB and

sup
z∈D

(1 − |z|2) log e
1−|z|2 |u(z)||ϕ′(z)|

(1 − |ϕ(z)|2)
< ∞.

In [23], Wu and Wulan obtained two characterizations for the compactness of the product of differenti-
ation and composition operators acting on the Bloch space as follows:

Theorem C. Let ϕ be an analytic self-map ofD,n ∈N. Then the following statements are equivalent.

(a) CϕDn : B → B is compact.
(b) lim j→∞ ‖CϕDnI j

‖B = 0, where I j(z) = z j.
(c) lim|a|→1 ‖CϕDnσa‖B = 0, where σa(z) = (a − z)/(1 − az) is the Möbius map onD.

Motivated by these observations, in this work we show that Dn
ϕ,u from H∞ to the logarithmic Bloch

space is bounded (respectively, compact) if and only if the sequence (‖Dn
ϕ,uI j
‖LB)∞j=n is bounded (respectively,

converges to 0 as j → ∞), where I j(z) = z j. Moreover, we use two families of functions to characterize the
boundedness and compactness of the operators Dn

ϕ,u.
Throughout the paper, we denote by C a positive constant which may differ from one occurrence to the

next.

2. Main Results and Proofs

In this section, we give our main results and proofs. First we characterize the boundedness of the
operator Dn

ϕ,u : H∞ → LB. We now introduce two families of functions which will be used to characterize
the boundedness and compactness of the operators Dn

ϕ,u. For a ∈ D, we define

fa(z) =
1 − |a|2

1 − az
and ha(z) =

(1 − |a|2)2

(1 − az)2 , z ∈ D.
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Theorem 1. Let n be a nonnegative integer, u ∈ H(D) and let ϕ be an analytic self-map of D. Then the following
statements are equivalent.

(a) Dn
ϕ,u : H∞ → LB is bounded.

(b) sup
j≥n
‖Dn

ϕ,uI j
‖LB < ∞, where I j(z) = z j.

(c) u ∈ LB, supz∈D(1 − |z|2) log e
1−|z|2 |u(z)||ϕ′(z)| < ∞ and

sup
a∈D
‖Dn

ϕ,u fa‖LB < ∞, sup
a∈D
‖Dn

ϕ,uha‖LB < ∞.

(d)

sup
z∈D

(1 − |z|2) log e
1−|z|2 |u(z)||ϕ′(z)|

(1 − |ϕ(z)|2)n+1 < ∞ and sup
z∈D

(1 − |z|2) log e
1−|z|2 |u

′(z)|

(1 − |ϕ(z)|2)n < ∞.

Proof. (a)⇒ (b) This implication is obvious, since for j ∈N, the function I j is bounded in H∞ and ‖I j
‖∞ = 1.

(b)⇒ (c) Assume that (b) holds and let Q := sup j≥n ‖D
n
ϕ,uI j
‖LB. From the definition of fa and ha, it is easy

to see that fa and ha have bounded norms in H∞. Since

fa(z) = (1 − |a|2)
∞∑
j=0

a jz j, ha(z) = (1 − |a|2)2
∞∑
j=0

( j + 1)a jz j,

using linearity we get

‖Dn
ϕ,u fa‖LB ≤ (1 − |a|2)

∞∑
j=0

|a| j‖Dn
ϕ,uI j
‖LB ≤ 2Q and

‖Dn
ϕ,uha‖LB ≤ (1 − |a|2)2

∞∑
j=0

( j + 1)|a| j‖Dn
ϕ,uI j
‖LB ≤ 4Q.

Applying the operator Dn
ϕ,u to I j with j = n,n + 1, we obtain

(Dn
ϕ,uIn)′(z) = u′(z)n! and

(Dn
ϕ,uIn+1)′(z) = u′(z)(n + 1)!ϕ(z) + u(z)(n + 1)!ϕ′(z),

while for j < n, (Dn
ϕ,uI j)′(z) = 0. Thus, using the boundedness of the function ϕ, we have

sup
z∈D

(1 − |z|2) log
e

1 − |z|2
|u′(z)| ≤

1
n!
‖Dn

ϕ,uIn
‖LB ≤

Q
n!
,

i.e., u ∈ LB and

sup
z∈D

(1 − |z|2) log
e

1 − |z|2
|u(z)||ϕ′(z)|

≤
1

(n + 1)!
‖Dn

ϕ,uIn+1
‖LB + sup

z∈D
(1 − |z|2) log

e
1 − |z|2

|u′(z)| ≤
(n + 2)Q
(n + 1)!

.

(c)⇒ (d) Assume that (c) holds. Let

C1 := sup
a∈D
‖Dn

ϕ,u fa‖LB and C2 := sup
a∈D
‖Dn

ϕ,uha‖LB.

For a ∈ D, set

1a(z) =
1 − |a|2

1 − az
−

1
1 + n

(1 − |a|2)2

(1 − az)2 , z ∈ D.
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It is easy to check that 1a ∈ H∞ and supa∈D ‖1a‖∞ < ∞. Therefore, from the assumption we see that

sup
a∈D
‖Dn

ϕ,u1a‖LB ≤ C1 +
1

1 + n
C2 < C1 + C2 < ∞. (1)

For λ ∈ D, we notice that

1
(n)
ϕ(λ)(ϕ(λ)) = 0, |1(n+1)

ϕ(λ) (ϕ(λ))| =
n!|ϕ(λ)|n+1

(1 − |ϕ(λ)|2)n+1 . (2)

Hence by (1) and (2) we get that

C1 + C2 > ‖Dn
ϕ,u1ϕ(λ)‖LB ≥

n!(1 − |λ|2) log e
1−|λ|2 |u(λ)||ϕ′(λ)||ϕ(λ)|n+1

(1 − |ϕ(λ)|2)n+1 , (3)

for λ ∈ D. For any fixed r ∈ (0, 1), from (3), we have

sup
|ϕ(λ)|>r

(1 − |λ|2) log e
1−|λ|2 |u(λ)||ϕ′(λ)|

(1 − |ϕ(λ)|2)n+1

≤ sup
|ϕ(λ)|>r

1
rn+1

(1 − |λ|2) log e
1−|λ|2 |u(λ)||ϕ′(λ)||ϕ(λ)|n+1

(1 − |ϕ(λ)|2)n+1 ≤
C1 + C2

rn+1n!
< ∞. (4)

By the assumption that supz∈D(1 − |z|2) log e
1−|z|2 |u(z)||ϕ′(z)| < ∞, we get

sup
|ϕ(λ)|≤r

(1 − |λ|2) log e
1−|λ|2 |u(λ)||ϕ′(λ)|

(1 − |ϕ(λ)|2)n+1

≤ sup
|ϕ(λ)|≤r

1
(1 − r2)n+1 (1 − |λ|2) log

e
1 − |λ|2

|u(λ)||ϕ′(λ)| < ∞. (5)

Therefore, (4) and (5) yield the first inequality of (d).
Next, note that

C1 ≥ ‖Dn
ϕ,u fϕ(λ)‖LB

≥

n!(1 − |λ|2) log e
1−|λ|2 |u

′(λ)||ϕ(λ)|n

(1 − |ϕ(λ)|2)n −

(n + 1)!(1 − |λ|2) log e
1−|λ|2 |u(λ)||ϕ′(λ)||ϕ(λ)|n+1

(1 − |ϕ(λ)|2)1+n .

Therefore

(1 − |λ|2) log e
1−|λ|2 |u

′(λ)||ϕ(λ)|n

(1 − |ϕ(λ)|2)n

≤
C1

n!
+

(n + 1)(1 − |λ|2) log e
1−|λ|2 |u(λ)||ϕ′(λ)||ϕ(λ)|n+1

(1 − |ϕ(λ)|2)n+1 . (6)

From (3) and (6), we get

sup
λ∈D

(1 − |λ|2) log e
1−|λ|2 |u

′(λ)||ϕ(λ)|n

(1 − |ϕ(λ)|2)n < ∞. (7)

Combining (7) with u ∈ LB and arguing as above, we get the second inequality of (d).
(d)⇒ (a) Assume that (d) holds. By Theorem 5.1.5 of [31], if f ∈ B and m ∈N, then

sup
z∈D

(1 − |z|2)m+1
| f (m+1)(z)| ≤ Cm‖ f ‖B,
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where Cm is a constant depending only on m. Since H∞ ⊂ B and ‖ f ‖B ≤ ‖ f ‖∞, for all f ∈ H∞, we have

sup
z∈D

(1 − |z|2)m+1
| f (m+1)(z)| ≤ Cm‖ f ‖∞.

Therefore, for any f ∈ H∞, we have

(1 − |z|2) log
e

1 − |z|2
|(Dn

ϕ,u f )′(z)| = (1 − |z|2) log
e

1 − |z|2
|( f (n)(ϕ)u)′(z)|

≤ (1 − |z|2) log
e

1 − |z|2
|u(z)||ϕ′(z)|| f (n+1)(ϕ(z))| + (1 − |z|2) log

e
1 − |z|2

|u′(z)|| f (n)(ϕ(z))|

≤ C
(1 − |z|2) log e

1−|z|2 |u(z)||ϕ′(z)|

(1 − |ϕ(z)|2)n+1 ‖ f ‖∞ + C
(1 − |z|2) log e

1−|z|2 |u
′(z)|

(1 − |ϕ(z)|2)n ‖ f ‖∞.

Moreover,

|(Dn
ϕ,u f )(0)| = | f (n)(ϕ(0))u(0)| ≤

C|u(0)|
(1 − |ϕ(0)|2)n ‖ f ‖∞.

From (d) we see that

‖Dn
ϕ,u f ‖LB = |(Dn

ϕ,u f )(0)| + sup
z∈D

(1 − |z|2) log
e

1 − |z|2
|(Dn

ϕ,u f )′(z)| ≤ C‖ f ‖∞.

Therefore the operator Dn
ϕ,u : H∞ → LB is bounded, as desired.

To study the compactness of Dn
ϕ,u : H∞ → LB, we need the following lemma, which can be proved in a

standard way, see, for example Proposition 3.11 in [4].

Lemma 2. Let n be a nonnegative integer, u ∈ H(D) and let ϕ be an analytic self-map ofD. Then Dn
ϕ,u : H∞ → LB

is compact if and only if Dn
ϕ,u : H∞ → LB is bounded and for any bounded sequence ( f j) j∈N in H∞ which converges

to zero uniformly on compact subsets ofD, ‖Dn
ϕ,u f j‖LB → 0 as j→∞.

Theorem 3. Let n be a nonnegative integer, u ∈ H(D) and letϕ an analytic self-map ofD such that Dn
ϕ,u : H∞ → LB

is bounded. Then the following statements are equivalent.
(a) Dn

ϕ,u : H∞ → LB is compact.

(b) lim
j→∞
‖Dn

ϕ,uI j
‖LB = 0, where I j(z) = z j.

(c) lim|ϕ(a)|→1 ‖Dn
ϕ,u fϕ(a)‖LB = 0 and lim|ϕ(a)|→1 ‖Dn

ϕ,uhϕ(a)‖LB = 0.
(d)

lim
|ϕ(z)|→1

(1 − |z|2) log e
1−|z|2 |u(z)||ϕ′(z)|

(1 − |ϕ(z)|2)n+1 = 0 and lim
|ϕ(z)|→1

(1 − |z|2) log e
1−|z|2 |u

′(z)|

(1 − |ϕ(z)|2)n = 0.

Proof. (a)⇒ (b) Assume Dn
ϕ,u : H∞ → LB is compact. Since the sequence {I j

} is bounded in H∞ and
converges to 0 uniformly on compact subsets, by Lemma 2 it follows that ‖Dn

ϕ,uI j
‖LB → 0 as j→∞.

(b)⇒ (c) Suppose (b) holds. Fix ε > 0 and choose N ∈ N such that ‖Dn
ϕ,uI j
‖LB < ε for all j ≥ N. Let

zk ∈ D such that |ϕ(zk)| → 1 as k→∞. Arguing as in Theorem 1, we have

‖Dn
ϕ,u fϕ(zk)‖LB ≤ (1 − |ϕ(zk)|2)

∞∑
j=0

|ϕ(zk)| j‖Dn
ϕ,uI j
‖LB

= (1 − |ϕ(zk)|2)
N−1∑
j=0

|ϕ(zk)| j‖Dn
ϕ,uI j
‖LB + (1 − |ϕ(zk)|2)

∞∑
j=N

|ϕ(zk)| j‖Dn
ϕ,uI j
‖LB

≤ 2Q(1 − |ϕ(zk)|N) + 2ε.
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Since |ϕ(zk)| → 1 as k → ∞, by the arbitrary of ε, we get limk→∞ ‖Dn
ϕ,u fϕ(zk)‖LB = 0, i.e., we obtain

lim|ϕ(a)|→1 ‖Dn
ϕ,u fϕ(a)‖LB = 0.

Notice that
N−1∑
j=0

( j + 1)r j =
1 − rN

−NrN(1 − r)
(1 − r)2 , 0 ≤ r < 1,

arguing as Theorem 1 we get

‖Dn
ϕ,uhϕ(zk)‖LB ≤ (1 − |ϕ(zk)|2)2

∞∑
j=0

( j + 1)|ϕ(zk)| j‖Dn
ϕ,uI j
‖LB

= (1 − |ϕ(zk)|2)2
N−1∑
j=0

( j + 1)|ϕ(zk)| j‖Dn
ϕ,uI j
‖LB + (1 − |ϕ(zk)|2)2

∞∑
j=N

( j + 1)|ϕ(zk)| j‖Dn
ϕ,uI j
‖LB

≤ 4Q
(
1 − |ϕ(zk)|N −N|ϕ(zk)|N(1 − |ϕ(zk)|

)
+ 4ε.

Therefore, limk→∞ ‖Dn
ϕ,uhϕ(zk)‖LB ≤ 4ε.By the arbitrary of ε, we obtain lim|ϕ(a)|→1 ‖Dn

ϕ,uhϕ(a)‖LB = 0, as desired.
(c)⇒ (d) To prove (d) it only need to show that if (zk)k∈N is a sequence in D such that |ϕ(zk)| → 1 as

k→∞, then

lim
k→∞

(1 − |zk|
2) log e

1−|zk |
2 |u(zk)||ϕ′(zk)|

(1 − |ϕ(zk)|2)n+1 = 0, lim
k→∞

(1 − |zk|
2) log e

1−|zk |
2 |u′(zk)|

(1 − |ϕ(zk)|2)n = 0.

Let (zk)k∈N be such a sequence such that |ϕ(zk)| → 1 as k → ∞. From the assumption and arguing as
Theorem 1 we obtain

lim
k→∞
‖Dn

ϕ,u1ϕ(zk)‖LB ≤ lim
k→∞
‖Dn

ϕ,u fϕ(zk)‖LB +
1

n + 1
lim
k→∞
‖Dn

ϕ,uhϕ(zk)‖LB = 0.

Hence limk→∞ ‖Dn
ϕ,u1ϕ(zk)‖LB = 0. Similarly to the proof of Theorem 1, we have

n!(1 − |zk|
2) log e

1−|zk |
2 |u(zk)||ϕ′(zk)||ϕ(zk)|n+1

(1 − |ϕ(zk)|2)n+1 ≤ ‖Dn
ϕ,u1ϕ(zk)‖LB → 0, as k→∞,

which implies

lim
k→∞

(1 − |zk|
2) log e

1−|zk |
2 |u(zk)||ϕ′(zk)|

(1 − |ϕ(zk)|2)n+1 = lim
k→∞

(1 − |zk|
2) log e

1−|zk |
2 |u(zk)||ϕ′(zk)||ϕ(zk)|n+1

(1 − |ϕ(zk)|2)n+1 = 0. (8)

In addition,

‖Dn
ϕ,u fϕ(zk)‖LB +

(n + 1)!(1 − |zk|
2) log e

1−|zk |
2 |u(zk)||ϕ′(zk)||ϕ(zk)|n+1

(1 − |ϕ(zk)|2)n+1

≥

n!(1 − |zk|
2) log e

1−|zk |
2 |u′(zk)||ϕ(zk)|n

(1 − |ϕ(zk)|2)n .

From (8) and the assumption that ‖Dn
ϕ,u fϕ(zk)‖LB → 0 as k→∞, we have

lim
k→∞

(1 − |zk|
2) log e

1−|zk |
2 |u′(zk)|

(1 − |ϕ(zk)|2)n = lim
k→∞

(1 − |zk|
2) log e

1−|zk |
2 |u′(zk)||ϕ(zk)|n

(1 − |ϕ(zk)|2)n = 0,

as desired.
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(d)⇒ (a) Assume that ( fk)k∈N is a bounded sequence in H∞ converging to 0 uniformly on compact
subsets ofD. By the assumption, for any ε > 0, there exists a δ ∈ (0, 1) such that

(1 − |z|2) log e
1−|z|2 |ϕ

′(z)||u(z)|

(1 − |ϕ(z)|2)n+1 < ε and
(1 − |z|2) log e

1−|z|2 |u
′(z)|

(1 − |ϕ(z)|2)n < ε (9)

when δ < |ϕ(z)| < 1. Let K = {z ∈ D : |ϕ(z)| ≤ δ}. Since Dn
ϕ,u : H∞ → LB is bounded, as shown in the proof

of Theorem 1,

C3 := sup
z∈D

(1 − |z|2) log
e

1 − |z|2
|u′(z)| < ∞ (10)

and

C4 := sup
z∈D

(1 − |z|2) log
e

1 − |z|2
|u(z)||ϕ′(z)| < ∞. (11)

By (9), (10) and (11), we have

sup
z∈D

(1 − |z|2) log
e

1 − |z|2
|(Dn

ϕ,u fk)′(z)|

≤ sup
z∈K

(1 − |z|2) log
e

1 − |z|2
|u(z)||ϕ′(z)|| f (n+1)

k (ϕ(z))| + sup
z∈K

(1 − |z|2) log
e

1 − |z|2
|u′(z)|| f (n)

k (ϕ(z))|

+C sup
z∈D\K

(1 − |z|2) log e
1−|z|2 |u(z)||ϕ′(z)|

(1 − |ϕ(z)|2)n+1 ‖ fk‖∞ + C sup
z∈D\K

(1 − |z|2) log e
1−|z|2 |u

′(z)|

(1 − |ϕ(z)|2)n ‖ fk‖∞

≤ C4 sup
z∈K
| f (n+1)

k (ϕ(z))| + C3 sup
z∈K
| f (n)

k (ϕ(z))| + Cε‖ fk‖∞.

Hence

‖Dn
ϕ,u fk‖LB ≤ C4 sup

|w|≤δ
| f (n+1)

k (w)| + C3 sup
|w|≤δ
| f (n)

k (w)| + Cε‖ fk‖∞ + |u(0)|| f (n)
k (ϕ(0))|. (12)

Since ( fk)k∈N converges to 0 uniformly on compact subsets of D, by Cauchy’s estimates we see that ( f (n)
k )

and ( f (n+1)
k ) also converges to 0 uniformly on compact subsets ofD. From (12), letting k→∞ and using the

fact that ε is an arbitrary positive number, we obtain ‖Dn
ϕ,u fk‖LB → 0 as k → ∞. By Lemma 2, we see that

the operator Dn
ϕ,u : H∞ → LB is compact.
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