Filomat 30:2 (2016), 395–401 DOI 10.2298/FIL1602395S

Published by Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat

On Certain Double A-summability Methods

Ekrem Savas^a

^aIstanbul Ticaret University, Department of Mathematics, Üsküdar-Istanbul/Turkey

Abstract. The aim of this paper is to continue our investigations in line of our recent paper, Savas [24] and [26]. We introduce the notion of A^{I} - double statistical convergence which includes the new summability methods studied in [24] and [23] as special cases and make certain observations on this new and more general summability method.

1. Introduction

The idea of convergence of a real sequence has been extended to statistical convergence by Fast [6] and later also by Schoenberg [32] as follows: Let K be a subset of \mathbb{N} . Then asymptotic density of K is denoted by

$$\lim_{n\to\infty}\frac{1}{n}|\{k\leq n:k\in K\}|$$

where the vertical bars denoted the cardinality of the enclosed set.

A sequence (x_k) of real numbers is said to be statistically convergent to L if for arbitrary $\epsilon > 0$ the set $K(\epsilon) = \{n \in N : |x_n - L| \ge \epsilon\}$ has natural density zero. Statistical convergence turned out to be one of the most active areas of research in summability theory after the works of Fridy [8] and Salat [27]. More works on statistically convergence can be find from [1], [19], [30] and [33].

The notion of statistical convergence was further extended to *I*-convergence [14] using the notion of ideals of \mathbb{N} . Many interesting investigations using the ideals can be found in ([3], [2], [13], [15], [29], [28], [36] and [35]). In particular in [24] and [23] ideals were used to introduce new concepts of double *I*-statistical convergence, double *I*-lacunary statistical convergence and double I_{λ} -statistical convergence.

Natural density was generalized by Freeman and Sember in [9] by replacing C_1 with a nonnegative regular summability matrix $A = (a_{n,k})$. Thus, if *K* is a subset of *N* then the *A*-density of *K* is given by $\delta_A(K) = \lim_{n \to \infty} \sum_{k \in K} a_{n,k}$ if the limit exists.

On the other hand, the idea of A-statistical convergence was introduced by Kolk [12] using a nonnegative regular matrix A (which subsequently included the ideas of statistical, lacunary statistical or λ statistical convergence as special cases). More recent work in this line can be found in ([5],[18], [26]) and [27] where many references can be found.

²⁰¹⁰ Mathematics Subject Classification. Primary: 40G15, Secondary: 46A99

Keywords. Ideal, Filter, A^I-statistical convergence, A^I-summability, Closed subspace

Received: 09 March 2014; Accepted: 01 December 2014

Communicated by Hari M. Srivastava

Email address: ekremsavas@yahoo.com (Ekrem Savas)

In [20] the notion of convergence for double sequences was presented by A. Pringsheim. Also, in [10] and [21] the four dimensional matrix transformation $(Ax)_{m,n} = \sum_{k,l=1}^{\infty,\infty} a_{m,n,k,l} x_{k,l}$ was studied extensively by Hamilton and Robison. In their work and throughout this paper, the four dimensional matrices and double sequences have real-valued entries unless specified otherwise.

In this paper, by using the above two approaches we introduce the idea of *A*^{*I*} double statistical convergence and make certain observations.

2. Preliminaries

Throughout the paper \mathbb{N} will denote the set of all positive integers. A family $I \subset 2^Y$ of subsets of a nonempty set *Y* is said to be an ideal in *Y* if (*i*) $A, B \in I$ implies $A \cup B \in I$; (*ii*) $A \in I, B \subset A$ implies $B \in I$, while an admissible ideal *I* of *Y* further satisfies $\{x\} \in I$ for each $x \in Y$. If *I* is a proper ideal in *Y* (i.e. $Y \notin I, Y \neq \phi$) then the family of sets $F(I) = \{M \subset Y : \text{there exists } A \in I : M = Y \setminus A\}$ is a filter in *Y*. It is called the filter associated with the ideal *I*. Throughout *I* will stand for a proper non-trivial admissible ideal of \mathbb{N} .

A sequence $\{x_k\}_{k \in \mathbb{N}}$ of real numbers is said to be *I*-convergent to $x \in \mathbb{R}$ if for each $\varepsilon > 0$ the set $A(\varepsilon) = \{n \in \mathbb{N} : |x_n - x| \ge \varepsilon\} \in I$ [14].

Before continuing with this paper we present some definitions. By the convergence in a double sequence we mean the convergence on the Pringsheim sense that is, a double sequence $x = (x_{k,l})$ has **Pringsheim limit** *L* (denoted by P-lim x = L) provided that given $\epsilon > 0$ there exists $N \in \mathbb{N}$ such that $|x_{k,l} - L| < \epsilon$ whenever k, l > N [20]. We shall describe such an x more briefly as "**P-convergent**".

Definition 2.1. Let $A = (a_{m,n,k,l})$ denote a four dimensional summability method that maps the complex double sequences x into the double sequence Ax where the mn-th term to Ax is as follows:

$$(Ax)_{m,n} = \sum_{k,l=1,1}^{\infty,\infty} a_{m,n,k,l} x_{k,l}$$

Such transformation is said to be non-negative if $a_{m,n,k,l}$ is nonnegative for all m, n, k and l. In 1926 Robison presented a four dimensional analog of the definition of regularity for double sequences in which he added an additional assumption of boundedness. This assumption was made because a double sequence which is P-convergent is not necessarily bounded. In addition, to this definition we also presented a Silverman-Toeplitz type characterization of the regularity of four dimensional matrices. This characterization is called the Robison-Hamilton characterization. A double sequence x is bounded if and only if there exists a positive number M such that $|x_{k,l}| < M$ for all k and l.

Definition 2.2. The four dimensional matrix A is said to be **RH-conservative** if it maps every bounded P-convergent sequence into a P-convergent sequence.

Theorem 2.1. (Hamilton [10], Robison [21]) The four dimensional matrix A is RH-conservative if and only if

 $\begin{array}{l} RH_1: \ P-\lim_{m,n} a_{m,n,k,l} = c_{k,l} \ for \ each \ k \ and \ l; \\ RH_2: \ P-\lim_{m,n} \sum_{k,l=1,1}^{\infty,\infty} a_{m,n,k,l} = a; \\ RH_3: \ P-\lim_{m,n} \sum_{k=1}^{\infty} \left| a_{m,n,k,l} - c_{k,l} \right| = 0 \ for \ each \ l; \\ RH_4: \ P-\lim_{m,n} \sum_{l=1}^{\infty} \left| a_{m,n,k,l} - c_{k,l} \right| = 0 \ for \ each \ k; \\ RH_5: \ \sum_{k,l=1,1}^{\infty,\infty} \left| a_{m,n,k,l} \right| < A \ for \ all \ (m, n); \ and \\ RH_6: \ there \ exist \ finite \ positive \ integers \ A \ and \ B \ such \ that \\ \sum_{k,l>B} \left| a_{m,n,k,l} \right| < A. \end{array}$

When these conditions are satisfied, we have

$$P - \lim_{m,n} Y_{m,n} = \mu(a - \sum_{k,l} c_{k,l}) + \sum_{k,l} c_{k,l} x_{k,l}$$

where $\mu = P - \lim_{k,l} x_{k,l}$, the double series $\sum_{k,l=1,1}^{\infty,\infty} c_{k,l}(x_{k,l} - \mu)$ is always absolutely P-convergent.

Definition 2.3. The four dimensional matrix A is said to be **RH-regular** if it maps every bounded P-convergent sequence into a P-convergent sequence with the same P-limit.

Theorem 2.2. (Hamilton [10], Robison [21]) The four dimensional matrix A is RH-regular if and only if

 $\begin{array}{l} RH_1: \ P\text{-lim}_{m,n} \ a_{m,n,k,l} = 0 \ for \ each \ k \ and \ l; \\ RH_2: \ P\text{-lim}_{m,n} \ \sum_{k,l=1,1}^{\infty} a_{m,n,k,l} = 1; \\ RH_3: \ P\text{-lim}_{m,n} \ \sum_{k=1}^{\infty} \left| a_{m,n,k,l} \right| = 0 \ for \ each \ l; \\ RH_4: \ P\text{-lim}_{m,n} \ \sum_{l=1}^{\infty} \left| a_{m,n,k,l} \right| = 0 \ for \ each \ k; \\ RH_5: \ \sum_{k,l=1,1}^{\infty,\infty} \left| a_{m,n,k,l} \right| \ is \ P\text{-convergent; and} \\ RH_6: \ there \ exist \ finite \ positive \ integers \ A \ and \ B \ such \ that \\ \ \sum_{k,l>B} \left| a_{m,n,k,l} \right| < A. \end{array}$

Let $K \subset N \times N$ be a two-dimensional set to positive integers and let K(m, n) be the numbers of (i, j) in K such that $i \leq n$ and $j \leq M$. The two-dimensional analogues of natural density can be defined as follows: The lower asymptotic density of a set $K \subset N \times N$ is define as

$$\delta^2(K) = \liminf_{m,n} \frac{K(m,n)}{mn}.$$

In case the double sequence $\frac{K(m,n)}{mn}$ has a limit in the Pringsheim sense then we say that *K* has a double natural density as

$$P-\lim_{m,n}\frac{K(m,n)}{mn}=\delta^2(K).$$

Let $K \subset N \times N$ be a two-dimensional set of positive integers, then the *A*-density of *K* is given by

$$\delta_A^2(K) = P - \lim_{m,n} \sum_{(k,l) \in K} a_{m,n,k,l}$$

provided that the limit exists. The notion of double asymptotic density for double sequence was presented by Mursaleen and Edely [18] and Tripathy [34] independently as follows:

A real double sequence $x = (x_{k,l})$ is said to be *P*-statistically convergent to *L* provided that for each $\varepsilon > 0$

$$P - \lim_{mn} \frac{1}{mn} \{ (k, l) : k < m \text{ and } k < n, |x_{k,l} - L| \ge \varepsilon \} = 0.$$

In this case we write St_2 -lim_{$k,l} <math>x_{k,l} = L$ and denote the set of all statistical convergent double sequences by St_2 . It is clear that a convergent double sequence is also St_2 -convergent but the converse is not true, in general. Also St_2 -convergent double sequence need not be bounded.</sub>

Throughout *e* will denote a sequence all of whose elements are 1. Also as usual,

$$I_{\infty}^{''} = \left\{ x = (x_{k,l}) : ||x|| = \sup_{k,l} |x_{k,l}| < \infty \right\}$$

397

3. Main Results

Now we introduce the main concept of this paper, namely the notion of A_2^I -statistical convergence.

Definition 3.1. Let $A = (a_{m,n,k,l})$ be a non-negative RH-regular four dimensional matrix. A sequence $(x_{k,l})$ is said to be A^l – double statistically convergent to L if for any $\epsilon > 0$ and $\delta > 0$,

$$\left\{m, n \in \mathbb{N} \times \mathbb{N} : \sum_{k,l \in K_2(x-Le,\varepsilon)} a_{m,n,k,l} \ge \delta\right\} \in I$$

where $K_2(x - Le, \epsilon) = \{k, l \in \mathbb{N} \times \mathbb{N} : |x_{k,l} - L| \ge \epsilon\}$. In this case we write $x_{k,l} \xrightarrow{A_2^l - st} L$. We denote the class of all A_2^l -statistically convergent sequences by $S_A^2(I)$.

(1) If we take A = (C, 1, 1), i.e., the double Cesàro matrix then A_2^I -statistical convergence becomes *I*-double statistical convergence [23].

(3) Let us consider the following notations and definitions. The double sequence $\theta_{r,s} = \{(k_r, l_s)\}$ is called double lacunary if there exist two increasing sequences of integers such that

$$k_0 = 0, h_r = k_r - k_{r-1} \rightarrow \infty$$
 as $r \rightarrow \infty$,

 $l_0 = 0, h_s = l_s - l_{s-1} \rightarrow \infty$ as $s \rightarrow \infty$,

and let $\bar{h}_{r,s} = h_r h_s$, $\theta_{r,s}$ is determine by $I_{r,s} = \{(i, j) : k_{r-1} < i \le k_r \& l_{s-1} < j \le l_s\}$. If we take

$$a_{r,s,k,l} = \begin{cases} \frac{1}{\bar{h}_{r,s}}, & \text{if } (k,l) \in I_{r,s}; \\ 0 & \text{otherwise.} \end{cases}$$

then A_2^I -statistical convergence coincides with *I*- double lacunary statistical convergence [23].

(4) As a final illustration let

$$a_{i,j,k,l} = \begin{cases} \frac{1}{\bar{\lambda}_{i,j}}, & \text{if } k \in I_i = [i - \lambda_i + 1, i] \text{ and } l \in L_j = [j - \lambda_j + 1, j] \\ 0, & \text{otherwise} \end{cases}$$

where we shall denote $\bar{\lambda}_{i,j}$ by $\lambda_i \mu_j$. Let $\lambda = (\lambda_i)$ and $\mu = (\mu_j)$ be two non-decreasing sequences of positive real numbers such that each tending to ∞ and $\lambda_{i+1} \leq \lambda_i + 1$, $\lambda_1 = 0$ and $\mu_{j+1} \leq \mu_j + 1$, $\mu_1 = 0$. Then A_2^I statistical convergence coincides with I_{λ} – double statistical convergence [24].

Non-trivial examples of such sequences can be seen from ([24], [23]).

Also note that for $I = I_{fin}$, A_2^I -statistical convergence becomes A- double statistical convergence [25]. We now prove the following result which establishes the topological character of the space $S_4^2(I)$.

Theorem 3.1. $S^2_A(I) \cap I''_{\infty}$ is a closed subset of I''_{∞} endowed with the superior norm.

Proof. Suppose that $(x^{mn}) \subset S_A^2(I) \cap l_{\infty}''$ is a convergent sequence and it converges to $x \in l_{\infty}''$. We have to show that $x \in S_A^2(I) \cap l_{\infty}''$. Let $x^{mn} \xrightarrow{A_2^l - st} L_{mn}$ for all $(m, n) \in \mathbb{N} \times \mathbb{N}$. Take a sequence (ε_{mn}) where $\varepsilon_{mn} = \frac{1}{2^{m+1,n+1}}, \forall (m, n) \in \mathbb{N} \times \mathbb{N}$. We can find a positive integer N_{mn} such that $||x - x^{mn}||_{\infty} < \frac{\varepsilon_{mn}}{4}, \forall mn \ge N_{mn}$. Choose $0 < \delta < \frac{1}{3}$. Now

398

$$A = \{(m,n) \in \mathbb{N} \times \mathbb{N} : \sum_{k,l \in M_1} a_{mnkl} < \delta\} \in F(I)$$

where

$$M_1 = \{(k,l) \in \mathbb{N} \times \mathbb{N} : |x_{k,l}^{mn} - L_{mn}| \ge \frac{\varepsilon_{mn}}{4}\}$$

and

$$B = \{(m, n) \in \mathbb{N} \times \mathbb{N} : \sum_{k, l \in M_2} a_{mnkl} < \delta\} \in F(I)$$

where $M_2 = \{(k, l) \in \mathbb{N} : |x_{k,l}^{m+1,n+1} - L_{m+1,n+1}| \ge \frac{\varepsilon_{mn}}{4}\}$. Since $A \cap B \in F(I)$ and I is admissible, $A \cap B$ must be infinite. So we can choose $(m, n) \in A \cap B$ such that $|\sum_{k,l} a_{mnkl} - 1| < \frac{\delta}{2}$. But $\sum_{(k,l) \in M_1 \cup M_2} a_{mnkl} \le 2\delta < 1 - \frac{\delta}{2}$, while $\sum_{k,l} a_{mnkl} > 1 - \frac{\delta}{2}$. Hence there must exist a $(k, l) \in \mathbb{N} \times \mathbb{N} \setminus (M_1 \cup M_2)$ and for which we have both $|x_{k,l}^{mn} - L_{mn}| < \frac{\varepsilon_{mm}}{4}$ and

 $|x_{kl}^{m+1,n+1} - L_{m+1,n+1}| < \frac{\varepsilon_{mn}}{4}$. Then it follows that

$$\begin{aligned} |L_{mn} - L_{m+1,n+1}| &\leq |L_{mn} - x_{k,l}^{mn}| + |x_{k,l}^{mn} - x_{k,l}^{m+1,n+1}| + |x_{k,l}^{m+1,n+1} - L_{m+1,n+1}| \\ &\leq |L_{mn} - x_{k,l}^{mn}| + |x_{k,l}^{m+1,n+1} - L_{m+1,n+1}| + ||x - x^{mn}||_{\infty} + ||x - x^{m+1,n+1}||_{\infty} \\ &\leq \frac{\varepsilon_{mn}}{4} + \frac{\varepsilon_{mn}}{4} + \frac{\varepsilon_{mn}}{4} + \frac{\varepsilon_{mn}}{4} \end{aligned}$$

This implies that (L_{mn}) is a Cauchy sequence in \mathbb{R} and let $L_{mn} \to L \in \mathbb{R}$ as $m, n \to \infty$, Pringsheim sense. We shall prove that $x \xrightarrow{A_2^l - st} L$. Choose $\varepsilon > 0$ and $(m, n) \in \mathbb{N} \times \mathbb{N}$ such that $\varepsilon_{mn} < \frac{\varepsilon}{4}$, $||x - x^{mn}||_{\infty} < \frac{\varepsilon}{4}$, $|L_{mn} - L| < \frac{\varepsilon}{4}$. Now since

$$\sum_{k,l \in \{(k,l) \in \mathbb{N} \times \mathbb{N}: \ |x_{k,l}-L| \ge \varepsilon\}} a_{mnkl} \le \sum_{k,l \in \{k,l: \ |x_{k,l}-x_{k,l}^{mn}| + |x_{k,l}^{mn}-L_{mn}| + |L_{mn}-L| \ge \varepsilon\}} a_{mnkl},$$

so it follows that

$$\left\{ (m,n) \in \mathbb{N} \times \mathbb{N} : \sum_{k,l \in \{(k,l) \in \mathbb{N} \times \mathbb{N} : |x_{k,l} - L| \ge \varepsilon\}} a_{mnkl} \ge \delta \right\}$$
$$\subset \left\{ (m,n) \in \mathbb{N} \times \mathbb{N} : \sum_{k,l \in \{(k,l) \in \mathbb{N} \times \mathbb{N} : |x_{k,l}^{mn} - L_{mn}| \ge \frac{\varepsilon}{2}\}} a_{mnkl} \ge \delta \right\} \in I$$

for any given $\delta > 0$. Since the set on the right hand side belongs to *I*, this shows that $x \xrightarrow{A_2^I - st} L$. This completes the proof of the result. \Box

Remark 1: We can say that the set of all bounded A_2^I -statistically convergent sequences of real numbers forms a closed linear subspace of $l_{\infty}^{''}$. Also it is obvious that $S_A^2(I) \cap l_{\infty}^{''}$ is complete.

We define another related summability method and establish its relation with A_2^I -statistical convergence.

Definition 3.2. Let $Let A = (a_{m,n,k,l})$ be a non-negative RH-regular four dimensional matrix. Then we say that x is A_2^I -summable to L if the sequence $(A_{mn}(x))$ I-converges to L.

For $I = I_d$, A_2^I -summability reduces to statistical double *A*-summability, [5].

399

Theorem 3.2. If a sequence is bounded and A_2^I -statistically convergent to L then it is A_2^I -summable to L.

Proof. Let $x = (x_{k,l})$ be bounded and A_2^l -statistically convergent to L and for $\varepsilon > 0$, let as before $K_2(\frac{\varepsilon}{2}) := \{(k, l) \in \mathbb{N} \times \mathbb{N} : |x_{k,l} - L| \ge \frac{\varepsilon}{2}\}$. Then

$$\begin{aligned} |A_{mn}(x) - L| &\leq |\sum_{(k,l)\notin K(\frac{\varepsilon}{2})} a_{mnkl}(x_{kl} - L)| + |\sum_{(k,l)\in K(\frac{\varepsilon}{2})} a_{mnkl}(x_{kl} - L)| \\ &\leq \frac{\varepsilon}{2} \sum_{k,l\notin K(\frac{\varepsilon}{2})} a_{mnkl} + \sup_{k,l} |(x_{kl} - L)|| \sum_{k,l\in K(\frac{\varepsilon}{2})} a_{mnkl}| \leq \frac{\varepsilon}{2} + B. \sum_{k,l\in K(\frac{\varepsilon}{2})} a_{mnkl}, \end{aligned}$$

where $B = sup_{k,l}|x_{k,l} - L|$. It now follows that

$$\{(m,n)\in\mathbb{N}\times\mathbb{N}:|A_{mn}(x)-L|\geq\varepsilon\}\subset\left\{(m,n)\in\mathbb{N}\times\mathbb{N}:\sum_{k\in K(\frac{\varepsilon}{2})}a_{mnkl}\geq\frac{\varepsilon}{2B}\right\}.$$

Since *x* is A_2^I – statistically convergent to *L* so the set on the right hand side belongs to *I* and this consequently implies that *x* is A_2^I – summable to *L*. \Box

The converse of the above result is not generally true. Example 2.If $A = (a_{mnkl}) = (C, 1, 1)$, double Cesàro matrix and let

$$x_{kl} = (\begin{array}{cc} 1 & \text{if } k, l \text{ are odd} \\ 0 & \text{if } k, l \text{ are even.} \end{array}$$

Then $x = (x_{kl})$ is A_2 -summable to 1/2 and so is A_2^I -summable to 1/2 for any admissible ideal I. But note that for any $L \in \mathbb{R}$ and for $0 < \epsilon < \frac{1}{2}$, $K_2(\epsilon) = ((k, l) \in \mathbb{N} \times \mathbb{N} : |x_{kl} - L| \ge \epsilon)$ contains either the set of all even integers or the set of all odd integers or both. Consequently $\sum_{k,l \in K_2(\epsilon)} a_{mnkl} = \infty$ for any $(k, l) \in \mathbb{N} \times \mathbb{N}$ and so

for any $\delta > 0$,

$$\left\{(m,n)\in\mathbb{N}\times\mathbb{N}:\sum_{k,l\in K_2(\epsilon)}a_{mnkl}\geq\delta\right\}\notin I.$$

This shows that $x = (x_{kl})$ is not A_2^l -statistically convergent for any non-trivial ideal *I*.

We conclude this paper with the following theorem which shall give that continuity preserves the A_2^I -statistical convergence.

Theorem 3.3. If for a sequence $x = (x_{kl}), x_{kl} \xrightarrow{A_2^l - st} L$ and g is a real valued function which is continuous then $g(x_{kl}) \xrightarrow{A_2^l - st} g(L)$.

Proof. The proof can be established using standard techniques, so omitted. \Box

References

- N. L. Braha, H. M. Srivastava and S. A. Mohiuddine, A Korovkin's type approximation theorem for periodic functions via the statistical summability of the generalized de la Vallée Poussin mean, Appl. Math. Comput.228 (2014), 162–169.
- [2] P. Das and E. Savaş, On I-statistical and I-lacunary statistical convergence of order alpha Bull. iranian Soc. Vol. 40 (2014), No. 2, pp. 459-472.
- [3] P. Das, E. Savas, S. K. Ghosal, On generalizations of certain summability methods using ideals, Appl. Math. Lett., doi: 10.1016/j.aml.2011.03.036.
- [4] K. Demirci, A criterion for A-statistical convergence, Indian J. Pure Appl. Math., 29(5)(1998), 559-564.
- [5] O. H. H. Edely, M. Mursaleen, On statistically A-summability, Math. Comp. Model., 49(8)(2009), 672-680.
- [6] H. Fast, Sur la convergence Statistique, Colloq. Math., 2(1951), 241-244.

- [7] A. R. Freedman, J. J. Sember, Densities and summability, Pacific J. Math., 95(1981), 293-305.
- [8] J. A. Fridy, On Statistical convergence, Analysis, 5(1985), 301-313.
- [9] A. R. Freedman, J. J. Sember, Densities and summability, Pacific J. Math., 95(1981), 293-305.
- [10] H. J. Hamilton, Transformations of multiple sequences, Duke Math. J., 2 (1936), 29 60.
- [11] E. Kolk, Matrix maps into the space of statistically convergent bounded sequences, Proc.Estonia Acad. Sci. Phys. Math., 45(1996), 192-197.
- [12] E. Kolk, Matrix summability of Statistically convergent sequences, Analysis, 13(1993), 77-83.
- [13] P. Kostyrko, M. Macaj, T. Šalát, M. Sleziak, I-convergence and extremal I-limit points, Math. Slovaca, 55(2005), 443-464.
- [14] P. Kostyrko, T. Šalát, W. Wilczyńki, *I*–convergence, Real Anal. Exchange, 26(2)(2000/2001), 669-685.
- [15] B. K. Lahiri and P. Das, *I* and *I** convergence of nets, Real Anal. Exchange, 33(2)(2008), 431-442.
- [16] I. J. Maddox, A new type of convergence, Math. Proc. Cambridge Philos Soc., 83(1978), 61-64.
- [17] I. J. Maddox, Space of strongly summable sequence, Quart. J. Math. Oxford Ser., 18(2)(1967), 345-355.
- [18] M. Mursaleen and O. H. Edely, Statistical convergence of double sequences, J. Math. Anal. Appl., 288(1) (2003), 223-231.
- [19] M. Mursaleen, A. Khan, H. M. Srivastava and K. S. Nisar, Operators constructed by means of q-Lagrange polynomials and A-statistical approximation, Appl. Math. Comput. 219 (2013), 6911–6918.
- [20] A. Pringsheim, Zur theorie der zweifach unendlichen Zahlenfolgen, Math. Ann., 53 (1900) 289 321.
- [21] G. M. Robison, Divergent double sequences and series, Trans. Amer. Math. Soc. 28 (1926), 50 73.
- [22] T. Šalát, On Statistically convergent sequences of real numbers, Math. Slovaca, 30(1980), 139-150.
- [23] E. Savaş, Double *I*-lacunary statistical convergence using Ideal, The Algerian-Turkish International days on Mathematics 2012,9 11 October 2012, Annaba, Algeria.
- [24] E. Savaş, On generalized double statistical convergence via ideals, The Fifth Saudi Science Conference, 16-18 April, 2012.
- [25] E. Savaş, On some new sequence spaces defined by infinite matrix and modulus, Advances in Difference Equations 2013, 2013:274 doi:10.1186/1687-1847-2013-274.
- [26] E. Savaş, On strong double matrix summability via ideals, Filomat 26:6, (2012) 1143-1150.
- [27] E. Savaş, P. Das, A generalized statistical convergence via ideals, Appl. Math. Lett., 24(2011)826-830.
- [28] E. Savaş, P. Das and S. Dutta, A note on some generalized summability methods, Acta Math. Univ. Comenianae Vol. LXXXII, 2 (2013), pp. 297–304.
- [29] E. Savaş, P. Das, S. Dutta, A note on strong matrix summability via ideals, Appl. Math Letters, 25 (4) (2012), 733 738.
- [30] E. Savaş, and R. F. Patterson, Double sequence spaces defined by a modulus. Math. Slovaca 61 (2011), no. 2, 245256.
- [31] E. Savaş, and R. F. Patterson, Lacunary statistical convergence of multiple sequences. Appl. Math. Lett. 19 (2006), no. 6, 527–534.
- [32] I. J. Schoenberg, The integrability of certain functions and related summability methods, Amer. Monthly, 66(5)(1959), 362-375.
- [33] H. M. Srivastava, M. Mursaleen and A. Khan, Generalized equi-statistical convergence of positive linear operators and associated approximation theorems, Math. Comput. Modelling 55 (2012), 2040–2051.
- [34] B.C. Tripathy : Statistically convergent double sequences; Tamkang Jour. Math.; 34(3) (2003), 231-237.
- [35] B.C. Tripathy and S. Mahanta : On I-acceleration convergence of sequences; Journal of the Franklin Institute, 347(2010), 591-598
- [36] B.C. Tripathy and M. Sen : Paranormed I-convergent Double Sequence Spaces Associated with Multiplier Sequences; Kyungpook Math. Journal, 54(2), (2014), 321-332.