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Abstract. A dominating set of a graph G which intersects every independent set of maximum cardinality
in G is called an independent transversal dominating set. The minimum cardinality of an independent
transversal dominating set is called the independent transversal domination number of G and is denoted
by γit(G). In this paper we study some complexity issues on some independent transversal domination
related problems. On the other side, we prove that for every integers a, b, c with a ≤ b ≤ a + c, there exists a
graph G such that G has domination number a, minimum degree c and independent transversal domination
number b. We also give some other properties of independent transversal dominating sets in graphs.

1. Introduction

A transversal of a collection of sets is a set of distinct representatives of the elements in the collection.
Transversals in graphs have received a high attention throughout the last thirty or more years and it is
possible to find transversals regarding several types of vertex sets in graphs. Some of them, but maybe
not every of the most remarkable ones, are related to the chromatic number and the independence number
of a graph. For instance, [6] was addressed to the following problem. Given a partition of the vertex set
of a graph satisfying a bound (lower or upper) on the quantity of elements in each set of the partition, is
there a transversal of the partition that is an independent set or a dominating set? Several results on this
problem were presented in [6], like possible applications to fault-tolerant data storage or some complexity
aspects regarding the associated decision problems. In [2], the concept “partition domination number” was
defined as the largest integer k such that given any partition of the vertex set of the graph having at most
k elements in every set of the partition, there is transversal of the partition being a dominating set. Some
complexity results regarding the associated decision problems and some bounds or exact values for some
specific families of graphs were presented in [2]. Nevertheless, these are not the only examples of such a
transversal-type results in the literature (for instance, see [1], for the case of strong partition independence
or strong chromatic number to just mention at least two of them). Some other examples (and again not
the only ones) are [3, 13], connecting transversals with the chromatic number. According to the amount of
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literature about this topic in every of its related variants, we restrict our references principally to those ones
which are only citing papers that we really refer to in a non-superficial way.

More recently, some other authors have developed some works in this topic, in which the condition:
“for every partition of the vertex set satisfying a property P there is a transversal satisfying property Q”,
has been relaxed to a collection of sets which do not necessarily satisfy the condition of being a partition of
the vertex set. A recent work in this new style of transversal-type concepts has been presented in [10]: the
independence domination transversal number. According to its novelty, this parameter remains relative
unknown and just a few results on it are published. It is our goal to contribute with the topic of transversals
in graphs throughout studying some other more properties of the independent transversal dominating sets
in graphs.

All graphs considered in this paper are finite, undirected, loopless, and without multiple edges. We
denote the vertex set and the edge set of a graph G by V(G) and E(G), respectively. For a vertex x of G,
N(x) denotes the set of all neighbors of x in G and the degree of x is deg(x) = |N(x)|. The minimum and
maximum degrees of a vertex of G are denoted by δ(G) and ∆(G), respectively.

We denote by isol(G) the set of isolated vertices of a graph G, and by End(G) the set of end-vertices (vertices
of degree one) of G. An edge incident with an end-vertex is called a pendant edge. A vertex adjacent to an
end-vertex is called a stem, and Stem(G) denotes the set of stems of G. A graph with a single vertex is called
a trivial graph and a graph without edges is an empty graph. Also, a graph of order n with all the possible
edges is the complete graph and is denoted by Kn.

A set S of vertices is independent if no two vertices from S are adjacent. An independent set of maximum
cardinality is a maximum independent set of G. The independence number of G, denoted as β0(G), is the
cardinality of a maximum independent set of G. An independent set of cardinality β0(G) is called a
β0(G)-set.

A matching of G is a set of pairwise non-incident edges of G. The maximum cardinalityµ(G) of a matching
in G is the matching number and a matching of cardinality µ(G) is a maximum matching or a µ(G)-set.

A subset D of V(G) is a dominating set in G if every vertex of V(G)−D has at least one neighbor in D. The
domination number of G, denoted by γ(G), is the smallest size of any dominating set in G. A dominating set
of cardinality γ(G) is called a γ(G)-set. If a vertex v of a graph G belongs to some γ(G)-set, then v is called a
γ(G)-good vertex.

A dominating set of G which intersects every independent set of maximum cardinality in G is called an
independent transversal dominating set. The minimum cardinality of an independent transversal dominating
set is called the independent transversal domination number of G and is denoted by γit(G). An independent
transversal dominating set of cardinality γit(G) is called a γit(G)-set. The paper is organized as follows. In
Section 2 we give a background of some known results, some of which are necessary to present our results. In
Section 3 we study some topics regarding some complexity issues on independent transversal domination
problems in graphs. In Section 4 we give some results regarding the realizability of the independent
transversal domination number in connection with the domination number and the minimum degree of
graphs. Finally, in Section 5 we give some properties of independent transversal dominating sets in graphs.

2. Some Known Results

The concept of independent transversal dominating set has been recently described in [10] and, according
to that fact, just a few results are known in this moment. Some of them are stated at next according to its
usefulness for our purposes. It is natural to think that γit(G) and γ(G) are related and, in this sense, the
following “sandwich-type” bounds were presented in [10].

Theorem 2.1 (Hamid [10]). For any graph G of minimum degree δ(G), γ(G) ≤ γit(G) ≤ γ(G) + δ(G).

Notice that, if a graph G has an end-vertex, then the result above leads to that γit(G) is either γ(G) or
γ(G) + 1, which raises some interesting problems regarding to know whether γit(G) equals γ(G) or γ(G) + 1,
for instance, if G is a tree. Nevertheless, not only with γ(G) is related γit(G) as we can see at next, where is
given some connection with the vertex cover number. We recall that a set S is a vertex cover if every edge of
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G is incident to a vertex of S and the minimum cardinality of a vertex cover is the vertex cover number and
is denoted by α0(G).

Theorem 2.2 (Hamid [10]). Let a graph G without isolated vertices. Then γit(G) ≤ α0(G) + 1. If the equality holds,
then γ(G) = α0(G).

Specific families of graphs were also studied in [10]. Particularly, for bipartite graphs and trees were
presented the following results.

Theorem 2.3 (Hamid [10]). Let G be a bipartite graph with bipartition (X,Y) such that |X| ≤ |Y| and γ(G) = |X|.
Then γit(G) = γ(G) + 1 if and only if every vertex in X is adjacent to at least two end-vertices.

Theorem 2.4 (Hamid [10]). If T is a tree, then γit(T) is either γ(T) or γ(T) + 1.

3. Complexity of Independent Transversal Domination Problems

In this section we consider several issues regarding the complexity of independent transversal domi-
nation problems in graphs. For more information on complexity classes and related topics we suggest [8].
We begin with the following decision problem.

INDEPENDENT TRANSVERSAL DOMINATION PROBLEM
INSTANCE: A non-trivial graph G and a positive integer r
PROBLEM: Deciding whether γit(G) is less than r

The complexity of the INDEPENDENT TRANSVERSAL DOMINATION PROBLEM (ITD-PROBLEM for
short) is clearly related to the existence of a polynomial time verification algorithm which checks that a
given set of vertices of a graph G is indeed an independent transversal dominating set. In this sense, we
need to consider the following problem.

INDEPENDENT TRANSVERSAL DOMINATING SET PROBLEM
INSTANCE: A non-trivial graph G and a subset S of vertices of G
PROBLEM: Deciding whether S is an independent transversal dominating set in G

At next we prove that the INDEPENDENT TRANSVERSAL DOMINATING SET PROBLEM (ITDS-
PROBLEM for short) is a Co-NP-complete problem. It is further not so difficult to prove that a polynomial
algorithm exists for the ITDS-PROBLEM if and only if P=NP. To do so, we consider the complement of the
ITDS-PROBLEM.

NOT INDEPENDENT TRANSVERSAL DOMINATING SET PROBLEM
INSTANCE: A non-trivial graph G and a subset S of vertices of G
PROBLEM: Deciding whether S is not an independent transversal dominating set in G

To prove that the ITDS-PROBLEM is a Co-NP-complete problem, we need to prove that the NOT
INDEPENDENT TRANSVERSAL DOMINATING SET PROBLEM (NOT-ITDS PROBLEM for short) is NP-
complete, which we do at next.

Claim 3.1. Let G be a non-trivial graph. The set S ⊂ V(G) is not an independent transversal dominating set in G if
and only if at least one of the following conditions is satisfied.

• S is not a dominating set, or

• S does not intersect a β0(G)-set.



H. A. Ahangar et al. / Filomat 30:2 (2016), 293–303 296

Notice that checking a given set of a graph G is not a dominating set, or that it does not intersect a
β0(G)-set can be done in polynomial time. Therefore, the ITDS-PROBLEM is clearly in NP. Next we show
that it is also an NP-complete problem.

The characterization below (Lemma 3.3) together with the NP-completeness [11] of the problem of
deciding whether the independence number of a graph G is greater than a positive integer r are crucial to
prove that the NOT-ITDS PROBLEM is NP-complete.

INDEPENDENCE PROBLEM
INSTANCE: A non-trivial graph G and a positive integer r
PROBLEM: Deciding whether the independence number of G is greater than r

Theorem 3.2. [11] INDEPENDENCE PROBLEM is NP-complete.

Given a set of vertices X of a graph G, the graph obtained from G, by deleting the vertices of X together
with all the edges incident with at least one vertex of X is denoted by G − X.

Lemma 3.3. Let G be a non-trivial graph and let S ⊂ V(G) be a dominating set. Then S is not an independent
transversal dominating set in G if and only if β0(G − S) = β0(G).

Proof. First we notice that for any set X of vertices of G, it follows that β0(G − X) ≤ β0(G). Now, if S ⊂ V(G)
is not an independent transversal dominating set in G, then there exists an independent set Y ⊂ V(G) − S
such that |Y| = β0(G). Thus, Y is an independent set in G − S and, as a consequence, we have that
β0(G − S) ≥ |Y| = β0(G). Therefore, we obtain that β0(G − S) = β0(G).

On the other hand, we assume that β0(G − S) = β0(G). Thus, there exists an β0(G − S)-set Y′ such that
|Y′| = β0(G) and Y′ remains being an independent set in G. Therefore, it is clear that S is not an independent
transversal dominating set in G, since it does not intersect the β0(G)-set Y′.

From the Lemma above we deduce that the problem of deciding whether a dominating set S ⊂ V(G) is
not an independent transversal dominating set in G can be reduced to the INDEPENDENCE PROBLEM
for the graph G − S. According to this and the fact that ITDS-PROBLEM is in NP, we obtain the following
result.

Theorem 3.4. NOT-ITDS PROBLEM is NP-complete.

As a consequence of the result above we obtain that the ITDS PROBLEM (which is the complement of
the NOT-ITDS PROBLEM) is a Co-NP-complete problem.

Corollary 3.5. ITDS PROBLEM is Co-NP-complete.

The Corollary above along with the next results, which is satisfied for any decision problem, conclude
the complexity of the ITDS-PROBLEM.

Theorem 3.6. ITDS PROBLEM is in P if and only if P=NP.

Proof. First we notice that, if P = NP, then the NOT-ITDS PROBLEM, which is a NP problem, is also in the
class P. So, its complement, the ITDS-PROBLEM, will also be in the class P.

On the contrary, if the ITDS PROBLEM is in the class P, then its complement, the NOT-ITDS PROBLEM,
is also in P. Since the NOT-ITDS PROBLEM is an NP-Complete problem (by Theorem 3.4), we obtain that
P = NP.

At next we continue with the other issue regarding the complexity of independent transversal domina-
tion problems. That is, we prove that the ITD-PROBLEM (deciding whether the independent transversal
domination number of G is less than a positive integer r) is NP-Hard and, moreover, it is NP-complete if
and only if P=NP.
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3.1. Complexity of the INDEPENDENT TRANSVERSAL DOMINATION PROBLEM

First we observe that, as a requirement for proving that the ITD-PROBLEM will be in the NP class, there
must be a polynomial verifier which can check the existence of an independent transversal dominating set
of cardinality less than or equal to a positive integer r, in such a case that the evidence of this existence has
been given. That is, a set S of cardinality r or less. In this sense, a polynomial algorithm must verify that
S is indeed an independent transversal dominating set in G. Nevertheless, by Theorem 3.6, this algorithm
exists only in the case P = NP. Therefore, if P,NP, it follows that the ITD-PROBLEM is not in NP.

To continue with our results we present the following problem regarding the domination number of a
graph.

DOMINATION PROBLEM
INSTANCE: A non-trivial graph G and a positive integer r
PROBLEM: Deciding whether the domination number of G is less than r

Theorem 3.7. [8] DOMINATION PROBLEM is NP-complete.

Let G be a non-empty graph of order n ≥ 2 with vertex set V(G) = {v1, v2, ..., vn}. To analyze the
complexity of the ITD-PROBLEM, we construct the following graph HG. We consider three sets of vertices
A = {a1, a2, ..., an}, B = {b1, b2, ..., bn} and C = {c1, c2, ..., cn}, each of which of cardinality n. With the sets A and
B we form a complete graph K2n (we add all the possible edges between any two vertices of A ∪ B). Then,
to obtain the graph HG, for every i ∈ {1, ...,n}, we add an edge between vi and ai and other edge between bi
and ci. See Figure 1 for an example of the graph HP4 .

V(P4)

A

B

C

Figure 1: The graph HP4

Now we give some claims and properties on the graph HG.

Lemma 3.8. For any non-empty graph G of order n, γ(HG) = n + γ(G).

Proof. Let S ⊂ V(G) be a γ(G)-set. According to the construction of the graph HG, it is straightforward to
observe that S ∪ B is a dominating set in HG. So, γ(HG) ≤ |B| + |S| = n + γ(G). On the other hand, let X be a
γ(HG)-set. Since every vertex of C has degree one, for every i ∈ {1, ...,n} it follows that X ∩ {bi, ci} , ∅. Thus,
|X∩ (A∪B)| ≥ n. Also, it is clear that |X∩ (A∪V(G))| is a dominating set in G. Thus, |X∩ (A∪V(G))| ≥ γ(G).
As a consequence, the proof is completed by the following.

γ(HG) = |X| = |X ∩ (A ∪ B)| + |X ∩ (A ∪ V(G))| ≥ n + γ(G).

Lemma 3.9. For any non-empty graph G of order n, β0(HG) = n + 1 + β0(G).



H. A. Ahangar et al. / Filomat 30:2 (2016), 293–303 298

Proof. Let S ⊂ V(G) be a β0(G)-set. Since G is non-empty, there exists at least one vertex v j < S. Now,
according to the construction of the graph HG, it is straightforward to observe that S ∪ {a j} ∪ C is an
independent set in HG (a j is the vertex of A adjacent to v j). So, β0(HG) ≥ |C| + 1 + |S| = n + 1 + β0(G).

On the other side, let X be a β0(HG)-set. Since the subgraph induced by A∪B is isomorphic to a complete
graph K2n, it follows that |X ∩ (A ∪ B)| ≤ 1. Also, X ∩ V(G) is an independent set in G. Thus, we have the
following.

β0(HG) = |X| = |X ∩ C| + |X ∩ (A ∪ B)| + |X ∩ V(G)| ≤ n + 1 + β0(G),

and, as a consequence, the result follows.

According to the result above and its proof, it is clear that every β0(HG)-set contains all the vertices of
the set C. That is stated in the following claim.

Claim 3.10. Let G be a non-empty graph and let HG be the graph constructed as in the procedure above. Then, every
β0(HG)-set contains all the vertices of the set C.

Lemma 3.11. For any non-empty graph G of order n, γit(HG) = γ(HG) = n + γ(G).

Proof. Let S be aγ(G)-set and let bi ∈ B, ci ∈ C (notice that bi, ci are adjacent). It is clear that X = (C−{ci})∪{bi}∪S
is a dominating set in HG and it has cardinality n + γ(G). So, it is a γ(HG)-set by Lemma 3.8. Also, by Claim
3.10 we have that X intersects every β0(HG)-set. Thus, γit(HG) ≤ γ(HG) = n + γ(G). The proof is complete by
Theorem 2.1.

Now, by using the above result we finally prove our main result in this section. We recall that our
goal is to reduce the INDEPENDENT TRANSVERSAL DOMINATION PROBLEM to the DOMINATION
PROBLEM.

Theorem 3.12. INDEPENDENT TRANSVERSAL DOMINATION PROBLEM is an NP-hard problem. More-
over, it is NP-complete if and only if P=NP.

Proof. We consider a non-trivial graph G and we construct a graph HG by the procedure above. It is clear that
such a construction can be done in polynomial time. By Lemma 3.11 we have thatγit(HG) = γ(HG) = n+γ(G).
So, for any j, k with j = n + k, it follows that γ(G) ≤ k if and only if γit(HG) ≤ j. Therefore, we have reduced
the DOMINATION PROBLEM to the ITD-PROBLEM and, as a consequence, ITD-PROBLEM is NP-hard.

Now, to complete the proof that the ITD-PROBLEM is NP-complete we need to show that the ITD-
PROBLEM is in NP. Equivalently, there must be a polynomial verifier which can check that a set S of
cardinality r or less is indeed an independent transversal dominating set in G. If P=NP, then by Theorem
3.6, this can be done in polynomial time. Therefore, the proof in this direction is complete.

We assume now that the ITD-PROBLEM is NP-complete. Thus, there is a polynomial verifier which
checks that a set S of cardinality r or less is indeed an independent transversal dominating set in G, which
means that the ITDS-PROBLEM is in the class P. So, by Theorem 3.6, we obtain that P=NP and we are
done.

4. Realizability Results for the Independent Transversal Domination Number

As mentioned at the beginning of Section 2, the bound γ(G) ≤ γit(G) ≤ γ(G) + δ(G) plays an important
role while studying γit(G). In this sense, it is natural to ask the following question, which was already
presented as an open problem in [10]. Given three integers a, b, c with a ≤ b ≤ a + c, is there a graph G such
that γ(G) = a, γit(G) = b and δ(G) = c? A positive answer to this question is known for δ(G) = 1, by taking G
as a tree. According to that fact, for any tree T, it follows that γ(T) ≤ γit(T) ≤ γ(T) + 1. Thus, it is of interest
to characterize when γit(T) equals γ(T) or γ(T) + 1. This problem was also stated in [10], where a tree T was
classified to be of class 1 or of class 2 according to the fact that γit(T) is γ(T) or γ(T) + 1, respectively. On
the other hand, if G is not a tree and δ(G) = c > 1, then it would be desirable to describe graphs such that
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γ(G) = a and γ(G)it = b. Next we give an answer to such a problem. To this end, we need to introduce the
following graph operation, which was defined first in [7].

Let G and H be two graphs of order n1 and n2, respectively. The corona graph G � H is defined as the
graph obtained from G and H by taking one copy of G and n1 copies of H and joining by an edge each
vertex from the ith-copy of H with the ith-vertex of G. Hereafter, we will denote by V = {u1,u2, ...,un} the set
of vertices of G, and by Hi = (Vi,Ei) the ith copy of H in G � H. For some domination related properties of
corona graphs we suggest [9].

On the other hand, given a graph G, we will say that a dβ(G) represents the largest number of pairwise
disjoint β0(G)-sets. From now on, we say that S is a dβ(H)-set of G if any two different vertices of S belong to
two disjoint β0(G)-sets. Since every graph has at least one β0(G)-set, it follows that dβ(G) ≥ 1 for any graph
G. For instance, it is straightforward to observe that for any cycle Cn, dβ(Cn) = 2. Also, for any regular
complete multipartite graph Kn,n,...,n having k partite sets, it follows dβ(G) = k. This parameter is useful for
our purposes on the realizability of the independence transversal domination, as we show at next. But we
need before the following basic results.

Lemma 4.1. For any graphs G and H, γ(G �H) = n.

Lemma 4.2. For any graphs G and H, β0(G � H) = nβ0(H). Moreover, if β0(H) ≥ 2, then every β0(G � H)-set
contains only vertices belonging to the copies Hi of the graph H in G�H and, it is given by the union of n β0(Hi)-sets.

Next we study the independent transversal domination number of corona graphs.

Theorem 4.3. Let G be a graph of order n ≥ 2. Then, for any graph H such that β0(H) ≥ 2,

n − 1 + dβ(H) ≤ γit(G �H) ≤ n + dβ(H).

Moreover, if there is a dβ(H)-set which is a dominating set in H, then γit(G �H) = n − 1 + dβ(H).

Proof. Let X be a γit(G � H)-set. Since β0(H) ≥ 2, by Lemma 4.2 we have that every β0(G � H)-set contains
only vertices belonging to the copies Hi of the graph H in G�H and, it is given by the union of n β0(Hi)-sets.
Thus, as X intersects every β0(G � H)-set, there exists j ∈ {1, ...,n}, such that X ∩ V(H j) , ∅. Moreover, if
there are k pairwise disjoint maximum independent sets in H j, then |X ∩ V(H j)| ≥ k. On the other hand, to
dominate each set V(Hi) with i ∈ {1, ...,n} and i , j, we need at least one vertex. Thus, |X∩ (V(Hi)∪ {ui})| ≥ 1
for every i ∈ {1, ...,n} and i , j (notice that {u1, ...,un} is the vertex set of G). Therefore, we have that

|X| =
n∑

i=1

|X ∩ (V(Hi) ∪ {ui})|

=

n∑
i=1,i, j

|X ∩ (V(Hi) ∪ {ui})| + |X ∩ V(H j)|

≥ (n − 1) + k
≥ n − 1 + dβ(H),

and the proof of the lower bound is complete.
On the other hand, we consider a set Y in G�H, given in the following way. For the copy H1 of H in G�H,

we take a dβ(H1)-set A (notice that A could be not a dominating set in H). Now, we make Y = V(G)∪A. Now,
it is straightforward to observe that Y is a dominating set in G � H and, that it intersects every maximum
independent set in G � H. Thus, γit(G � H) ≤ |Y| = n + dβ(H) and the upper bound is proved. Finally, it is
clear that, if A is a dominating set in H, then Y = (V(G)−{u1})∪A is an independent transversal dominating
set and we have the equality γit(G �H) = n − 1 + dβ(H).

By using the result above as a tool, we now deal with the problem of the existence of graphs G such that
γ(G) = a, γ(G)it = b and δ(G) = c for every integers a, b, c with a ≤ b ≤ a + c. Since the case δ(G) = 1 is already
studied, we focus in the possibilities δ(G) = c > 1.
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Theorem 4.4. Let a, b, c be three positive integers, such that c ≥ 2 and a ≤ b ≤ a + c. Then, there exists a graph G of
minimum degree δ(G) = c, such that γ(G) = a and γit(G) = b.

Proof. We consider first the case a ≤ b = a + c. If a = 1, then the complete graph Kb satisfies that δ(Kb) =
b − 1 = b − a = c, γ(Kb) = 1 = a, and γit(Kb) = b. Hence, we assume now that a ≥ 2 and we consider the
following cases.

Case 1: c ≤ a. Let H1 � Ka and H2 � Kc+1. Let G be the graph obtained from H1 and H2 by taking one
copy of H1 and a copies of H2 and then, joining by an edge the ith-vertex of H1 with exactly one vertex of the
ith-copy of H2. Then, it is clear that δ(G) = c and that, all the vertices of degree c + 1 form the only γ(G)-set.
So γ(G) = a. Also, β0(G) = γ(G) + 1 = a + 1 and each β0(G)-set contains exactly one vertex of H1 and exactly
one vertex of each copy of H2. As a consequence, γit(G) = a + c = b.

Case 2 c > a. Let H1 = Kc and H2 = Kd, where d > c. Let G be the graph obtained from H1 and H2 by
taking one copy of H1 and a copies of H2 by doing the following actions.

• Join by an edge the ith-vertex of H1 with exactly one vertex of the ith-copy of H2, i = 1, 2, .., a − 1.

• Join by an edge exactly one vertex of the last copy of H2 with each one of the remaining vertices of H1.

In this sense, it is obtained that δ(G) = c and all the vertices of the copies of H2 that have a neighbor in H1
form the only γ(G)-set. So γ(G) = a. Also, β0(G) = γ(G) + 1 = a + 1 and each β0(G)-set contains exactly one
vertex of H1 and exactly one vertex of each copy of H2. Thus, γit(G) = a + c = b.

From now on, we consider the case a ≤ b < a + c. If a = 1, then let G be the graph obtained from two
complete graphs Kb and Kb(c−b+1)+1 by doing the following actions.

• Identify one vertex v1 of Kb with one vertex u1 of Kb(c−b+1)+1.

• Join by an edge each vertex of Kb different from v1 with the same c−b+1 vertices of Kb(c−b+1)+1 different
from u1.

Thus, we have that the minimum degree of G is attained in a vertex of Kb different from v1 and so,
δ(G) = b − 1 + c − b + 1 = c. Also, γ(G) = 1 and every β0(G)-set is formed by one vertex of Kb different from
v1 and other one from Kb(c−b+1)+1 different from u1. Thus, γit(G) = b.

Finally we analyze the case a ≤ b < a + c with a ≥ 2. To this end, we begin with a graph G′ of order a
without isolated vertices. Then, we need a graph H such that δ(H) = c − 1 and dβ(H) = b − a + 1 having
a dβ(H)-set which is a dominating set in H. Thus, by taking G as the corona graph G′ � H we have the
following. The graph G has minimum degree δ(G) = δ(H) + 1 = c, since every other vertex u of G′ has
degree, in G, equal to δG′ (u) + |V(H)| ≥ δG′ (u) + δ(H) + 1 = δG′ (u) + c > c. Also, from Lemma 4.1 we have that
γ(G) = a and, from Theorem 4.3 we obtain that γit(G) = a − 1 + dβ(H) = a − 1 + b − a + 1 = b.

Now, we will describe a graph H satisfying that δ(H) = c−1, dβ(H) = b−a+1 and having a dβ(H)-set which
is a dominating set in H. We consider a complete multipartite graph Kt1,t2,...,tr with partite sets U1,U2, ...,Ur
(|Ui| = ti and r > b − a + 1) such that there exists exactly b − a + 1 sets U j having the same cardinality R and
R = |U j| = t j = max{ti : 1 ≤ i ≤ r}. Also, there is one set Ul such that tl = 1. On the other hand, we consider
a complete graph Kc. Then, to obtain the graph H, we join by an edge the vertex of Ul with at most c − 1
vertices of the complete graph Kc (Figure 2 shows an example of such a graph for a = 3, b = 5 and c = 4).

Notice that the graph H has minimum degree c− 1 achieved in one of the vertices of the complete graph
Kc which is not adjacent to the vertex of the set Ul. Also, it is not difficult to check that β0(H) = R + 1 and,
that every maximum independent set is formed by one of the partite sets U j of cardinality R together with
one vertex of the complete graph Kc. Since there are exactly b − a + 1 of such a partite sets U j and also,
c > b− a (by the premise of the theorem), which is equivalent to c ≥ b− a + 1, we have that there are b− a + 1
pairwise disjoint maximum independent sets in H. Therefore, dβ(H) = b − a + 1 and, as every dβ(H)-set is a
dominating set in H, the proof is complete.

As a consequence of the results above, it is also possible to observe that there are graphs G such that the
difference γit(G) − γ(G) can be arbitrarily large.
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Figure 2: The graph H for a = 3, b = 5 and c = 4. Notice that δ(G) = c − 1 = 3, β(H) = 4 and dβ(H) = b − a + 1 = 3

5. Properties of Independent Transversal Dominating Sets

Now, according to the complexity of the ITD-PROBLEM, it is also desirable to study the independent
transversal domination number of several families of graphs or to study several properties of the inde-
pendent transversal dominating sets of graphs. This could be done for instance, throughout giving sharp
bounds for the independent transversal domination number in terms of other parameters of the graph or
characterizing classes of graphs achieving some specific values of the studied parameter. To this end we
need to introduce some terminology and notation. We denote by Ω(G) the set of all maximum independent
sets in G, that is Ω(G) = {S : S is a maximum independent set of G}. According to this, we also say that
core(G) =

⋂
S∈Ω(G) S and ξ(G) = |core(G)|. Clearly, any isolated vertex of a graph G is contained in core(G).

Observation 5.1. Let G be a graph and let v ∈ core(G).

(i) For any γ(G)-set D, {v}∪D is an independent transversal dominating set of G. In particular, γit(G) ≤ γ(G)+1.
(ii) If v is a γ(G)-good vertex, then γ(G) = γit(G).

Corollary 5.2. Let G be a graph with a unique β0(G)-set. Then γit(G) ≤ γ(G) + 1. The equality holds if and only if
no γ(G)-good vertex belongs to the β0(G)-set.

The Observation 5.1 (i) together with the known result below lead to a result in which we obtain the
same bound as in the corollary above.

Lemma 5.3 (Boros, Golumbic and Levit [4]). If G is a connected graph with β0(G) > µ(G), then ξ(G) ≥ 1 +
β0(G) − µ(G).

Proposition 5.4. If G is a connected graph with β0(G) > µ(G), then γit(G) ≤ γ(G) + 1.

Theorem 5.5. For any graph G without isolated vertices the following conditions are equivalent.

(i) γit(G) = α0(G) + 1.
(ii) Each γ(G)-set is a minimum vertex cover of G.

Proof. (i)⇒ (ii): By Theorem 2.2, γ(G) = α0(G). Suppose there is a γ(G)-set U which is not a vertex cover of
G. But then the set V(G) −U is not independent and |V(G) −U| = β0(G). Hence γit(G) ≤ |U| = γ(G) = α0(G),
a contradiction.

(ii)⇒ (i): Consider any γit(G)-set D. Since D is dominating, |D| ≥ γ(G) = α0(G). If the equality holds, then
D is a γ(G)-set, which implies that D is a minimum vertex cover of G. But, then V(G) −D is a β0(G)-set.
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Observation 5.6. Let G be any graph. If each γ(G)-set is contained in some minimum vertex cover, then γit(G) ≥
γ(G) + 1.

Proposition 5.7. Let G be a connected graph of order n and let D be a γ(G)-set. If β0(G) ≥ (n − γ(G) + 1)/2 and
V(G) −D contains exactly k β0(G)-sets, then γit(G) ≤ γ(G) + k. Moreover, if k ∈ {2, 3}, then γit(G) ≤ γ(G) + 1.

Proof. The inequality γit(G) ≤ γ(G)+k is obvious. Now, let I1, .., Ik be all β0(G)-sets each of which is contained
in V(G) −D. If I1 and I2 are vertex-disjoint, then n ≥ |D| + |I1| + |I2| = γ(G) + 2β0(G) ≥ n + 1, a contradiction.
Hence, I1∩ I2 is not empty and, if k = 2 and v ∈ I1∩ I2, then D∪{v} is an independent transversal dominating
set of cardinality γ(G) + 1.

Let us consider the case where k = 3. As above the sets S1 = I1 ∩ I2, S2 = I1 ∩ I3 and S3 = I2 ∩ I3 all are
nonempty. Furthermore, clearly S1 ∪ S2 ∪ S3 is an independent set of G. Suppose I1 ∩ I2 ∩ I3 is empty. Thus,
n ≥ |D|+ (|I1|+ |I2|+ |I3|)− (|S1|+ |S2|+ |S3|) ≥ γ(G) + 3β0(G)− β0(G) ≥ n + 1, a contradiction. Hence, I1 ∩ I2 ∩ I3
is not empty and, if u ∈ I1 ∩ I2 ∩ I3, then D∪ {u} is an independent transversal dominating set of cardinality
γ(G) + 1.

Our next theorem requires the use of the following known result from [12].

Lemma 5.8 (Levit and Mandrescu [12]). Let G be a graph with β0(G) > |V(G)|/2. If |isol(G)| , 1, then ξ(G) ≥ 2.

Theorem 5.9. Let G be a graph with β0(G) > |V(G)|/2. Then, γit(G) ≤ γ(G) + 1.

Proof. If v is an isolated vertex of G then v ∈ core(G) and the result follows by Observation 5.1. If G
has no isolated vertices, then by Lemma 5.8, core(G) is not empty. Hence, again Observation 5.1 leads to
γit(G) ≤ γ(G) + 1.

The following conjecture is due to Hamid, and appears in [10].

Conjecture 5.10. If G is a connected bipartite graph, then γit(G) is either γ(G) or γ(G) + 1.

Next corollary shows that Conjecture 5.10 is true for at least all bipartite graphs of odd order.

Proposition 5.11. Let G be a bipartite graph with bipartition (X,Y) such that |X| , |Y|. Then, γit(G) ≤ γ(G) + 1.
In particular, this is true when G has odd order.

Proof. Since |X| , |Y|, it follows β0(G) > |V(G)|/2. Thus, the result is deduced directly from Theorem 5.9.

5.1. Trees
By Theorem 2.3, the next corollary immediately follows.

Corollary 5.12. Let T be a tree with bipartition (X,Y) such that 1 ≤ |X| ≤ |Y| and γ(T) = |X|. Then, T is in class 1
if and only if there is a vertex in X which is adjacent to at most one end-vertex.

Proposition 5.13. Let T be a tree of order at least three. Then T is in class 1 if one of the following holds:

(i) V(T) = End(T)∪Stem(T) and there is a path x1, y1, y2, x2 where y1 and y2 are stems and xi is the only end-vertex
which is adjacent to yi, i = 1, 2.

(ii) 〈V(T) − (End(T) ∪ Stem(T))〉 � Kr and there is a path x, y, z such that y is a stem, z is not a stem, and x is the
only end-vertex which is adjacent to y.

Proof. (i) First note that Stem(T) is a γ(T)-set and V(T) − Stem(T) is a β0(T)-set. On the other hand D =
(Stem(T) − {y1, y2}) ∪ {x1, x2} is also a γ(T)-set, while V(T) −D is not independent.

(ii) Clearly Stem(T) is a γ(T)-set and V(T) − Stem(T) is a β0(T)-set. Now, D = (Stem(T) ∪ {x}) − {y} is a
γ(T)-set while V(G) −D is not independent.
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5.2. Independent Transversal Dominating Sets Versus Cliques
A clique K of a graph G is a subset of its vertices such that every two vertices in the subset are connected

by an edge. Equivalently, a clique induces a complete subgraph having at least two vertices which is
maximal under inclusion. (According to this definition, isolated vertices are maximal complete subgraphs
but not cliques)

A vertex set meeting all cliques will be called a clique-transversal. The clique-transversal number, τC(G) is
defined as the minimum cardinality of a clique-transversal in G. The concept of clique transversal has been
already mentioned by Payan [14] in 1979 and the first NP-hardness results for clique transversals are due
to Erdős, Gallai and Tuza [5].

Theorem 5.14 (Erdős, Gallai, Tuza [5]). Let k and n be natural numbers, n ≥ k + 2. If G is a graph on n vertices
in which every clique has more than k vertices, then τC(G) ≤ n −

√
kn, unless k = 1, n = 5, and G is the cycle of

length 5.

Now, by using the above known theorem we give a result for the independent transversal domination
number of graphs.

Proposition 5.15. Let k and n be natural numbers, n ≥ k + 2. If G is a non complete graph on n vertices in which
every maximal independent set has more than k vertices, then γit(G) ≤ n −

√
kn + γ(G).

Proof. First we note that a set I is a maximal independent set of G if and only if I is a clique of G.
Hence, any clique-transversal set of G intersects every maximal independent set in G. Now, if F is a
clique-transversal set of largest cardinality in G and D is a γ-set of G, then clearly D ∪ F intersects every
independent set of maximum cardinality in G. If G � C5, then by using Theorem 5.15, we have that
n −
√

kn + γ(G) ≥ |F| + |D| ≥ |F ∪D| ≥ γit(G). Finally, if G � C5, then the result is obvious.
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