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Abstract. A finite simple graph is called a bi-Cayley graph over a group H if it has a semiregular
automorphism group, isomorphic to H, which has two orbits on the vertex set. Cubic vertex-transitive bi-
Cayley graphs over abelian groups have been characterized recently by Zhou and Feng (Europ. J. Combin.
36 (2014), 679–693). In this paper we consider the latter class of graphs and select those in the class which
are also arc-transitive. Furthermore, such a graph is called 0-type when it is bipartite, and the bipartition
classes are equal to the two orbits of the respective semiregular automorphism group. A 0-type graph can
be represented as the graph BiCay(H,S), where S is a subset of H, the vertex set of which consists of two
copies of H, say H0 and H1, and the edge set is {{h0, 11} : h, 1 ∈ H, 1h−1

∈ S}. A bi-Cayley graph BiCay(H,S) is
called a BCI-graph if for any bi-Cayley graph BiCay(H,T), BiCay(H,S) � BiCay(H,T) implies that T = hSα

for some h ∈ H and α ∈ Aut(H). It is also shown that every cubic connected arc-transitive 0-type bi-Cayley
graph over an abelian group is a BCI-graph.

1. Introduction

In this paper all graphs will be simple and finite and all groups will be finite. For a graph Γ, we let V(Γ),
E(Γ), A(Γ), and Aut(Γ) denote the vertex set, the edge set, the arc set, and the full group of automorphisms
of Γ, respectively. A graph Γ is called a bi-Cayley graph over a group H if it has a semiregular automorphism
group, isomorphic to H, which has two orbits in the vertex set. Given such Γ, there exist subsets R,L,S of
H such that R−1 = R, L−1 = L, 1 < R ∪ L, and Γ � BiCay(H,R,L,S), where the latter graph is defined to have
the union of the right part H0 = {h0 : h ∈ H} and the left part H1 = {h1 : h ∈ H} as the vertex set while the edge
set consists of three sets:

{{h0, 10} : 1h−1
∈ R} (right edges),

{{h1, 11} : 1h−1
∈ L} (left edges),

{{h0, 11} : 1h−1
∈ S} (spoke edges).

In what follows we will also refer to BiCay(H,R,L,S) as a bi-Cayley representation of Γ. Regarding bi-
Cayley graphs, our notation and terms will follow [37]. For the case when |S| = 1, the bi-Cayley
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Table 1: Cubic symmetric abelian 0-type bi-Cayley graphs.

no. H S k-reg. other name
1. Zrm × Zm = 〈a, b | arm = brm = 1, bm = am(u+1)

〉,
r = 3spe1

1 · · · p
et
t , r > 3 and r ≥ 11 if m = 1, s ∈ {0, 1},

every pi ≡ 1 (mod 3), and u2 + u + 1 ≡ 0 (mod r)

{1, a, b} 1 −

2. Z8 = 〈a〉 {1, a2, a3
} 2 Möbius-Kantor

graph
3. Z2

m = 〈a, b〉, m > 1,m , 3 {1, a, b} 2 −

4. Z3m×Zm = 〈a, b | a3m = b3m = 1, am = bm
〉,m > 1 {1, a, b} 2 −

5. Z3 = 〈a〉 {1, a, a−1
} 3 K3,3

6. Z2
3 = 〈a, b〉 {1, a, b} 3 Pappus graph

7. Z7 = 〈a〉 {1, a, a3
} 4 Heawood graph

Table 2: Cubic symmetric abelian 2-type bi-Cayley graphs.

H R L S k-trans other name
〈a, b〉 = Z2

2 {a, b} {a, b} {1} 2 GP(4, 1)
〈a〉 × 〈b〉 = Z2 ×Z10 {ab3, ab−3

} {b, b−1
} {1} 2 −

〈a〉 = Zn {a} {ak
} {1} 2 GP(n, k), (n, k) = (4, 1), (8, 3), (10, 2),

(12, 5), (24, 5)
〈a〉 = Zn {a} {ak

} {1} 3 GP(n, k), (n, k) = (5, 2), (10, 3)

graph BiCay(H,R,L,S) is also called a one-matching bi-Cayley graph (see [22]). Also, if |R| = |L| = s, then
BiCay(H,R,L,S) is said to be an s-type bi-Cayley graph, and if H is abelian, then BiCay(H,R,L,S) is simply
called an abelian bi-Cayley graph. If |L| = |R| = 0, then BiCay(H,S) will be written for BiCay(H, ∅, ∅,S). Bi-
Cayley graphs have been studied from various aspects [5, 14, 15, 18–20, 22, 28, 34, 36, 37], they have been
used by constructions of strongly regular graphs [1, 2, 24, 30–32] and semisymmetric graphs [9, 10, 27].
Bi-Cayley graphs are related with the so called quasi m-Cayley graphs, see [17]. The cubic vertex-transitive
abelian bi-Cayley graphs have been classified recently by Zhou and Feng [37] (by a cubic graph we mean a
regular graph of valency 3).

In this paper we turn to the class of cubic connected arc-transitive bi-Cayley graphs over abelian groups.
Recall that a graph Γ is called arc-transitive when Aut(Γ) is transitive on A(Γ). From now on we say that Γ is
symmetric when it is connected and arc-transitive. In the first part of our paper we are going to determine
the cubic symmetric abelian bi-Cayley graphs. Clearly, such a graph is s-type for s ∈ {0, 1, 2}; and in fact,
the classification in the case of 0-type and 2-type graphs follows from the results in [7, 12, 22, 23]. The
respective graphs are listed in Tables 1 and 2.

Remark 1.1. In order to derive the 0-type graphs, the key observation is that each such graph is of girth 4 or 6.
Namely, if S = {a, b, c}, then we find in BiCay(H,S) the closed walk:

(10, a1, (b−1a)0, (cb−1a)1, (b−1c)0, c1, 10),

here we use that cb−1a = ab−1c holds as H is abelian. It is a folklore result that the cubic symmetric graphs of girth at
most 4 are K4,K3,3 and Q3, the graph of the cube. There are infinitely many cubic symmetric graphs of girth 6, but
fortunately, all have been determined in [7, 12, 23]. A description of these graphs is given in Theorem 2.2, and using
this theorem, it is not hard to deduce Table 1 (see Remark 2.3 for the details).

Remark 1.2. The 2-type bi-Cayley graphs BiCay(Zn, {1,−1}, {k,−k}, {0}) are also known as the generalized Pe-
tersen graphs, denoted by GP(n, k). It was proved by Frucht et al. [13] that GP(n, k) is symmetric for exactly
seven pairs: (4, 1), (5, 2), (8, 3), (10, 2), (10, 3), (12, 5) and (24, 5). Recall that, a bi-Cayley graph BiCay(H,R,L,S) is
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one-matching if |S| = 1. Symmetric one-matching abelian bi-Cayley graphs are classified in [22, Theorem 1.1], and
since the 2-type cubic bi-Cayley graphs are one-matching, Table 2 can be read off directly from the latter theorem.

In this paper we complete the classification of cubic symmetric abelian bi-Cayley graphs by proving the
following theorem:

Theorem 1.3. There are exactly four cubic symmetric 1-type abelian bi-Cayley graphs: K4,Q3,GP(8, 3) and
GP(12, 5).

Remark 1.4. It should be noted that, the cubic 1-type abelian bi-Cayley graphs have been described in [37, Theo-
rem 4.2], and it follows quickly from this result that every such graph is of girth at most 6. Now, one can use the
characterization of symmetric cubic graphs of girth 6 in order to derive Theorem 1.3. However, our proof will follow
a different apporach, namely, we are going to use voltage graphs.

In the second part of this paper we turn to the BCI-property of cubic symmetric abelian 0-type bi-
Cayley graphs. Recall that, these are the graphs in the form BiCay(H,S), where H is a finite abelian group
and S is a subset of H. A bi-Cayley graph BiCay(H,S) is said to be a BCI-graph if for every BiCay(H,T),
BiCay(H,T) � BiCay(H,S) implies that T = hSσ for some h ∈ H and σ ∈ Aut(H); and the group H is called an
m-BCI-group if every bi-Cayley graph over H of degree at most m is a BCI-graph. The study of m-BCI-groups
was initiated in [36], where it was shown that every group is a 1-BCI-group, and a group is a 2-BCI-group
if and only if it has the property that any two elements of the same order are either fused or inverse fused
(these groups are described in [25]). The problem of classifying all 3-BCI-groups is still open, partial results
can be found in [18–21, 35, 36]. It was proved by the authors (see [21, Theorem 1.1]) that the nilpotent
3-BCI-groups are the groups U × V, where U is homocyclic of odd order, and V is trivial, or Z2r , or Zr

2, or
the quaternion group Q8 (homocyclic means that it is a direct product of cyclic groups of the same order).
Consequently, the class of abelian 3-BCI groups is quite restricted. As our second main result, we prove
that the situation changes completely when one considers only symmetric graphs.

Theorem 1.5. Every cubic symmetric abelian 0-type bi-Cayley graph is a BCI-graph.

2. Preliminaries

Let G be a group acting on a finite set V. For 1 ∈ G and v ∈ V, the image of v under 1 will be written
as v1. For a subset U ⊆ V, we will denote by GU the point-wise stabilizer of U in G, while by G{U} the
set-wise stabilizer of U in G. If U = {u}, then Gu will be written for G{u}. If G is transitive on V and
∆ ⊆ V is a block for G (see [8, page 12]), then the partition δ = {∆1 : 1 ∈ G} is called the system of blocks
for G induced by ∆. The group G acts on δ naturally, the corresponding kernel will be denoted by Gδ, i.e.,
Gδ = {1 ∈ G : ∆′ 1 = ∆′ for all ∆′ ∈ δ}. For further definitions and results from permutation group theory
that will appear later, we refer the reader to [8].

Below we collect the main ingredients of this paper.

2.1 Cubic symmetric graphs. For a positive integer k, a k-arc of a graph Γ is an ordered (k+1)-tuple (v0, v1, . . . , vk)
of vertices of Γ such that, for every i ∈ {1, . . . , k}, vi−1 is adjacent to vi, and for every i ∈ {1, . . . , k−1}, vi−1 , vi+1.
The graph Γ is called (G, k)-arc-transitive ((G, k)-arc-regular) if G is transitive (regular) on the set of k-arcs of
Γ. If G = Aut(Γ), then a (G, k)-arc-transitive ((G, k)-arc-regular) graph is simply called k-transitive (k-regular).
The following result is due to Tutte:

Theorem 2.1. [33] Every cubic symmetric graph is k-regular for some k ≤ 5

In this paper we will occasionally need information about cubic symmetric graphs of small order, and
for this purpose use the catalogue [6, Table]. We denote by FnA,FnB, . . . etc. the cubic symmetric graphs
on n points, and simply write Fn if the graph is uniquely determined by n. Given an abelian group G, the
generalized dihedral group Dih(G) is the group 〈G, η〉 � G o 〈η〉, where η is an involution and it acts on G as
1η = 1−1, 1 ∈ G. We have the following description of cubic symmetric graphs of girth 6:
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Theorem 2.2. Let Γ be a cubic symmetric graph of girth 6. Then one of the following holds:

(i) Γ is 1-regular, and Aut(Γ) contains a regular normal subgroup isomorphic to Dih(L), where L � Zrm ×Zm, r =
3spe1

1 · · · p
et
t , r > 3 and r ≥ 11 if m = 1, s ∈ {0, 1}, and every pi ≡ 1 (mod 3).

(ii) Γ is 2-regular, and Γ � GP(8, 3), or Aut(Γ) contains a regular normal subgroup isomorphic to Dih(L), where
L � Zrm ×Zm, r ∈ {1, 3}, m > 1, and if r = 1, then m , 3.

(iii) Γ is 3-regular, and Γ � F18 (the Pappus graph) or GP(10, 3) (the Desargues graph).

(iv) Γ is 4-regular, and Γ � F14 (the Heawood graph).

In fact, part (i) is deduced from [23, Theorem 1.2], part (ii) from [23, Theorem 1.1], and parts (iii)-(iv) from
[12, Corollary 6.3] (see also [7, Theorem 2.3]).

Remark 2.3. Let Γ be a cubic symmetric 0-type abelian bi-Cayley graph. We are going to show below that Γ is
isomorphic to one of the graphs given in Table 1. As noted in Remark 1.1, Γ is of girth 4 or 6, and it follows that if the
girth is equal to 4, then Γ � K3,3 or Q3. The graph K3,3 is isomorphic to the bi-Cayley graph given in Row no. 5 of
Table 1, and Q3 is isomorphic to the bi-Cayley graph given in Row no. 3 of Table 1 with m = 2. Assume that Γ is of
girth 6. Then by Theorem 2.2, Γ is k-regular for some k ≤ 4. We consider each case of the theorem separately.

CASE 1. k = 1. In this case Aut(Γ) contains a regular normal subgroup K isomorphic to Dih(L), where L �
Zrm × Zm, r = 3spe1

1 · · · p
et
t , r > 3 and r ≥ 11 if m = 1, s ∈ {0, 1}, and every pi ≡ 1 (mod 3). Consequently, the

subgroup H ≤ K that H � L is semiregular and has two orbits on V(Γ). Notice that, the group L is characteristic
in Dih(L). Thus H is characteristic in K, and since K E Aut(Γ) we conclude that H E Aut(Γ). Using this and
that Γ is symmetric, we find that Γ is bipartite, and the bipartition classes are equal to the orbits of H. Therefore,
Γ � BiCay(H,S) for a subset S of H. We may assume without loss of generality that 1 ∈ S, here 1 denotes the identity
element of H. Since Γ is arc-transitive and H is normal in Aut(Γ), there exist σ ∈ Aut(H) and h ∈ H with the
property that S is equal to the orbit of 1 under the mapping ϕ : x 7→ xσh, x ∈ H. Thus we may write S = {1, a, b}
such that 1ϕ = a, aϕ = b and bϕ = 1. It follows from this that h = a, aσ = a−1b and bσ = a−1. This shows that
both elements a and b are of the same order. On the other hand Γ is connected, hence 〈a, b〉 = H � Zrm × Zm,
and thus a and b are of order rm, and 〈am

〉 = 〈bm
〉. Then we can write 〈am

〉
σ = 〈bm

〉
σ = 〈(bσ)m

〉 = 〈am
〉, and thus

(am)σ = (am)u for some integer u, gcd(u, r) = 1. From this (am)u = (am)σ = a−mbm, hence bm = am(u+1). Also,
(am)u2

= (am)σ
2

= (a−mbm)σ = (am)−u−1, and this gives that u2 + u + 1 ≡ 0 (mod r). To sum up, BiCay(H, {1, a, b})
is one the graphs described in Row no. 1 of Table 1. In fact, any graph in that row is symmetric, the proof of this claim
we leave for the reader.

CASE 2. k = 2. In this case Γ � GP(8, 3), or Aut(Γ) contains a regular normal subgroup isomorphic to Dih(L),
where L � Zrm ×Zm, r ∈ {1, 3}, m > 1, and if r = 1, then m , 3. We have checked by Magma that GP(8, 3) admits
a bi-Cayley representation given in Row no. 2 of Table 1. Otherwise, copying the same argument as in CASE 1,
we derive that Γ � BiCay(H,S), where S = {1, a, b}, and either H = 〈a, b〉 � Zm × Zm, m > 1 and m , 3, or
H = 〈a, b | a3m = b3m = 1, am = bm

〉 � Z3m ×Zm, m > 1. Therefore, BiCay(H, {1, a, b}) is one of the graphs described
in Row no. 3 of Table 1 in the former case, while it is one of the graphs described in Row no. 4 of Table 1 in the latter
case. In fact, any graph in these rows is symmetric, the proof is again left for the reader.

CASE 3. k = 3. In this case Γ � F18 (the Pappus graph) or GP(10, 3) (the Desargues graph). The Pappus graph
admits a bi-Cayley representation given in Row no. 6 of Table 1, and we have checked by Magma that the Desargues
graph cannot be represented as a 0-type abelian bi-Cayley graph.

CASE 4. k = 4. In this case Γ � F14 (the Heawood graph), which admits a bi-Cayley representation given in Row
no. 7 of Table 1.
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2.2 Quotient graphs. Let Γ be an arbitrary finite graph and G ≤ Aut(Γ) which is transitive on V(Γ). For a
normal subgroup N / G which is not transitive on V(Γ), the quotient graph ΓN is the graph whose vertices
are the N-orbits on V(Γ), and two N-orbits ∆i, i = 1, 2, are adjacent if and only if there exist vi ∈ ∆i, i = 1, 2,
which are adjacent in Γ. Now, let Γ = BiCay(H,R,L,S) be a bi-Cayley graph and let h ∈ H. Following [37],
let R(h) denote the permutation of V(Γ) = H0 ∪H1 defined by

(xi)R(h) = (xh)i, x ∈ H and i ∈ {0, 1}.

We set R(H) = {R(h) : h ∈ H}. Obviously, R(H) ≤ Aut(Γ), and R(H) is semiregular with orbits H0 and H1.
Notice that, if H is abelian, then the permutation ι of V(Γ) defined by (x0)ι = (x−1)1 and (x1)ι = (x−1)0, x ∈ H,
is an automorphism of Γ. Furthermore, the group

〈
R(H), ι

〉
≤ Aut(Γ) is regular on V(Γ).

The proof of parts (i)-(ii) of the following lemma can be deduced from [26, Theorem 9], and the proof of
part (iii) is straightforward, hence it is omitted.

Lemma 2.4. Let Γ be a cubic symmetric graph and let N ≤ Aut(Γ) be a normal subgroup which has more than 2
orbits on V(Γ). Then the following hold:

(i) ΓN is a cubic symmetric graph.

(ii) N is equal to the kernel of Aut(Γ) acting on the system of blocks consisting of the orbits of N. Moreover, N is
regular on each of its orbits.

(iii) Suppose, in addition, that Γ = BiCay(H,R,L,S) where H is an abelian group, and that N = R(K) for some
K < H. Then ΓN is isomorphic to the bi-Cayley graph BiCay(H/K,R/K, L/K,S/K).

In part (iii) of the above lemma, H/K denotes the factor group of H by K. The elements of H/K are the cosets
Kh, and for a subset X ⊆ H, let X/K denote the subset of H/K defined by X/K = {Kx : x ∈ X}.

2.3 Voltage graphs. Let Γ be a finite simple graph and K be a finite group whose identity element is denoted
by 1K. For an arc x = (w,w′) ∈ A(Γ) we set x−1 = (w′,w). A K-voltage assignment of Γ is a mapping
ζ : A(Γ)→ K with the property ζ(x−1) = ζ(x)−1 for every x ∈ A(Γ). The values of ζ are called voltages and K
is called the voltage group. Voltages are naturally extended to a directed walk ~W = (w1, . . . ,wn) by letting
ζ( ~W) =

∏n−1
i=1 ζ((wi,wi+1)). Fix a spanning tree T of Γ. Then every edge not in E(T) together with the edges in

E(T) span a unique circuit of Γ, and we shall refer to the circuits obtained in this manner as the base circuits
of Γ relative to T. The K-voltage assignment ζ is called T-reduced if ζ(x) = 1K whenever x is an arc belonging
to A(T). The voltage graph Γ ×ζ K is defined to have vertex set V(Γ) × K, and edge set

E(Γ ×ζ K) =
{
{(w, k), (w′, ζ(x)k)} : x = (w,w′) ∈ A(Γ) and k ∈ K

}
. (1)

The voltage group K induces an automorphism group of Γ ×ζ K through the action

kri1ht : (w, l) 7→ (w, lk), w ∈ V(Γ) and k, l ∈ K.

We set Kri1ht = {kri1ht : k ∈ K}. Let 1 ∈ Aut(Γ ×ζ K) such that it normalizes Kri1ht. This implies that, if
(w, k) ∈ V(Γ ×ζ K) and (w, k)1 = (w′, k′), then w′ does not depend on the choice of k ∈ K, and the mapping
w 7→ w′ is a well-defined permutation of V(Γ). The latter permutation will be called the projection of 1,
obviously, it belongs to Aut(Γ).

On the other hand, an automorphism of Aut(Γ) is said to lift to an automorphism of Γ ×ζ K if it is
the projection of some automorphism of Γ ×ζ K. The following “lifting lemma” is a special case of [29,
Theorem 4.2]:

Theorem 2.5. Let Γ ×ζ K be a connected voltage graph, where K is an abelian group, and ζ is a T-reduced K-voltage
assignment. Then σ ∈ Aut(Γ) lifts to an automorphism of Γ ×ζ K if and only if there exists some σ∗ ∈ Aut(K) such
that for every directed base circuit ~C relative to T, σ∗(ζ(~C)) = ζ(~C σ).

For more information on voltage graphs the reader is referred to [16, 29].
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2.4 BCI-graphs. For a bi-Cayley graph Γ = BiCay(H,S), we let S(Aut(Γ)) denote the set of all semiregular
subgroups of Aut(Γ) whose orbits are H0 and H1. Clearly, R(H) ∈ S(Aut(Γ)) always holds. Our main tool in
the proof of Theorem 1.5 will be the following lemma:

Lemma 2.6. [21, Lemma 2.4] The following are equivalent for every 0-type bi-Cayley graph Γ = BiCay(H,S):

(i) BiCay(H,S) is a BCI-graph.

(ii) The normalizer NAut(Γ)(R(H)) is transitive on V(Γ), and every two subgroups in S(Aut(Γ)), isomorphic to H,
are conjugate in Aut(Γ).

3. Proof of Theorem 1.3

Throughout this section we keep the following notation:

Γ = BiCay(H, {r}, {s}, {1, t})

is a cubic symmetric graph, H = 〈r, s, t〉 is an abelian group, and r, s are involutions.

The core of a subgroup A in a group B is the largest normal subgroup of B contained in A. In order to
derive Theorem 1.3 we analyze the core of R(H) in Aut(Γ).

Lemma 3.1. If R(H) has trivial core in Aut(Γ), then one of the following holds:

(i) H � Z2, s = r = t, and Γ � K4.

(ii) H � Z2
2, s , r, t = sr and Γ � Q3.

Proof. If Γ is of girth at most 4, then it is isomorphic to K4, or K3,3, or Q3 (see Remark 1.1). In the first case
we get at once (i), and it is not hard to see that K3,3 is impossible. Furthermore, we compute by Magma [3]
that Q3 is possible, H � Z2

2, and r, s, t must be as given in (ii).

For the rest of the proof we assume that the girth of Γ is larger than 4. Then r , s, for otherwise, we find
the 4-circuit (10, 11, r1, r0). Then either 〈r, s〉 ∩ 〈t〉 is trivial, and

H = 〈r, s〉 × 〈t〉 � Z2
2 ×Zn; (2)

or t is of even order, say 2n, tn
∈ 〈r, s〉, and

H = 〈r, s, t〉 � Z2 ×Z2n. (3)

Note that, we have |H| = 4n.
By Tutte’s Theorem (Theorem 2.1), Γ is k-regular for some k ≤ 5. The order |Aut(Γ)| = |V(Γ)| · 3 · 2k−1 =

|H| · 3 · 2k, and thus |Aut(Γ) : R(H)| = 3 · 2k. Consider the action of Aut(Γ) on the set of its right R(H)-cosets.
Since R(H) has trivial core in Aut(Γ), this action is faithful. Using this and that R(H) acts as a point stabilizer,
we have an embedding of R(H) into S3·2k−1. We shall write below H ≤ S3·2k−1. It was proved in [4, Theorem 1]
that, if n = 3m + 2 and A ≤ Sn is an abelian subgroup, then

|A| ≤ 2 · 3m, (4)

and equality holds if and only if A � Z2 ×Zm
3 .

CASE 1. k = 1. In this case Z2
2 ≤ H ≤ S5. This implies that |H| = 4, Γ � Q3 (see [6, Table]), which is in

contradiction with the assumption that the girth is larger than 4.

CASE 2. k = 2. In this case H ≤ S11. Since |H| = 4n, we obtain by (4) that n ≤ 13. We compute by Magma
that, if H is given as in (2) and n ≤ 13, then Γ is not edge-transitive. Furthermore, if H is given as in (3)
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and n ≤ 13, then Γ is edge-transitive only if n = 2 or n = 3. Consequently, Γ � GP(8, 3) or GP(12, 5) (see [6,
Table]). However, we have checked by Magma that in both cases the possible semiregular subgroups have a
non-trivial core in the full automorphism group, and thus this case is excluded.

CASE 3. k ≥ 3. We may assume that n > 13 (see the previous paragraph). We find in Γ the 8-cycle
( 10, r0, r1, (rs)1, (rs)0, s0, s1, 11). Thus there must be an 8-cycle, say C, starting with the 3-arc (10, t1, t0, (t2)1), let
this be written in the form:

C =
(

10, t1, t0, (t2)1, (δt2)x, (γδt2)x′ , (βγδt2)x′′ , (αβγδt2)x′′′
)
,

where x, x′, x′′, x′′′′ ∈ {0, 1} and α, β, γ, δ ∈ {1, r, s, t, t−1
}. Put η = αβγδt2. Observe that, η = tir jsk for some

integers i, j, k ≥ 0. Moreover, i ≤ 4 and i = 0 if and only if C = ( 10, t1, t0, (t2)1, (t2s)1, (ts)0, (ts)1, s0), and so
η = s. On the other hand, since 10 ∼ ηx′′′ and ηx′′′ , t1, η ∈ {1, r}, and we conclude that i > 0 (recall that r , s).
Now, 1 = η2 = t2ir2 js2k = t2i, which implies that the order of t is at most 8, and hence n ≤ 8 (see (2) and (3)),
which contradicts that n > 13. This completes the proof of the lemma. �

Lemma 3.2. Let R(N) be the core of R(H) in Aut(Γ). Then one of the following holds:

(i) H = N × 〈r〉, and Nr = Ns = Nt.

(ii) H = N × 〈r, s〉, r , s, and Nt = Nrs.

Proof. By Lemma 2.4.(iii), the quotient graph ΓR(N) can be written in the form

ΓR(N) = BiCay(H/N, {Nr}, {Ns}, {N,Nt}).

We claim that R(H/N) has trivial core in Aut(ΓR(N)). This and Lemma 3.1 combined together give (i) and (ii).
Let ρ be the permutation representation of Aut(Γ) derived from its action on the set of R(N)-orbits. By

Lemma 2.4.(ii), the kernel kerρ = R(N), ρ(R(H)) = R(H/N), and any subgroup of R(H/N) is of the form
ρ(R(K)) for some N ≤ K ≤ H. Assume that ρ(R(K)) E Aut(ΓR(N)). Then ρ(R(K)) E ρ(Aut(Γ)), and hence
R(K) E Aut(Γ). Thus R(K) = R(N), because R(N) is the core. We find that ρ(R(K)) is trivial, and the claim is
proved. �

In the next lemma we deal with case (i) of Lemma 3.2.

Lemma 3.3. Let R(N) be the core of R(H) in Aut(Γ), and suppose that N , 1 and case (i) of Lemma 3.2 holds. Then
one of the following holds:

(i) H � Z2
2, r = s , t, and Γ � Q3.

(ii) H = 〈r〉 × 〈t〉 � Z2 ×Z4, and Γ � BiCay(H, {r}, {rt2
}, {1, t}) � GP(8, 3).

Proof. In this case H = N×〈r〉, and Nr = Ns = Nt. Thus s = n1r, and t = n2r for some n1,n2 ∈ N. Furthermore,
n1 is an involution, and since H = 〈r, s, t〉, N = 〈n1,n2〉.

Assume for the moment that N is not a 2-group, and let p be an odd prime divisor of |N|. Then M = 〈n1,n
p
2〉

is the unique subgroup in N of index p, hence it is characteristic in N. Using also that R(N) E Aut(Γ), this
gives that R(M) E Aut(Γ). The quotient graph ΓR(M) is a cubic symmetric graph on 4p points admitting a
1-type bi-Cayley representation over H/M. It was proved in [11, Theorem 6.2] that ΓR(M) is isomorphic to
one of the graphs: GP(10, 2), GP(10, 3) and the Coxeter graph F28. We compute by Magma that none of these
graphs has a 1-type bi-Cayley representation. We conclude that N is a 2-group.

Notice that, N � Z2m orZ2×Z2m−1 . If |N| ≥ 8, then N has a characteristic subgroup M such that |N : M| = 8.
Using also that R(N) E Aut(Γ), we find in turn that, R(M) E Aut(Γ), and ΓR(M) is a cubic symmetric graph
on 32 points which admits a 1-type bi-Cayley representation over H/M. Thus Γ is isomorphic to the Dyck
graph F32 (see [6, Table]), which can be excluded by the help of Magma. Therefore, |N| ∈ {2, 4}, and these
yield easily cases (i) and (ii) respectively. �

In the next lemma we deal with case (ii) of Lemma 3.2.
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Figure 1: Voltage assignment ζ of ΓR(N).

Lemma 3.4. Let R(N) be the core of R(H) in Aut(Γ), and suppose that N , 1 and case (ii) of Lemma 3.3 holds. Then
H = 〈r〉 × 〈t〉 � Z2 ×Z6, and Γ � BiCay(H, {r}, {rt3

}, {1, t}) � GP(12, 5).

Proof. In this case H = N × 〈r, s〉, r , s, and Nt = Nrs. Thus t = n1rs for some n1 ∈ N. Since H = 〈r, s, t〉,N =
〈n1〉. Now, by Lemma 2.4.(iii) we may write

ΓR(N) = BiCay(H/N, {Nr}, {Ns}, {N,Nrs}) � Q3.

We proceed by defining an N-voltage assignment of the quotient graph ΓR(N). For this purpose we have
depicted ΓR(N) in Fig. 1, where we have also fixed the spanning tree T specified by the dashed edges. Now,
let ζ : A(ΓR(N)) → N be the T-reduced N-voltage assignment with its voltages being given in Fig. 1. To
simplify notation we set Γ̂ = ΓR(N) ×ζ N. Recall that Nri1ht is a subgroup of Aut(̂Γ) (see Subsection 2.3). Next,
we prove the following properties:

Γ � Γ̂, and Nri1ht E Aut(̂Γ). (5)

Define the mapping f : V(̂Γ)→ V(Γ) by

f : ((Nx)0,n) 7→ (nx)0 and ((Nx)1,n) 7→ (nx)1, x ∈ {1, r, s, rs}, n ∈ N.

Notice that, f is well-defined because {1, r, s, rs} is a complete set of coset representatives of N in H. We
prove below that f is an isomorphism from Γ̂ to Γ. Let v̂1 and v̂2 be two adjacent vertices of Γ̂. This means
that v̂1 = ((Nx)i,n) and v̂2 = ((Ny) j, ζ(a)n), where a = ((Nx)i, (Ny) j) is an arc of ΓR(N). Then f (̂v1) = (xn)i and
f (̂v2) = (yζ(a)n) j.

Let i = j = 0. Then it can be seen in Fig. 1 that y = rx and ζ(a) = 1. Thus in Γ we find f (̂v1) =
(nx)0 ∼ (rnx)0 = (yζ(a)n)0 = f (̂v2). Let i = j = 1. Then y = sx, ζ(a) = 1, and so f (̂v1) = (nx)1 ∼ (snx)1 =
(yζ(a)n)1 = f (̂v2). Finally, let i = 0 and j = 1. Then y = x or y = rsx. In the former case ζ(a) = 1, and
f (̂v1) = (nx)0 ∼ (nx)1 = (yζ(a)n)1 = f (̂v2). In the latter case ζ(a) = n1, and

f (̂v1) = (nx)0 ∼ (tnx)1 = (n1rsnx)1 = (yζ(a)n) = f (̂v2).

By these we have proved that f is indeed an isomorphism.
For the second part of (5), compute that f R(m) f−1 maps ((Nx)i,n) to ((Nx)i,nm) for every m ∈ N. Thus

f R(m) f−1 = mri1ht, and so f R(N) f−1 = Nri1ht. Since R(N) E Aut(Γ),Nri1ht = f R(N) f−1 E f Aut(Γ) f−1 = Aut(̂Γ),
as claimed.
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Now, (5) holds, implying that Aut(̂Γ) projects to an edge-transitive subgroup of Aut(ΓR(N)). We obtain
from this that the automorphism α ∈ Aut(ΓR(N)) lifts, where

α = ( (Nr)0, (Nrs)1,N1)( (Nr)1, (Nrs)0, (Ns)1 ).

Apply Theorem 2.5 to Γ̂ with σ = α and the following directed base circuits relative to T:

~C = ((Ns)0, (Nrs)0,N1, (Ns)1) and ~C′ = (N0, (Nr)0, (Ns)1,N1).

Let σ∗ be the automorphism of N given in Theorem 2.5. Since ζ(~C) = ζ(~C′) = n1, ζ(~Cα) = σ∗(n1) = ζ(~C′α),
which gives n−2

1 = n1. Thus |N| = 3, and this yields easily the statement of the lemma. �

Proof of Theorem 1.3. The theorem follows directly from Lemmas 3.1–3.4. �

4. Proof of Theorem 1.5

Throughout this section we keep the following notation:

Γ = BiCay(H, {1, a, b})

is a cubic symmetric graph, where H = 〈a, b〉 is an abelian group.

Recall that, S(Aut(Γ)) denotes the set of all semiregular subgroups of Aut(Γ) whose orbits are H0 and
H1.

Lemma 4.1. For every abelian group X ∈ S(Aut(Γ)), there exists an involution τX ∈ Aut(Γ) which satisfies the
following properties:

(i) Every subgroup Y ≤ X is normalized by τX.

(ii) The group 〈X, τX〉 is regular on V(Γ).

Proof. Let BiCay(X,U) be a bi-Cayley representation of Γ arising from X. Then as a permutation group of
V(Γ), X is permutation isomorphic to R(X) acting on V(BiCay(X,U)). Therefore, it is sufficient to show the
existence of an involution τ ∈ Aut(BiCay(X,U)) such that

• τ normalizes every R(Y) ≤ R(X); and

• the group 〈R(X), τ〉 is regular on V(BiCay(X,U)).

We claim that the permutation τ, defined by τ : x0 7→ (x−1)1 and x1 7→ (x−1)0, satisfies both properties.
The edge {x0, (ux)1},u ∈ U, is mapped by τ to the pair {(x−1)1,u−1x−1)0}. This is an edge of BiCay(X,U), and
hence τ ∈ Aut(BiCay(X,U)). Furthermore, a direct computation gives that for y ∈ Y, τ−1R(y)τ = R(y−1),
hence τ normalizes R(Y), and the lemma follows. �

Lemma 4.2. Let N ≤ Aut(Γ) be a normal subgroup such that there exists an N-orbit properly contained in H0, and
let X be an abelian group from S(Aut(Γ)). Then N < X.

Proof. Let ∆ be an N-orbit such that ∆ ⊂ H0, and let us consider Y = X∩Aut(Γ){∆}. Since ∆ is a block contained
in an X-orbit, we obtain that ∆ is an Y-orbit. We write ∆ = OrbY(v). Moreover, as X is semiregular, Y is
regular on ∆, and by this and Lemma 2.4.(ii) we have

|Y| = |∆| = |N|. (6)

Let τX ∈ Aut(Γ) be the automorphism defined in Lemma 4.1, and set L = 〈X, τX〉. According to Lemma 4.1
the group L is transitive on V(Γ), and also Y E L. Denote by δ the system of blocks induced by ∆. Then we
may write

δ = {∆l : l ∈ L} = {OrbY(v)l : l ∈ L} = {OrbY(vl) : l ∈ L}.
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From this Y ≤ Aut(Γ)δ, where Aut(Γ)δ is the kernel of Aut(Γ) acting on δ. Since Aut(Γ)δ = N, see
Lemma 2.4.(ii), Y ≤ N. This and (6) combined together imply that N = Y < X. �

For a group G and a prime p dividing |G|, we let Gp denote a Sylow p-subgroup of G.

Proof of Theorem 1.5. We have to show that Γ is a BCI-graph. Let X ∈ S(Aut(Γ)) such that X � H. By
Lemma 2.6 and Lemma 4.1, it is sufficient to show the following

X and R(H) are conjugate in Aut(Γ). (7)

Recall that the girth of Γ is 4 or 6, and if it is 4, then Γ is isomorphic to K3,3 or Q3 (see Remark 1.1). It is
easy to see that (7) holds when Γ � K3,3, and we have checked by the help of Magma that it also holds when
Γ � Q3. Thus assume that Γ is of girth 6. By Theorem 2.2, Γ is k-regular for some k ≤ 4.

CASE 1. k = 1. In this case Aut(Γ) contains a regular normal subgroup K isomorphic to Dih(L), where
L � Zrm ×Zm, r = 3spe1

1 · · · p
et
t , r > 3 and r ≥ 11 if m = 1, s ∈ {0, 1}, and every pi ≡ 1 (mod 3). We have proved

in CASE 1 of Remark 2.3 that Aut(Γ) contains a semiregular normal subgroup N such that N � L, and the
orbits of N are H0 and H1. Notice that, X contains every proper characteristic subgroup K of N. Indeed,
since N E Aut(Γ), K E Aut(Γ), and Lemma 4.2 can be applied for N, implying that K < X. In particular, if
N is not a p-group, then Np < X for every prime p dividing |N|, and thus N = X. Since this holds for every
X ∈ S(Aut(Γ)) with X � H, it holds also for X = R(H), and we get R(H) = N = X. In this case (7) holds
trivially. Let N be a p-group for a prime p. Then it follows from the fact that N � L that p > 3, and thus both
R(H) and X are Sylow p-subgroups of Aut(Γ). In this case (7) follows from Sylow’s Theorem.

CASE 2. k = 2. In this case Γ � GP(8, 3), or Aut(Γ) contains a regular normal subgroup isomorphic to
Dih(L),where L � Zrm ×Zm, r ∈ {1, 3}, m > 1, and if r = 1, then m , 3. If Γ � GP(8, 3), then we have checked
by Magma that H � Z8 and (7) holds. Assume that Γ � GP(8, 3). We have proved in CASE 2 of Remark 2.3
that Aut(Γ) contains a semiregular normal subgroup N such that N � L, and the orbits of N are H0 and H1.
Now, repeating the argument in CASE 1 above, we obtain that N = X = R(H) if N is not a p-group. Let N
be a p-group for a prime p. If p > 3, then both R(H) and X are Sylow p-subgroups of Aut(Γ), and (7) follows
from Sylow’s Theorem. We are left with the case that p ∈ {2, 3}.

Let p = 2. Since N � L, we find that N � Z2e × Z2e , e ≥ 1. Define K = {x ∈ N : o(x) ≤ 2e−1
}. Then K is

characteristic in N and thus K E Aut(Γ). By Lemma 4.2, K ≤ X ∩ R(H). By Lemma 2.4.(iii), the quotient
graph ΓK is a 0-type Bi-Cayley graph over the group N/K � Z2

2. Then ΓK � Q3 and both N/K and R(H)/K
are semiregular on V(ΓK) having orbits the two bipartition classes of ΓK. Since X � R(H), X/K � R(H)/K.
A direct computation, using Magma, gives that there are two possibilities: X/K � R(H)/K � Z2

2 or Z4.
Furthermore, In the former case X/K = R(H)/K, which together with K < X ∩ R(H) yield that X = R(H),
and (7) holds trivially. Suppose that the latter case holds and consider Aut(Γ) acting on the set of K-orbits.
The kernel of this action is equal to K, see Lemma 2.4.(ii), and thus the image Aut(Γ)/K is a subgroup of
Aut(ΓK) which is transitive on the set of 2-arcs of ΓK. However, ΓK is 2-regular (it is, in fact, isomorphic to
Q3), and we obtain that Aut(Γ)/K = Aut(ΓK). We compute by Magma that X/K and R(H)/K are conjugate in
Aut(ΓK) = Aut(Γ)/K, and so (7) follows from this and the fact that K < X ∩ R(H).

Let p = 3. Observe first that |N| > 3. For otherwise, Γ � K3,3, contradicting that the girth is 6. Since
N � L, we find that N � Z3e+ε × Z3e , e ≥ 1, ε ∈ {0, 1}, and if ε = 0, then e ≥ 2. Let ε = 0. Define
K = {x ∈ N : o(x) ≤ 3e−2

}. Then K is characteristic in N and thus K E Aut(Γ). By Lemma 4.2, K ≤ X ∩ R(H).
By Lemma 2.4.(iii), the quotient graph ΓK is a 0-type Bi-Cayley graph of the group N/K � Z2

9. It follows that
ΓK is the unique cubic symmetric graph on 162 points of girth 6 (see [6, Table]). A direct computation, using
Magma, gives that X/K = R(H)/K = N/K, which together with K < X ∩ R(H) yield that X = R(H), and (7)
holds trivially. Let ε = 1. Define K = {x ∈ N : o(x) ≤ 3e−1

}. Then K is characteristic in N and thus K E Aut(Γ).
By Lemma 4.2, K ≤ X ∩ R(H). By Lemma 2.4.(iii), the quotient graph ΓK is a 0-type Bi-Cayley graph of the
group N/K � Z9 ×Z3. It follows that ΓK is the unique cubic symmetric graph on 54 points (see [6, Table]).
A direct computation, using Magma, gives that X/K = R(H)/K = N/K, which together with K < X ∩ R(H)
yield that X = R(H), and (7) holds also in this case.
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CASE 3. k = 3. In this case Γ � F18 (the Pappus graph) or GP(10, 3) (the Desargues graph). We have
checked by Magma that in the former case H � Z2

3 and (7) holds, and the latter case cannot occur.

CASE 4. k = 4. In this case Γ � F14 (the Heawood graph), and (7) follows at once because X and R(H) are
Sylow 7-subgroups of Aut(Γ). �
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