Filomat 30:14 (2016), 3867–3874 DOI 10.2298/FIL1614967Z

Published by Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat

Generalized Weighted Composition Operators from H^{∞} to the Logarithmic Bloch Space

Xiangling Zhu^a

^aDepartment of Mathematics, Jiaying University, 514015, Meizhou, Guangdong, China.

Abstract. In this paper, we give three different characterizations for the boundedness and compactness of generalized weighted composition operators from the space of bounded analytic function to the logarithmic Bloch space.

1. Introduction

Let \mathbb{D} be the open unit disk in the complex plane \mathbb{C} . Denote by $H(\mathbb{D})$ the class of all functions analytic on \mathbb{D} , and by $H^{\infty} = H^{\infty}(\mathbb{D})$ the space of bounded analytic functions on \mathbb{D} , with the norm $||f||_{\infty} = \sup_{z \in \mathbb{D}} |f(z)|$. An $f \in H(\mathbb{D})$ is said to belong to the Bloch space \mathcal{B} if

$$||f||_{\mathcal{B}} = |f(0)| + \sup_{z \in \mathbb{D}} |f'(z)|(1 - |z|^2) < \infty.$$

The logarithmic Bloch space, denoted by \mathcal{LB} , consists of all $f \in H(\mathbb{D})$ satisfying

$$\|f\|_{\log} = \sup_{z \in \mathbb{D}} (1 - |z|^2) \log \frac{e}{1 - |z|^2} |f'(z)| < \infty.$$

It is easy to check that \mathcal{LB} is a Banach space with the norm $||f||_{\mathcal{LB}} = |f(0)| + ||f||_{\log}$. It is well known that $\mathcal{LB} \cap H^{\infty}$ is the space of multipliers of the Bloch space \mathcal{B} (see [2, 31]). The space \mathcal{LB} also arises in the study of Hankel operators on the Bergman space. In [1], Attele showed that the Hankel operator H_f is bounded on the Bergman space A^1 if and only if $f \in \mathcal{LB}$, where $H_f g = (I - P)(\overline{fg})$, I is the identity operator and P is the Bergman projection from L^1 into A^1 . See, for example, [3, 6, 11, 17, 26, 27, 29] for some results on logarithmic spaces and operators on them.

The differentiation operator *D* is defined by Df = f', $f \in H(\mathbb{D})$. For a nonnegative integer *n*, we define

$$(D^0 f)(z) = f(z), \ (D^n f)(z) = f^{(n)}(z), \ n \ge 1, \ f \in H(\mathbb{D}).$$

Let φ be an analytic self-map of \mathbb{D} , $u \in H(\mathbb{D})$ and let n be a nonnegative integer. The linear operator $D_{\varphi,u}^n$, called the generalized weighted composition operator, is defined by (see [32–34])

$$(D^n_{\varphi,u}f)(z) = u(z) \cdot (D^n f)(\varphi(z)), f \in H(\mathbb{D}), z \in \mathbb{D}.$$

²⁰¹⁰ Mathematics Subject Classification. Primary 47B38; Secondary 30H30

Keywords. Generalized weighted composition operators, composition operator, differentiation operator, logarithmic Bloch space Received: 2 Nov 2014; Accepted: 20 Feb 2016

Communicated by Dragan S. Djordjević

The author is supported by the Natural Science Foundation of China (No. 11471143)

Email address: jyuzx1@163.com (Xiangling Zhu)

When n = 0 and u(z) = 1, $D_{\varphi,u}^n$ is the composition operator C_{φ} , which is defined by $C_{\varphi}f = f \circ \varphi$ for $f \in H(\mathbb{D})$. A basic problem concerning composition operators on various Banach function spaces is to relate the operator theoretic properties of C_{φ} to the function theoretic properties of the symbol φ , which attracted a lot of attention recently, the reader can refer to [4]. If n = 0, then $D_{\varphi,u}^n$ is the weighted composition operator uC_{φ} , which is defined as follows

$$uC_{\varphi}f = u(f \circ \varphi), \ f \in H(\mathbb{D}).$$

If n = 1, $u(z) = \varphi'(z)$, then $D_{\varphi,u}^n = DC_{\varphi}$. When u(z) = 1, $D_{\varphi,u}^n = C_{\varphi}D^n$. DC_{φ} and $C_{\varphi}D^n$ were studied in [5, 8–10, 18, 23, 25] and the referees therein. See, for example, [7, 11, 19–21, 28, 32–34] for the study of the generalized weighted composition operator on various function spaces.

It is well known that the composition operator is bounded on the Bloch space by Schwarz-Pick Lemma. Composition operators and weighted composition operators on Bloch-type spaces were studied, for example, in [12–16, 22, 24, 30]. In [24], Wulan, Zheng and Zhu obtained a characterization for the compactness of the composition operators acting on the Bloch space as follows:

Theorem A. Let φ be an analytic self-map of \mathbb{D} . Then $C_{\varphi} : \mathcal{B} \to \mathcal{B}$ is compact if and only if

$$\lim_{j\to\infty} \|\varphi^j\|_{\mathcal{B}} = 0$$

Motivated by [24], Colonna and Li characterized the boundedness and compactness of the operator $uC_{\varphi}: H^{\infty} \to \mathcal{LB}$ in [3]. The result about the boundedness is stated as follows.

Theorem B. Let $u \in H(\mathbb{D})$ and φ be an analytic self-map of \mathbb{D} . Then the following statements are equivalent. (a) The operator $uC_{\varphi} : H^{\infty} \to \mathcal{LB}$ is bounded.

- (b) $\sup_{j\in\mathbb{N}\cup0}\|uC_{\varphi}I^{j}\|_{\mathcal{LB}}<\infty, \ \text{where} \ I^{j}(z)=z^{j}.$
- (c) $u \in \mathcal{LB}$ and

$$\sup_{z \in \mathbb{D}} \frac{(1-|z|^2)\log \frac{e}{1-|z|^2}|u(z)||\varphi'(z)|}{(1-|\varphi(z)|^2)} < \infty.$$

In [23], Wu and Wulan obtained two characterizations for the compactness of the product of differentiation and composition operators acting on the Bloch space as follows:

Theorem C. Let φ be an analytic self-map of \mathbb{D} , $n \in \mathbb{N}$. Then the following statements are equivalent.

- (a) $C_{\varphi}D^{n}: \mathcal{B} \to \mathcal{B}$ is compact.
- (b) $\lim_{j\to\infty} \|C_{\varphi}D^nI^j\|_{\mathcal{B}} = 0$, where $I^j(z) = z^j$.

(c) $\lim_{|a|\to 1} \|C_{\varphi}D^n\sigma_a\|_{\mathcal{B}} = 0$, where $\sigma_a(z) = (a-z)/(1-\overline{a}z)$ is the Möbius map on \mathbb{D} .

Motivated by these observations, in this work we show that $D_{\varphi,u}^n$ from H^∞ to the logarithmic Bloch space is bounded (respectively, compact) if and only if the sequence $(||D_{\varphi,u}^n I^j||_{\mathcal{LB}})_{j=n}^\infty$ is bounded (respectively, converges to 0 as $j \to \infty$), where $I^j(z) = z^j$. Moreover, we use two families of functions to characterize the boundedness and compactness of the operators $D_{\varphi,u}^n$.

Throughout the paper, we denote by *C* a positive constant which may differ from one occurrence to the next.

2. Main Results and Proofs

In this section, we give our main results and proofs. First we characterize the boundedness of the operator $D_{\varphi,u}^n : H^{\infty} \to \mathcal{LB}$. We now introduce two families of functions which will be used to characterize the boundedness and compactness of the operators $D_{\varphi,u}^n$. For $a \in \mathbb{D}$, we define

$$f_a(z) = \frac{1 - |a|^2}{1 - \overline{a}z}$$
 and $h_a(z) = \frac{(1 - |a|^2)^2}{(1 - \overline{a}z)^2}, z \in \mathbb{D}.$

Theorem 1. Let *n* be a nonnegative integer, $u \in H(\mathbb{D})$ and let φ be an analytic self-map of \mathbb{D} . Then the following statements are equivalent.

$$(a) D_{\varphi,u}^{n} : H^{\infty} \to \mathcal{LB} \text{ is bounded.}$$

$$(b) \sup_{j \ge n} \|D_{\varphi,u}^{n}I^{j}\|_{\mathcal{LB}} < \infty, \text{ where } I^{j}(z) = z^{j}.$$

$$(c) \ u \in \mathcal{LB}, \sup_{z \in \mathbb{D}} (1 - |z|^{2}) \log \frac{e}{1 - |z|^{2}} |u(z)| |\varphi'(z)| < \infty \text{ and}$$

$$\sup_{a \in \mathbb{D}} \|D_{\varphi,u}^{n}f_{a}\|_{\mathcal{LB}} < \infty, \quad \sup_{a \in \mathbb{D}} \|D_{\varphi,u}^{n}h_{a}\|_{\mathcal{LB}} < \infty.$$

$$(d) \qquad (1 - |z|^{2}) \log -e^{e} - |u(z)| |\varphi'(z)| \qquad (1 - |z|^{2}) \log -e^{e} - |u'(z)| |\varphi'(z)|.$$

$$\sup_{z \in \mathbb{D}} \frac{(1 - |z|^2)\log\frac{e}{1 - |z|^2}|u(z)||\varphi'(z)|}{(1 - |\varphi(z)|^2)^{n+1}} < \infty \quad and \quad \sup_{z \in \mathbb{D}} \frac{(1 - |z|^2)\log\frac{e}{1 - |z|^2}|u'(z)|}{(1 - |\varphi(z)|^2)^n} < \infty.$$

Proof. (*a*) \Rightarrow (*b*) This implication is obvious, since for $j \in \mathbb{N}$, the function I^j is bounded in H^{∞} and $||I^j||_{\infty} = 1$.

(*b*) \Rightarrow (*c*) Assume that (*b*) holds and let $Q := \sup_{j \ge n} \|D_{\varphi,u}^n I^j\|_{\mathcal{LB}}$. From the definition of f_a and h_a , it is easy to see that f_a and h_a have bounded norms in H^{∞} . Since

$$f_a(z) = (1 - |a|^2) \sum_{j=0}^{\infty} \overline{a}^j z^j, \qquad h_a(z) = (1 - |a|^2)^2 \sum_{j=0}^{\infty} (j+1)\overline{a}^j z^j,$$

using linearity we get

$$\begin{split} \|D_{\varphi,u}^{n}f_{a}\|_{\mathcal{LB}} &\leq (1-|a|^{2})\sum_{j=0}^{\infty}|a|^{j}\|D_{\varphi,u}^{n}I^{j}\|_{\mathcal{LB}} \leq 2Q \text{ and} \\ \|D_{\varphi,u}^{n}h_{a}\|_{\mathcal{LB}} &\leq (1-|a|^{2})^{2}\sum_{j=0}^{\infty}(j+1)|a|^{j}\|D_{\varphi,u}^{n}I^{j}\|_{\mathcal{LB}} \leq 4Q. \end{split}$$

Applying the operator $D_{\varphi,u}^n$ to I^j with j = n, n + 1, we obtain

$$(D^{n}_{\varphi,u}I^{n})'(z) = u'(z)n!$$
 and
 $(D^{n}_{\varphi,u}I^{n+1})'(z) = u'(z)(n+1)!\varphi(z) + u(z)(n+1)!\varphi'(z)$

while for j < n, $(D_{\varphi,u}^n I^j)'(z) = 0$. Thus, using the boundedness of the function φ , we have

$$\sup_{z \in \mathbb{D}} (1 - |z|^2) \log \frac{e}{1 - |z|^2} |u'(z)| \le \frac{1}{n!} ||D_{\varphi,u}^n I^n||_{\mathcal{LB}} \le \frac{Q}{n!},$$

i.e., $u \in \mathcal{LB}$ and

$$\begin{split} \sup_{z \in \mathbb{D}} (1 - |z|^2) \log \frac{e}{1 - |z|^2} |u(z)||\varphi'(z)| \\ \leq \quad \frac{1}{(n+1)!} \|D_{\varphi,u}^n I^{n+1}\|_{\mathcal{LB}} + \sup_{z \in \mathbb{D}} (1 - |z|^2) \log \frac{e}{1 - |z|^2} |u'(z)| \leq \frac{(n+2)Q}{(n+1)!}. \end{split}$$

 $(c) \Rightarrow (d)$ Assume that (c) holds. Let

$$C_1 := \sup_{a \in \mathbb{D}} \|D_{\varphi,u}^n f_a\|_{\mathcal{LB}} \quad \text{and} \quad C_2 := \sup_{a \in \mathbb{D}} \|D_{\varphi,u}^n h_a\|_{\mathcal{LB}}.$$

For $a \in \mathbb{D}$, set

$$g_a(z) = \frac{1 - |a|^2}{1 - \bar{a}z} - \frac{1}{1 + n} \frac{(1 - |a|^2)^2}{(1 - \bar{a}z)^2}, \quad z \in \mathbb{D}.$$

It is easy to check that $g_a \in H^{\infty}$ and $\sup_{a \in \mathbb{D}} ||g_a||_{\infty} < \infty$. Therefore, from the assumption we see that

$$\sup_{a\in\mathbb{D}}\|D_{\varphi,u}^ng_a\|_{\mathcal{LB}} \le C_1 + \frac{1}{1+n}C_2 < C_1 + C_2 < \infty.$$

$$\tag{1}$$

For $\lambda \in \mathbb{D}$, we notice that

$$g_{\varphi(\lambda)}^{(n)}(\varphi(\lambda)) = 0, \quad |g_{\varphi(\lambda)}^{(n+1)}(\varphi(\lambda))| = \frac{n! |\varphi(\lambda)|^{n+1}}{(1 - |\varphi(\lambda)|^2)^{n+1}}.$$
(2)

Hence by (1) and (2) we get that

$$C_{1} + C_{2} > \|D_{\varphi,u}^{n}g_{\varphi(\lambda)}\|_{\mathcal{LB}} \ge \frac{n!(1 - |\lambda|^{2})\log\frac{e}{1 - |\lambda|^{2}}|u(\lambda)\|\varphi'(\lambda)\|\varphi(\lambda)\|^{n+1}}{(1 - |\varphi(\lambda)|^{2})^{n+1}},$$
(3)

for $\lambda \in \mathbb{D}$. For any fixed $r \in (0, 1)$, from (3), we have

$$\sup_{|\varphi(\lambda)|>r} \frac{(1-|\lambda|^2)\log\frac{e}{1-|\lambda|^2}|u(\lambda)||\varphi'(\lambda)|}{(1-|\varphi(\lambda)|^2)^{n+1}} \le \sup_{|\varphi(\lambda)|>r} \frac{1}{r^{n+1}} \frac{(1-|\lambda|^2)\log\frac{e}{1-|\lambda|^2}|u(\lambda)||\varphi'(\lambda)||\varphi(\lambda)|^{n+1}}{(1-|\varphi(\lambda)|^2)^{n+1}} \le \frac{C_1+C_2}{r^{n+1}n!} < \infty.$$
(4)

By the assumption that $\sup_{z\in\mathbb{D}}(1-|z|^2)\log\frac{e}{1-|z|^2}|u(z)||\varphi'(z)|<\infty,$ we get

$$\sup_{|\varphi(\lambda)| \le r} \frac{(1 - |\lambda|^2) \log \frac{e}{1 - |\lambda|^2} |u(\lambda)| |\varphi'(\lambda)|}{(1 - |\varphi(\lambda)|^2)^{n+1}}$$

$$\le \sup_{|\varphi(\lambda)| \le r} \frac{1}{(1 - r^2)^{n+1}} (1 - |\lambda|^2) \log \frac{e}{1 - |\lambda|^2} |u(\lambda)| |\varphi'(\lambda)| < \infty.$$
(5)

Therefore, (4) and (5) yield the first inequality of (d).

Next, note that

$$\begin{split} C_1 &\geq & \|D_{\varphi,u}^n f_{\varphi(\lambda)}\|_{\mathcal{LB}} \\ &\geq & \frac{n!(1-|\lambda|^2)\log\frac{e}{1-|\lambda|^2}|u'(\lambda)||\varphi(\lambda)|^n}{(1-|\varphi(\lambda)|^2)^n} - \frac{(n+1)!(1-|\lambda|^2)\log\frac{e}{1-|\lambda|^2}|u(\lambda)||\varphi'(\lambda)||\varphi(\lambda)|^{n+1}}{(1-|\varphi(\lambda)|^2)^{1+n}}. \end{split}$$

Therefore

$$\frac{(1 - |\lambda|^2) \log \frac{e}{1 - |\lambda|^2} |u'(\lambda)| |\varphi(\lambda)|^n}{(1 - |\varphi(\lambda)|^2)^n} \leq \frac{C_1}{n!} + \frac{(n+1)(1 - |\lambda|^2) \log \frac{e}{1 - |\lambda|^2} |u(\lambda)| |\varphi'(\lambda)| |\varphi(\lambda)|^{n+1}}{(1 - |\varphi(\lambda)|^2)^{n+1}}.$$
(6)

From (3) and (6), we get

$$\sup_{\lambda \in \mathbb{D}} \frac{(1 - |\lambda|^2) \log \frac{e}{1 - |\lambda|^2} |u'(\lambda)| |\varphi(\lambda)|^n}{(1 - |\varphi(\lambda)|^2)^n} < \infty.$$
(7)

Combining (7) with $u \in \mathcal{LB}$ and arguing as above, we get the second inequality of (d).

(*d*) \Rightarrow (*a*) Assume that (*d*) holds. By Theorem 5.1.5 of [31], if $f \in \mathcal{B}$ and $m \in \mathbb{N}$, then

$$\sup_{z \in \mathbb{D}} (1 - |z|^2)^{m+1} |f^{(m+1)}(z)| \le C_m ||f||_{\mathcal{B}},$$

where C_m is a constant depending only on m. Since $H^{\infty} \subset \mathcal{B}$ and $||f||_{\mathcal{B}} \leq ||f||_{\infty}$, for all $f \in H^{\infty}$, we have

$$\sup_{z \in \mathbb{D}} (1 - |z|^2)^{m+1} |f^{(m+1)}(z)| \le C_m ||f||_{\infty}.$$

Therefore, for any $f \in H^{\infty}$, we have

$$\begin{aligned} &(1-|z|^2)\log\frac{e}{1-|z|^2}|(D_{\varphi,u}^nf)'(z)| = (1-|z|^2)\log\frac{e}{1-|z|^2}|(f^{(n)}(\varphi)u)'(z)|\\ &\leq (1-|z|^2)\log\frac{e}{1-|z|^2}|u(z)||\varphi'(z)||f^{(n+1)}(\varphi(z))| + (1-|z|^2)\log\frac{e}{1-|z|^2}|u'(z)||f^{(n)}(\varphi(z))|\\ &\leq C\frac{(1-|z|^2)\log\frac{e}{1-|z|^2}|u(z)||\varphi'(z)|}{(1-|\varphi(z)|^2)^{n+1}}||f||_{\infty} + C\frac{(1-|z|^2)\log\frac{e}{1-|z|^2}|u'(z)|}{(1-|\varphi(z)|^2)^n}||f||_{\infty}.\end{aligned}$$

Moreover,

$$|(D_{\varphi,u}^{n}f)(0)| = |f^{(n)}(\varphi(0))u(0)| \le \frac{C|u(0)|}{(1-|\varphi(0)|^{2})^{n}}||f||_{\infty}.$$

From (*d*) we see that

$$||D_{\varphi,u}^{n}f||_{\mathcal{LB}} = |(D_{\varphi,u}^{n}f)(0)| + \sup_{z \in \mathbb{D}} (1-|z|^{2}) \log \frac{e}{1-|z|^{2}} |(D_{\varphi,u}^{n}f)'(z)| \le C ||f||_{\infty}$$

Therefore the operator $D^n_{\varphi,u}: H^\infty \to \mathcal{LB}$ is bounded, as desired. \Box

To study the compactness of $D^n_{\varphi,\mu}$: $H^{\infty} \to \mathcal{LB}$, we need the following lemma, which can be proved in a standard way, see, for example Proposition 3.11 in [4].

Lemma 2. Let *n* be a nonnegative integer, $u \in H(\mathbb{D})$ and let φ be an analytic self-map of \mathbb{D} . Then $D_{\varphi,u}^n : H^{\infty} \to \mathcal{LB}$ is compact if and only if $D_{\varphi,u}^n : H^{\infty} \to \mathcal{LB}$ is bounded and for any bounded sequence $(f_j)_{j \in \mathbb{N}}$ in H^{∞} which converges to zero uniformly on compact subsets of \mathbb{D} , $||D_{\varphi,u}^n f_j||_{\mathcal{LB}} \to 0$ as $j \to \infty$.

Theorem 3. Let *n* be a nonnegative integer, $u \in H(\mathbb{D})$ and let φ an analytic self-map of \mathbb{D} such that $D_{\varphi,u}^n : H^{\infty} \to \mathcal{LB}$ is bounded. Then the following statements are equivalent.

$$\begin{array}{l} (a) \ D_{\varphi,u}^{n} : H^{\infty} \to \mathcal{LB} \text{ is compact.} \\ (b) \ \lim_{j \to \infty} \|D_{\varphi,u}^{n}I^{j}\|_{\mathcal{LB}} = 0, \ \text{ where } \ I^{j}(z) = z^{j}. \\ (c) \ \lim_{|\varphi(a)| \to 1} \|D_{\varphi,u}^{n}f_{\varphi(a)}\|_{\mathcal{LB}} = 0 \quad and \quad \lim_{|\varphi(a)| \to 1} \|D_{\varphi,u}^{n}h_{\varphi(a)}\|_{\mathcal{LB}} = 0. \\ (d) \\ \lim_{|\varphi(z)| \to 1} \frac{(1 - |z|^{2})\log\frac{e}{1 - |z|^{2}}|u(z)||\varphi'(z)|}{(1 - |\varphi(z)|^{2})^{n+1}} = 0 \ and \quad \lim_{|\varphi(z)| \to 1} \frac{(1 - |z|^{2})\log\frac{e}{1 - |z|^{2}}|u'(z)|}{(1 - |\varphi(z)|^{2})^{n}} = 0. \end{array}$$

Proof. (*a*) \Rightarrow (*b*) Assume $D_{\varphi,u}^n$: $H^{\infty} \rightarrow \mathcal{LB}$ is compact. Since the sequence $\{I^j\}$ is bounded in H^{∞} and converges to 0 uniformly on compact subsets, by Lemma 2 it follows that $\|D_{\varphi,u}^n I^j\|_{\mathcal{LB}} \rightarrow 0$ as $j \rightarrow \infty$.

 $(b) \Rightarrow (c)$ Suppose (b) holds. Fix $\varepsilon > 0$ and choose $N \in \mathbb{N}$ such that $||D_{\varphi,u}^n I^j||_{\mathcal{LB}} < \varepsilon$ for all $j \ge N$. Let $z_k \in \mathbb{D}$ such that $||\varphi(z_k)| \to 1$ as $k \to \infty$. Arguing as in Theorem 1, we have

$$\begin{split} \|D_{\varphi,u}^{n}f_{\varphi(z_{k})}\|_{\mathcal{LB}} &\leq (1-|\varphi(z_{k})|^{2})\sum_{j=0}^{\infty}|\varphi(z_{k})|^{j}\|D_{\varphi,u}^{n}I^{j}\|_{\mathcal{LB}} \\ &= (1-|\varphi(z_{k})|^{2})\sum_{j=0}^{N-1}|\varphi(z_{k})|^{j}\|D_{\varphi,u}^{n}I^{j}\|_{\mathcal{LB}} + (1-|\varphi(z_{k})|^{2})\sum_{j=N}^{\infty}|\varphi(z_{k})|^{j}\|D_{\varphi,u}^{n}I^{j}\|_{\mathcal{LB}} \\ &\leq 2Q(1-|\varphi(z_{k})|^{N})+2\varepsilon. \end{split}$$

Since $|\varphi(z_k)| \to 1$ as $k \to \infty$, by the arbitrary of ε , we get $\lim_{k\to\infty} ||D_{\varphi,u}^n f_{\varphi(z_k)}||_{\mathcal{LB}} = 0$, i.e., we obtain $\lim_{|\varphi(a)|\to 1} ||D_{\varphi,u}^n f_{\varphi(a)}||_{\mathcal{LB}} = 0$.

Notice that

$$\sum_{j=0}^{N-1} (j+1)r^j = \frac{1-r^N - Nr^N(1-r)}{(1-r)^2}, \quad 0 \le r < 1,$$

arguing as Theorem 1 we get

$$\begin{split} \|D_{\varphi,u}^{n}h_{\varphi(z_{k})}\|_{\mathcal{LB}} &\leq (1-|\varphi(z_{k})|^{2})^{2}\sum_{j=0}^{\infty}(j+1)|\varphi(z_{k})|^{j}\|D_{\varphi,u}^{n}I^{j}\|_{\mathcal{LB}} \\ &= (1-|\varphi(z_{k})|^{2})^{2}\sum_{j=0}^{N-1}(j+1)|\varphi(z_{k})|^{j}\|D_{\varphi,u}^{n}I^{j}\|_{\mathcal{LB}} + (1-|\varphi(z_{k})|^{2})^{2}\sum_{j=N}^{\infty}(j+1)|\varphi(z_{k})|^{j}\|D_{\varphi,u}^{n}I^{j}\|_{\mathcal{LB}} \\ &\leq 4Q(1-|\varphi(z_{k})|^{N}-N|\varphi(z_{k})|^{N}(1-|\varphi(z_{k})|) + 4\varepsilon. \end{split}$$

Therefore, $\lim_{k\to\infty} \|D_{\varphi,u}^n h_{\varphi(z_k)}\|_{\mathcal{LB}} \le 4\varepsilon$. By the arbitrary of ε , we obtain $\lim_{|\varphi(a)|\to 1} \|D_{\varphi,u}^n h_{\varphi(a)}\|_{\mathcal{LB}} = 0$, as desired.

 $(c) \Rightarrow (d)$ To prove (d) it only need to show that if $(z_k)_{k \in \mathbb{N}}$ is a sequence in \mathbb{D} such that $|\varphi(z_k)| \to 1$ as $k \to \infty$, then

$$\lim_{k \to \infty} \frac{(1 - |z_k|^2) \log \frac{e}{1 - |z_k|^2} |u(z_k)| |\varphi'(z_k)|}{(1 - |\varphi(z_k)|^2)^{n+1}} = 0, \quad \lim_{k \to \infty} \frac{(1 - |z_k|^2) \log \frac{e}{1 - |z_k|^2} |u'(z_k)|}{(1 - |\varphi(z_k)|^2)^n} = 0.$$

Let $(z_k)_{k \in \mathbb{N}}$ be such a sequence such that $|\varphi(z_k)| \to 1$ as $k \to \infty$. From the assumption and arguing as Theorem 1 we obtain

$$\lim_{k\to\infty} \|D_{\varphi,u}^n g_{\varphi(z_k)}\|_{\mathcal{LB}} \leq \lim_{k\to\infty} \|D_{\varphi,u}^n f_{\varphi(z_k)}\|_{\mathcal{LB}} + \frac{1}{n+1} \lim_{k\to\infty} \|D_{\varphi,u}^n h_{\varphi(z_k)}\|_{\mathcal{LB}} = 0.$$

Hence $\lim_{k\to\infty} \|D_{\varphi,\mu}^n g_{\varphi(z_k)}\|_{\mathcal{LB}} = 0$. Similarly to the proof of Theorem 1, we have

$$\frac{n!(1-|z_k|^2)\log\frac{e}{1-|z_k|^2}|u(z_k)||\varphi'(z_k)||\varphi(z_k)|^{n+1}}{(1-|\varphi(z_k)|^2)^{n+1}} \le \|D_{\varphi,u}^n g_{\varphi(z_k)}\|_{\mathcal{LB}} \to 0, \text{ as } k \to \infty,$$

which implies

$$\lim_{k \to \infty} \frac{(1 - |z_k|^2) \log \frac{e}{1 - |z_k|^2} |u(z_k)| |\varphi'(z_k)|}{(1 - |\varphi(z_k)|^2)^{n+1}} = \lim_{k \to \infty} \frac{(1 - |z_k|^2) \log \frac{e}{1 - |z_k|^2} |u(z_k)| |\varphi'(z_k)| |\varphi(z_k)|^{n+1}}{(1 - |\varphi(z_k)|^2)^{n+1}} = 0.$$
(8)

In addition,

$$\begin{split} &\|D_{\varphi,u}^n f_{\varphi(z_k)}\|_{\mathcal{LB}} + \frac{(n+1)!(1-|z_k|^2)\log\frac{e}{1-|z_k|^2}|u(z_k)||\varphi'(z_k)||\varphi(z_k)|^{n+1}}{(1-|\varphi(z_k)|^2)^{n+1}}\\ &\geq \quad \frac{n!(1-|z_k|^2)\log\frac{e}{1-|z_k|^2}|u'(z_k)||\varphi(z_k)|^n}{(1-|\varphi(z_k)|^2)^n}. \end{split}$$

From (8) and the assumption that $\|D_{\varphi,\mu}^n f_{\varphi(z_k)}\|_{\mathcal{LB}} \to 0$ as $k \to \infty$, we have

$$\lim_{k \to \infty} \frac{(1 - |z_k|^2) \log \frac{e}{1 - |z_k|^2} |u'(z_k)|}{(1 - |\varphi(z_k)|^2)^n} = \lim_{k \to \infty} \frac{(1 - |z_k|^2) \log \frac{e}{1 - |z_k|^2} |u'(z_k)| |\varphi(z_k)|^n}{(1 - |\varphi(z_k)|^2)^n} = 0,$$

as desired.

(*d*) ⇒ (*a*) Assume that $(f_k)_{k \in \mathbb{N}}$ is a bounded sequence in H^{∞} converging to 0 uniformly on compact subsets of \mathbb{D} . By the assumption, for any $\varepsilon > 0$, there exists a $\delta \in (0, 1)$ such that

$$\frac{(1-|z|^2)\log\frac{e}{1-|z|^2}|\varphi'(z)||u(z)|}{(1-|\varphi(z)|^2)^{n+1}} < \varepsilon \quad \text{and} \quad \frac{(1-|z|^2)\log\frac{e}{1-|z|^2}|u'(z)|}{(1-|\varphi(z)|^2)^n} < \varepsilon \tag{9}$$

when $\delta < |\varphi(z)| < 1$. Let $K = \{z \in \mathbb{D} : |\varphi(z)| \le \delta\}$. Since $D_{\varphi,u}^n : H^{\infty} \to \mathcal{LB}$ is bounded, as shown in the proof of Theorem 1,

$$C_3 := \sup_{z \in \mathbb{D}} (1 - |z|^2) \log \frac{e}{1 - |z|^2} |u'(z)| < \infty$$
(10)

and

$$C_4 := \sup_{z \in \mathbb{D}} (1 - |z|^2) \log \frac{e}{1 - |z|^2} |u(z)||\varphi'(z)| < \infty.$$
(11)

By (9), (10) and (11), we have

$$\begin{split} \sup_{z \in \mathbb{D}} (1 - |z|^2) \log \frac{e}{1 - |z|^2} |(D_{\varphi,u}^n f_k)'(z)| \\ \leq \sup_{z \in K} (1 - |z|^2) \log \frac{e}{1 - |z|^2} |u(z)||\varphi'(z)||f_k^{(n+1)}(\varphi(z))| + \sup_{z \in K} (1 - |z|^2) \log \frac{e}{1 - |z|^2} |u'(z)||f_k^{(n)}(\varphi(z))| \\ + C \sup_{z \in \mathbb{D} \setminus K} \frac{(1 - |z|^2) \log \frac{e}{1 - |z|^2} |u(z)||\varphi'(z)|}{(1 - |\varphi(z)|^2)^{n+1}} ||f_k||_{\infty} + C \sup_{z \in \mathbb{D} \setminus K} \frac{(1 - |z|^2) \log \frac{e}{1 - |z|^2} |u'(z)|}{(1 - |\varphi(z)|^2)^n} ||f_k||_{\infty} \\ \leq C_4 \sup_{z \in K} |f_k^{(n+1)}(\varphi(z))| + C_3 \sup_{z \in K} |f_k^{(n)}(\varphi(z))| + C\varepsilon ||f_k||_{\infty}. \end{split}$$

Hence

$$\|D_{\varphi,u}^{n}f_{k}\|_{\mathcal{LB}} \leq C_{4} \sup_{|w| \le \delta} |f_{k}^{(n+1)}(w)| + C_{3} \sup_{|w| \le \delta} |f_{k}^{(n)}(w)| + C\varepsilon \|f_{k}\|_{\infty} + |u(0)||f_{k}^{(n)}(\varphi(0))|.$$
(12)

Since $(f_k)_{k \in \mathbb{N}}$ converges to 0 uniformly on compact subsets of \mathbb{D} , by Cauchy's estimates we see that $(f_k^{(n)})$ and $(f_k^{(n+1)})$ also converges to 0 uniformly on compact subsets of \mathbb{D} . From (12), letting $k \to \infty$ and using the fact that ε is an arbitrary positive number, we obtain $\|D_{\varphi,u}^n f_k\|_{\mathcal{LB}} \to 0$ as $k \to \infty$. By Lemma 2, we see that the operator $D_{\varphi,u}^n : H^\infty \to \mathcal{LB}$ is compact. \Box

References

- [1] K. Attele, Toeplitz and Hankel operators on Bergman one space, Hokkaido Mathematical Journal 21 (1992) 279–293.
- [2] L. Brown and A. Shields, Multipliers and cyclic vectors in the Bloch space, Michigan Mathematical Journal 38 (1991) 141–146.
 [3] F. Colonna and S. Li, Weighted composition operators from Hardy spaces into logarithmic Bloch spaces, Journal of Function
- Spaces and Applications Volume 2012 Article ID 454820 (2012) 20 pages.
- [4] C. C. Cowen and B. D. MacCluer, Composition Operators on Spaces of Analytic Functions, CRC Press, Boca Raton, FL, 1995.
- [5] R. Hibschweiler and N. Portnoy, Composition followed by differentiation between Bergman and Hardy spaces, Rocky Mountain Journal of Mathematics 35 (2005) 843–855.
- [6] S. Krantz and S. Stević, On the iterated logarithmic Bloch space on the unit ball, Nonlinear Analysis: Theory, Methods and Applications 71 (2009) 1772–1795.
- [7] H. Li and X. Fu, A new characterization of generalized weighted composition operators from the Bloch space into the Zygmund space, Journal of Function Spaces and Applications Volume 2013 Article ID 925901 (2013) 12 pages.
- [8] S. Li, S. Stević, Composition followed by differentiation between Bloch type spaces, Journal of Computational Analysis and Applications 9 (2007) 195–205.
- [9] S. Li and S. Stević, Composition followed by differentiation between H[∞] and α-Bloch spaces, Houston Journal of Mathematics 35 (2009) 327–340.
- [10] Y. Liang and Z. Zhou, Essential norm of the product of differentiation and composition operators between Bloch-type space, Archiv der Mathematik 100 (2013) 347–360.
- [11] Y. Liu and Y. Yu, Products of composition, multiplication and radial derivative operators from logarithmic Bloch spaces to weighted-type spaces on the unit ball, Journal of Mathematical Analysis and Applications 423 (2015) 76–93.
- [12] Z. Lou, Composition operators on Bloch type spaces, Analysis (Munich) 23 (2003) 81–95.

- [13] K. Madigan and A. Matheson, Compact composition operators on the Bloch space, Transactions of the American Mathematical Society 347 (1995) 2679–2687.
- [14] J. Manhas and R. Zhao, New estimates of essential norms of weighted composition operators between Bloch type spaces, Journal of Mathematical Analysis and Applications 389 (2012) 32–47.
- [15] S. Ohno, Weighted composition operators between H^{∞} and the Bloch space, Taiwanese Journal of Mathematics 5 (2001) 555–563.
- [16] S. Ohno, K. Stroethoff and R. Zhao, Weighted composition operators between Bloch-type spaces, Rocky Mountain Journal of Mathematics 33 (2003) 191–215.
- [17] S. Stević and R. Agarwal, Weighted composition operators from logarithmic Bloch-type spaces to Bloch-type spaces, Journal of Inequalities and Applications Volume 2009 Article ID 964814 (2009) 21 pages.
- [18] S. Stević, Products of composition and differentiation operators on the weighted Bergman space, Bulletin of the Belgian Mathematical Society-Simon Stevin 16 (2009) 623–635.
- [19] S. Stević, Weighted differentiation composition operators from mixed-norm spaces to weighted-type spaces, Applied Mathematics and Computation 211 (2009) 222–233.
- [20] S. Stević, Weighted differentiation composition operators from mixed-norm spaces to the *n*th weighted-type space on the unit disk, Abstract and Applied Analysis Volume 2010 Article ID 246287 (2010) 15 pages.
- [21] S. Stević, Weighted differentiation composition operators from H[∞] and Bloch spaces to *n*th weighted-type spaces on the unit disk, Applied Mathematics and Computation 216 (2010) 3634–3641.
- [22] M. Tjani, Compact composition operators on some Möbius invariant Banach space, PhD dissertation, Michigan State University, 1996.
- [23] Y. Wu and H. Wulan, Products of differentiation and composition operators on the Bloch space, Collectanea Mathematica 63 (2012) 93–107.
- [24] H. Wulan, D. Zheng and K. Zhu, Compact composition operators on BMOA and the Bloch space, Proceedings of the American Mathematical Society 137 (2009) 3861–3868.
- [25] W. Yang, Products of composition and differentiation operators from $Q_K(p,q)$ spaces to Bloch-type spaces, Abstract and Applied Analysis, Volume 2009 Article ID 741920 (2009) 14 pages.
- [26] R. Yoneda, The composition operators on weighted Bloch space, Arch Mathematical (Basel) 78 (2002) 310–317.
- [27] F. Zhang and Y. Liu, Generalized composition operators from Bloch type spaces to *Q_K* type spaces, Journal of Function Spaces and Applications 8 (2010) 55–66.
- [28] F. Zhang and Y. Liu, Products of multiplication, composition and differentiation operators from mixed-norm spaces to weightedtype spaces, Taiwanese Journal of Mathematics 18 (2014) 1927–1940.
- [29] F. Zhang and Y. Liu, Volterra composition operators from F(p, q, s) to Logarithmic Bloch spaces, Journal of Computational Analysis and Applications 19 (2015) 444–454.
- [30] R. Zhao, Essential norms of composition operators between Bloch type spaces, Proceedings of the American Mathematical Society 138 (2010) 2537–2546.
- [31] K. Zhu, Operator Theory in Function Spaces, Marcel Dekker, New York and Basel, 1990.
- [32] X. Zhu, Products of differentiation, composition and multiplication from Bergman type spaces to Bers type space, Integral Transforms and Special Function 18 (2007) 223–231.
- [33] X. Zhu, Generalized weighted composition operators on weighted Bergman spaces, Numerical Functional Analysis and Optimization 30 (2009) 881–893.
- [34] X. Zhu, Generalized weighted composition operators from Bloch spaces into Bers-type spaces, Filomat 26 (2012) 1163–1169.