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Abstract. Customer credit scoring is an important concern for numerous domestic and global industries.
It is difficult to achieve satisfactory performance by traditional models constructed on the assumption that
the training and test data are subject to the same distribution, because the customers usually come from
different districts and may be subject to different distributions in reality. This study combines ensemble
learning with transfer learning, and proposes a clustering and selection based transfer ensemble (CSTS)
model to transfer the instances from related source domains to target domain for assisting in modeling.
The experimental results in two customer credit scoring datasets show that CSTE model outperforms two
traditional credit scoring models, as well as three existing transfer learning models.

1. Introduction

Over the past decades, the global credit businesses have developed rapidly, and the credit institutions are
faced with more and more credit frauds, which results in huge losses. The value of outstanding consumer
credit (excluding residential mortgage loan) in the US and UK at the end of 2009 was $2.5 trillion and £171
billion respectively [1, 2]. At the same time, annualized write-off rates for credit cards and personal loans
in the US and UK were 5.4% [2] and 1.5% [1, 3] respectively. Therefore, it is significant to build a scientific
customer credit scoring model which can provide important decision support for the related people, and
decrease the losses.

The first application of quantitative methods to customer credit scoring was undertaken by Durand, who
adopted quadratic discriminant analysis to classify credit applications [4]. Since then, the most popular
approaches to consumer risk assessment have continued to treat loan decisions as binary classification
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problems [5], i.e., divide the applicants into two categories based on their different default risks: applicants
with good credit who always successfully fulfill the agreements and applicants with bad credit who have
defaulted. At present, the commonly used credit scoring models include logistic regression [6], artificial
neural network (ANN) [7], support vector machine (SVM) [8], VAR mode [9], etc.

The above models do not take the issue that the distributions of customer data are often highly imbal-
anced into account in customer credit scoring. The so-called class imbalance means that the applicants with
bad credit constitute only a very small minority of the data (usually 2% of the total customers) [10]. For
example, the Council of Mortgage Lenders, UK, reported that in the second quarter of 2010, the number of
mortgages three or more months in arrears, i.e., default applicants with bad credit stood at 2.17% of total
outstanding mortgages [11]. When the class distribution of the data is imbalanced, the misclassification
rate of the above classification models for bad credit applicants is much higher than that of good credit
applicants [12]. However, the value of accurate classification for a bad credit applicant is often higher than
that of a good credit applicant [13].

At present, two types of approaches are proposed to deal with the class imbalance issue in customer
credit scoring [14]: data-level and algorithm-level solutions. Data-level solutions mainly use resampling
techniques, such as random over-sampling for the minority customers and random down-sampling for
the majority customers, to balance the class distribution of the training set and construct the classification
model. For example, Marqus et al. [15] investigated the suitability and performance of several resampling
techniques when applied in conjunction with statistical and artificial intelligence prediction models over
five real-world credit datasets, and their experimental results demonstrated that the use of resampling
methods consistently improved the performance given by the original imbalanced data. Besides, over-
sampling techniques performed better than any under-sampling approach. Algorithm-level solutions
attempt to adapt existing classification algorithms to strengthen learning with regard to the minority class.
Such solutions mainly introduce cost sensitive learning technique and assign different misclassification
costs to the customers from different classes. For instance, Zou et al. [16] combined support vector
machine with cost-sensitive learning to construct cost-sensitive support vector machine for credit scoring.
In addition, in recent years, some scholars have introduced multiple classifiers ensemble (MCE) technique
to customer credit scoring for improving the generalization ability [13, 17]. For example, Paleologo et al.
[17] proposed an ensemble classification technique, Subagging for highly imbalanced credit scoring data
and demonstrated its effectiveness through experiments. The common characteristic of the two types of
methods above is that they only use the original information in the inner system (target domain) to handle
the class imbalance issue, and do not generate new information. According to the statistics learning theory,
under certain sample information capacity, model accuracy has an upper limit [18]. Therefore, to improve
the prediction accuracy of the minority customers for both types of solutions is usually on the condition
that the prediction accuracy of the majority customers is sacrificed.

A popular phenomenon exists in the real customer credit scoring. There are a large number of customer
data in related source domains, which may be from different districts, businesses, periods, or enterprises
in the same industry. Although the customer data in the source and target domains are very similar, they
are often subject to different distributions. It is difficult to achieve satisfactory performance in this case
for most traditional models, because they are all based on the assumption that the training data and the
test data are subject to the same distribution [19]. Therefore, it is expected to improve the credit scoring
performance with imbalanced class distribution through integrating the data from the source and target
domains effectively.

The transfer learning proposed in machine learning area provides a new idea for this issue, and its main
idea is to utilize the data of related source domain tasks to assist in modeling for target task [19, 20]. In
recent years, transfer learning has been applied to many areas such as text mining, image recognition, and
so on. However, it is seldom applied to the customer credit scoring.

Combining the transfer learning with multiple classifiers ensemble (MCE) [21], this study proposes a
clustering and selection based transfer ensemble (CSTS) model, and applies it to customer credit scoring.
The experimental results in two customer credit scoring datasets show that CSTE can achieve better per-
formance compared with the traditional credit scoring models, as well as some existing transfer learning
models.
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The structure of this study is organized as follows: it introduces the methodology proposed in this
study in Section 2; presents the experimental design and detailed results analysis in Section 3. Finally, the
conclusions are included in Section 4.

2. Methodology

2.1. Multiple classifiers ensemble

Classification is one of the key technologies in data mining, and has been applied to many areas such as
speech recognition, text classification, image processing. Many classification learning algorithms generate
a single classifier (e.g., a decision tree or neural network) that can be used to predict the class labels of
new patterns. However, because the data in real classification issues include much noise, it is difficult to
classify accurately in the whole pattern space with single classifier [22]. If we can integrate the classification
results of some classifiers with MCE technique, and each classifier plays role in its dominant area, then it
is hopeful to improve the classification accuracy [23]. A successful MCE system should have the following
two characteristics [24]: firstly, the base classifiers for ensemble system have higher classification accuracy,
at least greater than 0.5 [25]; secondly, the classification results of base classifiers should be diverse [26].

The construction of classifier ensemble strategies is a key step in multiple classifiers ensemble. The
existing ensemble strategies can be divided into two types: 1) static classifier ensemble (SCE) [22], which
selects a unified ensemble scheme for all test patterns; 2) dynamic classifier ensemble (DCE) [26]. In fact,
different test patterns usually have different classification difficulties. Intuitively, if we adopt different
classifiers for different test patterns, the classification performance may be better than that by SCE. This is
also the basic idea of DCE. However, the time complexity of DCE is often much higher than that of SCE.
Note that the CSTE model proposed in this study belongs to SCE strategy.

2.2. Transfer learning theory

In the past decades, research on transfer learning has attracted more and more attention in different
names: learning to learn, life-long learning, knowledge transfer, inductive transfer, multi-task learning,
knowledge consolidation, context sensitive learning, knowledge-based inductive bias, meta learning, and
incremental/cumulative learning [20]. At present, there is no uniform definition about the transfer learning
in academia. In 2005, the Broad Agency Announcement (BAA) 05-29 of Defense Advanced Research
Projects Agency (DARPA)s Information Processing Technology Office (IPTO) gave a new mission of transfer
learning: the ability of a system to recognize and apply knowledge and skills learned in previous tasks to
novel tasks. Figure 1 shows the difference between the traditional learning processes and transfer learning
techniques [19].

Figure 1: The comparison between traditional machine learning and transfer learning.
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In general, the existing transfer learning strategies can be classified into four classes [19]: instance-based,
feature-based, model-based, and related-knowledge-based. In recent years, many scholars have focused
on transfer learning strategies, and the representative researches are as follows: the feature-based transfer
component analysis (TCA) strategy [27], the instance-based TrBagg strategy [28], and the instance-based
TrAdaBoost strategy [29]. Although these strategies have their own advantages, neither of them takes the
imbalanced class distribution of data into consideration. So they can hardly conduct the credit scoring
correctly when they are involved in CRM field. Whats more, the existing transfer learning strategies are
seldom utilized in CRM.

2.3. Clustering and Selection Based Transfer Ensemble Model

2.3.1. The basic idea of the model

The CSTE model aims to transfer some useful information from the related source domain to assist in
modeling for target domain. In real credit scoring issues, the source domains usually contain lots of noises.
Thus, if we transfer the applicant samples from the source domain to the target domain indiscriminately
or improperly, it may result in negative transfer due to introducing too many noises [30]. Therefore, it is
necessary to consider how to avoid the negative transfer in constructing transfer learning model.

In Reference [31], we proposed a feature-selection-based dynamic transfer ensemble model, where we
supposed that there was only one source domain related to the target domain. However, in real customer
credit scoring issues, there may be many source domains, and how to construct transfer ensemble model in
this case is the focus of this study. Suppose that T is the target domain dataset of a credit scoring issue, and
there are p source domain datasets Sri(i = 1, 2, ..., p) related to T. At the same time, both T and Sri contain
two types of samples: bad credit samples with class label 1 and good credit samples with class label 2.
Further, the target domain T is divided into two subsets: target training set T1 and target test set T2.

In order to avoid negative transfer effectively, the CSTE model proposed in this study contains 3 phases
(see Fig. 2): 1) Transfer the source domain datasets selectively. It first utilizes k-means algorithm to divide
T1 into k cluster numbers, and obtains the initial clustering program CI . In this study, we suppose the class
label of the dataset only contains two classes: good credit and bad credit, therefore we let k = 2. Further, it
combines each source domain dataset Sri(i = 1, 2, ..., p) with T1, and clusters again with k-means algorithm
(the cluster number is still 2) to get new clustering program Cli(i = 1, 2, ..., p). Finally, it calculates the
consistence between Cli and the initial clustering program CI, and then transfers a half of source domains
with higher consistence into the target training set to form the new training set TR; 2) Eliminate the noise
data in the new training set. Firstly, like in Phase 1, the new training set TR is clustered into 2 clusters by
k-means. If the samples belong to two classes in one cluster, then subdivide this cluster further. Meanwhile,
it excludes the isolated cluster with fewer samples. At last, it numbers all clusters and regards the numbers
as the samples new class label in the final training set T f ; 3) Train base classifiers and classify target test
set T2. It first selects N training subsets randomly with replacement from T f . At this moment, the class
distribution of the training subsets and then balances each subset with oversampling technology. Further,
it trains a classifier in each balanced subset and classifies T2 with each classifier. At last, it gets the final
ensemble classification results by weighted voting.
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Figure 2: The flow chart of CSTE model.

2.3.2. Measure the consistence of two clustering programs with mutual information

When transferring the source domain datasets selectively, it is important to measure the consistence
of two clustering programs. In this study we regard the mutual information based method [32] as the
measurement. Its theoretical description is described as following.

Firstly, suppose that we cluster the dataset with n samples by k-means clustering method, and obtain two
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The mutual information value is between 0 and 1. The larger the value is, the more consistent two clustering
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programs are.

2.3.3. Detailed description of CSTE model

CSTE model contains four phases, and its pseudo-code is as follows:
Phase 1: Transfer the source domain datasets selectively
1) Divide T1 into 2 clusters by k-means method and get the initial clustering program CI;
2) Combine each source domain dataset Sri(i = 1, 2, ..., p) with T1 respectively, cluster again by k-means

algorithm (the cluster number is still 2), and suppose the new clustering program is Cli(i = 1, 2, ..., p);
3) Calculate the consistence Φi between the initial clustering program and the new clustering program

Cli based on Eq. (1), and then select a half of the source domains with higher Φi . Finally, add them to the
target training set T1 and construct the new training set TR;

Phase 2: Eliminate the noise data in new training set
4) Divide TR into 2 clusters with k-means method to get the clustering results Clus1,Clus1 ;
5) For each cluster Clusi(i = 1, 2), if it contains some samples with two different class labels, it is

called inconsistent cluster, and we divide it into two sub-clusters according to the samples class labels:
Clusi1,Clusi2; For each cluster Clusi , if it only contains a few samples, i.e., isolated cluster, it is deleted
directly. Finally, we number all the remaining clusters;

6) Set the cluster number as the new class label of samples in each cluster, and combine all the samples
to get the final training set T f ;

Phase 3: Train the base classifiers and classify the target test set
7) Sample N training subsets from T f randomly with replacement, and balance the class distribution of

each training subset with the random over-sampling which is recommended by Marqus et al. [15];
8) Train a classifier in each training subset and get the base classifier set C = C1,C2, ...,CN;
9) Classify the test set T2 in the target domain with each base classifier Ci(i = 1, 2, ...,N), and suppose the

classification results are Ri. Further, integrate the classification results of N base classifiers with weighted
voting and get the final ensemble classification results for T2.

3. Empirical Analyses

In order to analyze the credit scoring performance of CSTE proposed in this study, we experimented
in two datasets. Meanwhile, we compared CSTE model with the following five strategies: 1) traditional
customer credit scoring model Subagging [17] by utilizing all data (Subagging), which trains N classifiers
by uniting the data in the source domains with those in the target domain without distinction; 2) traditional
Subagging by utilizing the target domain data only (Subagg-OT), which trains N classifiers by using the
data in the target domain; 3) feature-based TCA strategy [27]; 4) instance based transfer learning strategy
TrBagg [28]; and 5) instance based transfer learning strategy TrAdaBoost [29].

3.1. Datasets and data processing

(1) PAKDD2009 dataset
The first dataset is from Pacific-Asia Conference on Knowledge Discovery and Data Mining (PAKDD)

2009 Data Mining Competition (http://sede.neurotech.com.br:443/PAKDD2009). The dataset of this year
is a credit scoring problem that comes from the private label credit card operation of a major Brazilian
retail chain. The client was labeled as bad (target variable=1) if, for 11 months after the first bill, he / she
had any payment default (a delay longer than 60 days). Otherwise, the client was labeled as good (target
variable=0). All the data from PAKDD2009 are divided into three datasets: modeling dataset with 50,000
samples, leaderboard dataset with 10,000 samples and prediction dataset with 10,000 samples. However,
only the samples in the modeling dataset have the class label, therefore, we just select the modeling dataset
in experiment for convenient analysis.
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Table 1: Description of selected features in PAKDD2009 dataset.

Features Description Features Description
x1 Id Shop x11 Flag Mothers Name
x2 Sex x12 Flag Fathers Name
x3 Marital Status x13 Flag Residence Town=Working Town
x4 Age x14 If the applicant works in the same state where lives
x5 Flag Residencial Phone x15 Time in the current job in months
x6 Area Code Residencial Phone x16 Profession Code
x7 Payment Day x17 Mate Income
x8 Shop Rank x18 Flag Residencial Address=Postal Address
x9 Residence Type x19 Personal Net Income
x10 Months In Residence x20 Cod Application Booth

There are 31 features in the data. After preliminary data cleaning, there are 49,904 samples and 20
features in the modeling dataset (see Table 1). We need to divide the dataset into target domain and source
domain to take the transfer learning for experimenting. It is worth noting that x6 means the modified
residential phone area code. Its different values imply that the customers are from different regions, and
these customer data may be subject to different distributions. Therefore, we divide 49,904 customer samples
into 67 subsets according to different values of x6 (from 1-70, but excluding 16, 55 and 66). We regard the
subset x6 = 5 (it contains 2,471 samples, where there are 341 customers with bad credit, and 2,310 ones with
good credit) as the target domain dataset. Further, most of the remaining 66 subsets contain few samples
(one or two), which lose the meaning of transferring. So we just select 10 subsets data that contain 10
samples at least as the source domain (the first 3 columns in Table 2 show 10 source domains).

Table 2: Description of the source domains and the multivariate two-sample testing results on PAKDD2009 dataset.

Number Source domains Number of samples |t̂| |t̂′950|

1 x6 = 23 994 96.832 1.8650
2 x6 = 24 120 73.663 1.9766
3 x6 = 27 27 78.688 1.3293
4 x6 = 31 34,992 78.365 1.8924
5 x6 = 32 33 94.545 2.4056
6 x6 = 38 12 70.654 1.7283
7 x6 = 42 14 83.675 1.9342
8 x6 = 49 48 92.328 1.8476
9 x6 = 50 11,071 76.437 1.8564

10 x6 = 56 10 65.433 2.0341

(2) UK credit dataset
This dataset comes from the monograph of Thomas [33], and it is used to evaluate the UK credit. There

are 14 attributes for the dataset – three nominal attributes, and eleven continuous attributes (see Table 3).
It contains 1,225 customer samples that are divided into good credit with 902 samples and bad credit with
323 samples. The sample proportion is 2.79:1, so it belongs to highly class imbalanced dataset.
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Table 3: Description of the features in UK credit dataset.

Features Description Features Description
x1 Year of birth x8 Residential status
x2 Number of children x9 Value of home
x3 Number of other dependents x10 Mortgage balance outstanding
x4 Is there a home pone x11 Outgoings on mortgage or rent
x5 Spouses income x12 Outgoings on loans
x6 Applicants employment status x13 Outgoings on hire purchase
x7 Applicants income x14 Outgoings on credit cards

In order to take the transfer learning for experiment, we notice that x6 which means the applicants
employment status has 11 different values from 1 to 11. The customers with different employment status
may have different consumption habits, and the corresponding data may be subject to different distributions.
Thus, we divide all the customer samples into 11 subsets according to different values of x6. We regard the
subset x6 = 1 (it contains 231 samples, where there are 44 customers with bad credit, and 187 ones with
good credit) as the target domain dataset, and the other 10 subsets as the source domains. However, the
numbers of samples in the 3 source domains x6 = 9, 10 and 11 are fewer than that in x6 = 10 , thus we
delete them directly (the first 3 columns in Table 4 show the seven source domains), which is similar to the
PAKDD2009 dataset.

Table 4: Description of the source domains and the multivariate two-sample testing results on UK credit dataset.

Number Source domains Number of samples |t̂| |t̂′950|

1 x6 = 2 37 257.42 3.8217
2 x6 = 3 23 227.31 0.7554
3 x6 = 4 531 711.97 33.834
4 x6 = 5 30 301.68 21.446
5 x6 = 6 104 603.46 87.222
6 x6 = 7 124 202.56 19.466
7 x6 = 8 123 528.73 74.325

To determine whether the distributions of the source domains and target domain are different, we
introduced the multivariate two-sample testing procedure proposed in [34]. It can be roughly divided into
the following steps: 1) Create a predictor variable training set {ui}

m1+m2

1
= {ti}

m1

1

⋃

{si}
m2

1
by pooling the two

samples, i.e., the target domain T and the source domain S, and assign a response value yi = 1(1 ≤ i ≤ m1)
to the observations originated from the first sample while assign yi = −1(m1 + 1 ≤ i ≤ m1 + m2) to those
from the second sample; 2) A binary classification learning machine (e.g., the support vector machine
is selected in this study) is applied to this training data to produce a scoring function Lm(u), and then
this function is used to score each observation {scorei = Lm(ui)}

m1+m2

1
; 3) Generate two sets of score values

Score+ = {scorei}
m1

1
and Score− = {scorei}

m1+m2

m1+1
, regard the sets of numbers Score± as a random sample from

respective probability distributions with densities p+(score) and p−(score), apply a univariate two-sample
test (e.g., the two independent samples t-test is introduced in this study) for the equality of these densities
p+(score) = p−(score), and compute the test statistic t̂; 4) Let { j(i)}m1+m2

1
represent a random permutation

of the integers {i}m1+m2

1
, and construct a dataset {y j(i), ui}

m1+m2

1
in which the actual response values {yi}

m1+m2

1

are randomly permuted among the predictors {ui}
m1+m2

1
; 5)Train a support vector machine with these data,

score the observations, and compute the t-test statistic t̂′
1
; 6) Repeat Steps 4-5 1000 times to generate a set



J. Xiao et al. / Filomat 30:15 (2016), 4015–4026 4023

of test statistic values {t̂′
i
}1000
1

, sort them in ascending order according to their absolute values; 7) Giving a

significance level α, one can reject the null hypothesis p+(score) = p−(score) if |t̂| > |t̂′
1000∗(1−α)

|. In this study, we

let α = 0.05, and the last two columns in Tables 2 and 4 show the test results for PAKDD2009 dataset and UK
credit dataset respectively, where each row is to test whether there is difference between the distributions
of target domain and the corresponding source domain. It can be seen that there is significant difference
between the distributions of the target domain and the 10 source domains for PAKDD2009 dataset, and
also significant difference between the distributions of the target domain and the 7 source domains for UK
credit dataset.

3.2. Experimental setup

Before training the models, we need to partition the target domain T into the target training set T1 and
the target test set T2. In this study, we adopted the random sampling without replacement method to select
30% patterns from T to construct T2, and the remaining patterns composed T1.

Many classification algorithms can be used to generate the base classifiers, in this study we choose
support vector machine (SVM) [35] for its popularity and immense success in various customer classification
tasks. When training SVM, the choice of kernel function is very important. We found that the classifier based
on the radial basis kernel (RBK) could obtain the best performance through experimental comparison; thus,
we designated it as the kernel function of SVM. The kernel parameter of the RBK and the regularization
parameter were set as the default values. We did not optimize the parameters of the SVMs because we
concerned more the relative performance of the compared ensemble models, rather than their absolute
performance.

As for the CSTE model as well as other five models referred in the experiment, the number of the base
classifiers is an important parameter. Note that all the six models belong to SCE model. Tsymbal et al.
[36] found that the SCE models usually could achieve their best performance when the number of the base
classifiers for ensemble equaled 50. Therefore, we let the size of base classifier pool for the six models be 50.
For the other parameters in TCA, TrBagg, and TrAdaBoost models, we let them be the values which make
the models perform best by repeated experiments. Meanwhile, except CSTE, Subagging and Subagg-OT
models, the other three models do not consider the impact of class imbalance on the performance. To
ensure the fairness of comparison, we balanced the class distribution of data by the random over-sampling
technique before training the base classifiers. In addition, all experiments were performed on the MATLAB
6.5 platform with a dual-processor 2.1 GHz Pentium 4 Windows computer. For each model, the final
classification result was the average of the results from 10 iterations of the experiment.

3.3. Evaluation criteria

In this study, the ability of the models to discriminate between ”good” and ”bad” applicants is evaluated
by Receiver Operating Characteristic (ROC) curve analysis [8]. The ROC curves can also be used to compare
the separated performance of two or more classifiers. Before we explain the ROC curve, we first introduce
the confusion matrix in Table 5. For an issue of two classes, the ROC graph is a true positive rate – false
positive rate graph, where Y − axis is true positive rate (TP/(TP+ FN) × 100%) and X − axis is false positive
rate (FP/(FP + TN) × 100%). The closer the curve follows the left and the top borders of the ROC space,
the more accurate the model is. However, sometimes it is difficult to compare ROC curves of different
models directly, so the area under the receiver operating characteristic curve (AUC) is more convenient and
popular.
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Table 5: Confusion matrix for credit scoring.

Predicted positive Predicted negative
Actual positive TP FN

(bad credit customer) (the number of True Positives) (the number of False Negatives)
Actual negative FP TN

(good credit customer) (the number of False Positives) (the number of True Negatives)

3.4. Impact of selective transferring, noise elimination and over-sampling on the performance of CSTE model

In CSTE model, selective transferring some most suitable source domains to the target domain and
eliminating the noise samples in the final training set are two key steps. In addition, random over-sampling
is adopted to balance the class distribution of the training set. To assess the impacts of selective transferring,
noise elimination, and random over-sampling on the performance of CSTE model, we experimented with
the following four strategies: 1) CSTE; 2) CSTE without random over-sampling, which is similar to CSTE
except that it does not balance the final training subset with random over-sampling (called CSTE1); 3) CSTE
without selective transferring, which transfers all of the source domain datasets without distinction to the
target training set to obtain a new training set. Then it eliminates the noise data in the new training set,
randomly samples some training subsets and balances each training subset with random over-sampling to
train a classifier (called CSTE2); and 4) CSTE without noise elimination, which selectively transfers some
most relevant source domain datasets to target training set, and then randomly samples some training
subsets directly without the noise elimination as the Phase 2 of CSTE model. Finally, it balances all the
training subsets with random over-sampling (called CSTE3).

Table 6: Experimental results in both datasets.

The results in PAKDD2009 dataset The results in UK credit dataset
Models AUC s.d. Models AUC s.d.
CSTE 0.6689 0.0345 CSTE 0.6321 0.0675

CSTE1 0.6472 0.0541 CSTE1 0.5956 0.0734
CSTE2 0.6558 0.0522 CSTE2 0.6013 0.0843
CSTE3 0.6584 0.0481 CSTE3 0.6145 0.0692

Table 6 shows the experimental results in the two datasets. For each strategy, the average value
and standard deviation (s.d.) of the AUC from 10 experiment runs are displayed. It can be seen that
the performances of four strategies show the similar characteristics in both datasets: the CSTE model
outperforms the other three strategies, after which come CSTE3, CSTE2, and finally CSTE1. Therefore,
we can conclude that the impact of random over-sampling on the performance of CSTE model is the
largest, followed by those of selective transferring and noise elimination, which also demonstrates that the
imbalanced class distribution of customer data has a great impact on the performance of credit scoring
model. However, the results above do not mean that the selective transferring and noise elimination are
not important because the former can ensure transferring some most suitable source domains to the target
domain and the latter can effectively eliminate the redundant samples in the final training set. In particular,
the AUC value of CSTE2 model without selective transferring decreases by 0.0131 in PAKDD 2009 dataset
than that of CSTE model, and 0.0308 in UK credit dataset. The AUC values of CSTE 3 without noise
elimination decrease by 0.0105 and 0.0176 in PAKDD 2009 and UK credit respectively than those of CSTE
model.
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3.5. Performance comparison with other models

Tables 7 and 8 show the classification results of six models in PAKDD2009 dataset and UK dataset
respectively. Based on the two tables, the following conclusions can be drawn: 1) The AUC values of CSTE
model proposed in this study are the largest in both datasets, which demonstrates that the whole customer
credit scoring performance of CSTE model is the best. 2) In six models, the standard deviation of CSTE model
is always the smallest. The smaller the standard deviation of the model is, the more stable its performance
is. Therefore, CSTE model shows better stability than the other models. 3) The credit scoring performance of
Subagg-OT model which only utilizes the training set of target domain to model is poorer than that of four
transfer learning strategies CSTE, TrBagg, TrAdaBoost and TCA, which demonstrates that it is important to
transfer the source domains to the target domain. 4) In PAKDD2009 dataset, the credit scoring performance
of the four transfer learning strategies including CSTE, TCA, TrBagg and TrAdaBoost is better than that
of Subagging model. Further, in UK dataset, the transfer learning strategies CSTE, TCA and TrBagg still
outperform Subagging model, and only the performance of transfer learning strategy TrAdaBoost is poorer
than that of Subagging model. The Subagging model adds all source domain samples to the target domain
without distinction, and then contracts multiple classifiers ensemble model. The results imply that most
transfer learning strategies can eliminate some noise data in source domains through different internal
mechanisms, and achieve better customer credit scoring performance than traditional multiple classifiers
ensemble model Subagging.

Table 7: Customer credit scoring performance of six models in PAKDD2009 dataset.

Criteria CSTE Subagging Subagg-OT TCA TrBagg TrAdaBoost
AUC 0.6689 0.6548 0.6456 0.6582 0.6593 0.6581
s.d. 0.0345 0.0462 0.0732 0.0532 0.0492 0.0583

Table 8: Customer credit scoring performance of six models in UK credit dataset.

Criteria CSTE Subagging Subagg-OT TCA TrBagg TrAdaBoost
AUC 0.6321 0.6228 0.5956 0.6272 0.6233 0.6199
s.d. 0.0675 0.0662 0.0832 0.0678 0.0722 0.0783

4. Conclusions

Customer credit scoring is an important concern for numerous domestic and global industries. This
study combines transfer learning with multiple classifier ensemble and proposes CSTE for customer credit
scoring. Unlike the traditional research paradigm in customer credit scoring, which only utilizes the
customer data in target domain, CSTE not only uses the data in target domain, but also utilizes the data in
related source domains to assist in modeling. The experimental results in a customer credit scoring dataset
show that CSTE not only outperforms two traditional credit scoring strategies, but also outperforms three
existing transfer learning strategies.
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